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1. Introduction  

1.1 Background  

An Integrated Resource Plan (IRP) is a roadmap that power utilities use to plan how they will meet the 

energy demand for their customers in the most reliable and least-cost way. This is done in alignment 

with state and federal policy requirements. State governments commonly require utilities to file their 

IRP with their state public utility commissions. The public utility commission usually requires the utility 

to submit regular IRP updates every two to three years. Approving an IRP is a huge stakeholder driven 

process that can span several months or an entire year(s). The final IRP is a comprehensive strategic 

document that drives the utility actions for the next 10-15 years or more (as defined in the IRP).  

 

There are several reasons why an IRP proposal is an integral part of the utility’s resource planning 

process- (1) energy investments are capital intensive and both the public and the government is 

impacted by such high cost-centric projects; (2) most power plants last for a very long time and can 

range between 20 to 100 years before they retire. Such massive long-term investments are necessary 

to be well understood before they go online; (3) IRPs go through several rounds of public hearings and  

state utility commission proceedings before plans and strategies in the IRP get approved. A public 

review process of the IRP provides an avenue for transparency and communication with the 

stakeholders. Also, the utility can showcase its plan/investments in clean energy technology and 

environmental measures. (4) it provides an opportunity for vendors and potential partners, e.g. 

independent power producers, project developers etc. to get access to the utility’s future projects and 

prepare for bids or find other ways of getting involved with the utility.  

 

To ensure that the utility’s electricity is least cost, least risk, safe and reliable, there are several factors 

that get considered in the IRP, for example- (1) the changing energy demand over the next several 

years; (2) timeline of existing generation assets and addition of new generation (thermal, hydroelectric, 

nuclear, renewable etc.); (2) cost-effectiveness of mixed generation portfolios; (3) state and federal 

regulations and policies- such as carbon reduction goals, renewable portfolio standards (RPS) etc.; (4) 

energy efficiency measures; (5) electrification of previously gas-operated systems; (6) electrification of 

transportation; (7) environmental measures amongst many other factors.  

 

This master’s project is an IRP for the electric utility Portland General Electric (PGE) and attempts to 

explore the questions and scenarios that are not currently considered in the utility’s official IRP and go 

beyond Oregon’s RPS and emissions goals. Such questions and scenarios revolve around how the utility 

can reach zero emissions by 2050. The modeling is performed using publicly available data from the 

U.S. Energy Information Administration (EIA), U.S. Federal Energy Regulatory Commission (FERC), 

National Renewable Energy Laboratory (NREL) and modeling tools and resources provided or created 

during the project. We chart a 30-year horizon from 2020-2050 and consider Oregon’s key pieces of 

legislation to outline and propose a recommendation for how PGE can reliably serve their customers 

while reaching zero emissions by 2050.  
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Our modeling adheres to the key clean energy policies in the state and is in alignment with the Oregon 

Public Utility commission (OPUC) regulations.  The OPUC is the central regulatory body in the state that 

regulates the rates and services offered by all power utilities, telecommunication companies, and 

water companies to ensure safe and reliable services at reasonable rates. Here are some of the key 

policies we considered: 

 

2016 Oregon Clean Electricity, Coal Transition Act (SB 1547B):  

• Mandates that any load serving entity in the state like PGE must end energy sales coming from 

coal by the year 2035. This has led PGE to announce the retirements of its Boardman and 

Colstrip coal plants within the next 2 and 10 years, respectively.  

• Mandates a Renewable Energy Portfolio Standard (RPS) of 50% by 2040, meaning that 50% of 

energy sales must come from qualifying renewable sources. 

2007 HB 3543:  

• Aims to achieve greenhouse gas levels at least 75% below 1990 levels by 2050. 

1.2 Existing PGE System  

As of 2019, PGE covers a service territory of 4,000 sq. miles in and around the City of Portland, Oregon. 

The utility serves approximately 887,000  customers including 772,389 residential customers, 109,107 

commercial customers and 270 industrial customers. PGE serves 44% of the total population in Oregon 

and distributes its power across six counties -Multnomah, Clackamas, Marion, Yamhill, Washington, 

and Polk. The utility’s retail sales totaled 21 million MWh with an average retail rate of 12.01 

cents/kWh. PGE’s carbon emissions stand at 430 kgCO2/MWh in 2019.  

 

Current Capacity Mix: PGE meets its energy demand with a diverse mix of generation resources such 

as hydro power, natural gas, coal, wind, and solar plants that are fully or jointly owned by the utility. 

PGE’s total capacity in 2019 was 4394 MW with Natural Gas making up most of the share (48%) 

followed by Wind, Hydro, and Coal each taking approximately 15% to 21% of the mix. Solar and 

Batteries (Storage) are currently at less than 1%. Table 1 shows the capacity (MW) of each resource 

type and Figure 1 shows the capacity distribution (%) in a pie-chart. 
 

Table 1. PGE resource capacity mix and percentage share  

 
Hydro Coal 

Natural 
Gas 

Wind Solar Storage 
Total 

Resources 

646 MW 
938 
MW 

2086 MW 
717 
MW 

2 MW 5 MW 4394 MW 

15% 21% 48% 16% 0.04% 0.11% 100% 
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1.3 Resource Need Assessment 

An integral part of the IRP is to first identify the gaps between the available resource capacity and the 

additional resources needed in the future to ensure uninterrupted supply of electricity to the 

customers. Additional resources are based on demand projections into the future years. This needs to 

be estimated while meeting the policy and emission reduction requirements.  

Regression analysis: We performed a regression analysis for projecting peak demand and resource 

capacity till 2050 using PGE historical data (Fig. 2). Details of this analysis are elaborately described in 

Section 3 of this report. Projections indicate PGE’s peak demand will grow from 3900 MW in 2019 to 

approximately  4900 MW in 2050. This shows that a peak demand growth of at least 1000 MW in the 

next 30 years. Now, assuming that the scheduled retirement of power plants will take place as 

expected, we estimate that the capacity will decrease from 4394 MW in 2020 (Table 1) to 550 MW in 

2050 (Fig. 2). This leaves a resource capacity gap of at least 4350 MW in 2050. This gap (also known as 

resource need) is met through new capacity additions that is proposed and modeled in the IRP.  

Furthermore, demand projections indicate that the energy sales will grow from 21,000 GWh in 2019 to 

27,000 GWh in 2050, implying that sales will rise by 6,000 GWh in the next 30 years. 

 

Figure 1. Pie-chart represents PGE’s 2019 Capacity Mix 
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Figure 2.  Graph indicating peak demand vs. available capacity for PGE from 2018 to 2050.The gap between 
the orange and blue line indicates the resource need. 

 

 
 
 

2. Scenarios  

2.1  Overview  

Our IRP research goal is to achieve a zero-emissions end-target by 2050 for PGE. We are trying to the 

determine the best path for PGE to achieve this target, specifically, to find a least-cost, least-risk 

optimal resource mix to meet the zero-emissions target by 2050.  We consider three scenarios in this 

IRP- (1) Reference Scenario, (2) High-Renewables scenario and (2) Carbon Capture Sequestration (CCS) 

scenario. A direct comparison between the results from High-Renewables scenario and the CCS 

scenario will reveal the differences in annual cost, retail price of electricity, emissions intensity etc. 

between the two cases. This will help understand which of the two cases is a better approach for PGE 

to meet the zero-emissions goal. For the scope of this project, we have considered capacity build- outs 

or modeling at regular 10-year intervals starting in 2020, then 2030, 2040, and finally 2050. 

2.2 Reference case  

The Reference case is a scenario where PGE meets future capacity needs at the lowest cost with 

business as usual operations. In other words, here, we are only aiming for the system to achieve 

minimum policy requirements- (1) the state RPS requirements of achieving 50% renewables by 2040, 

(2)  No new coal plants will be considered  after the existing plants retire. Additionally, since neither 

geothermal nor nuclear energy are a part of PGE’s current mix of resources, we are excluding them 

from this scenario as well as the other scenarios explored in our model. Since the Reference case is not 
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constrained by a zero emissions goal, fossil fuel generation will still be a part of the electricity system in 

this scenario.  

2.3 High Renewables case  

The High-renewables case is aimed at achieving zero-emissions by 2050, with a high penetration of 

renewable resources in the capacity mix. The suite of resources considered for this case are wind, 

solar, hydro, and biomass; the zero-emissions target is achieved by progressively adding various 

amounts of renewable capacity at regular intervals of 10 years. Biomass is a carbon neutral fuel, hence 

it neither adds nor removes any carbon emissions. However, since biomass is considered a renewable 

resource under the state guidelines of Oregon, it adds successfully to the renewable share of the new 

capacity mix. Through this scenario, we target to have a 100% renewable energy mix by 2050. 

2.4 Carbon Capture Sequestration case   

The Carbon Capture and Sequestration Case (CCS) is aimed at achieving zero-emissions by 2050. Unlike 

the High Renewables case, this case will primarily rely on building Natural Gas-plus-Carbon Capture 

and Sequestration (Gas+CCS) power plants with a much lesser leverage on renewables. Although the 

scenario allows for solar, wind, and hydro generation on a need basis, the major capacity additions will 

be accomplished through Gas+CCS technology. 

2.5 Summary 

Fig. 3. shows a list of criteria considered in each planning scenario. Main research questions we plan to 

address are:  

•  Which case is more cost-effective or cheaper  to achieve zero-emissions by 2050?  

•  How do ratepayer prices change in each case? Are they higher or lower as compared to the 

Reference case?    

 
 

Reference Case

-Meet RPS of 50% RE 
by 2040

-Buisness-as-usual

- No new coal after 
retirements of 
exisitng plants

High Renewables 
Case

-Meet  zero emissions 
by 2050 through a high 
renewable energy mix 
(target 100% 
renewables)

-New capacities are 
solar, wind, hydro and 
biomass only

Carbon Capture 
Sequesteration Case

-Meet  zero-emissions 
by 2050 through 
Gas+CCS power plants

-All new fossil fuel 
capacity additions are 
Gas+CCS

-Allow solar, wind, 
hydro as needed

Figure 3. Description of all three cases considered 
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3. Models and Methods  

Summary: We relied heavily on data from FERC, NREL, the EIA, other government agencies, and 

previous IRPs from PGE.  These provided the raw data on the utility and the geographical region, for 

example, PGE’s historical energy data, economics, and Oregon demographic data. Using this 

information/data we built a Load and Resources table. The Load and Resources table included several 

components- (1) projected  load growth till 2050 (using regression model), (2) existing capacity 

information, (3) projected capacity till 2050, (4) estimated resource need. A Capacity Expansion model 

served as the central part of this IRP modeling and forecasting process. Data from the Load and 

Resources table provided as the main input into the capacity expansion model (stack model). We used  

Load Duration curves and Screening curves to choose the lowest cost  build out of thermal resources. 

NREL solar prospector, System Advisor Model (SAM) and wind prospector were used to select potential 

solar and wind sites. With logical inputs and settings, a load profile was obtained for both solar and 

wind resources. The load profile was scaled up to match the intended capacity build out. Annual costs 

were calculated using data obtained from NREL’s ATB sheet (Annual Technology Baseline), these 

included fixed and variable costs, capital recovery factor, heat rate and fuel costs. Fig. 4 shows a 

schematic representation of the steps used in the process. 

3.1 Load Forecast model 

The Load Forecast model shows the load projection in Oregon from 2020 to 2050. This was done by 

projecting PGE’s annual load growth from 2020 to 2050 using a statistical regression model. The types 

Figure 4. Method and modeling steps 
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of load growth forecast were- (1) total annual energy consumption and (2) annual peak demand. The 

regression analysis used historical data (1990 to 2019) of three variables- (1) U.S. Gross Domestic 

Product (GDP), (2) U.S. average household size and (3) Oregon population. Historical energy data was 

obtained from the FERC’s  eCommission library and FERC Form 714. FERC Form 714 provides yearly 

8760 load data profiles from 2006-2018, while the eCommission library provides annual load profiles 

from 2005 and earlier.  The load profile for 2019 was obtained through the U.S. EIA data sets and 

filtered for the utility concerned. GDP data was obtained from the U.S. Bureau of Labor Statistics and 

the U.S. Census Bureau served as the source for obtaining the Oregon population data.  

 

Step 1- Projecting state population growth: An X-Y plot was obtained for the historical population in 

Oregon, which exhibited a linear trendline (equation y= 0.0443x + 2.9057; Fig. 5). Assuming a linear 

growth rate into the future and holding the slope constant, we extrapolated the trendline further until 

2050. As per the projection, Oregon’s population rises from 4.2 million in 2020 to approximately 6.7 

million 2050. 

 

 

 

Step 2- Projecting U.S. GDP growth: An X-Y plot is obtained for the historical U.S  GDP, which exhibited 

a linear trendline (equation y=518.77x + 4643.1; Fig. 6). Assuming a linear growth rate into the future 

and holding the slope constant, we extrapolated the trendline further until 2050. As per the projection, 

U.S. GDP rises from $20,890 billion in 2020 to $37,440 billion in 2050.   

 

Figure 5. Plot showing historical Oregon population and projected Oregon population. 
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Step 3- Projecting U.S. average household size: An X-Y plot was obtained for the historical U.S. average 

household size, which exhibited a linear trendline (equation y=-0.0044x + 2.6531; Fig. 7). Assuming a 

linear growth rate and constant slope, we extrapolated the trendline further until 2050. As per the 

projection, U.S. average household size decreases from 2.52 people in 2020 to 2.38 people in 2050. 

 

 
 

Figure 6. Plot showing historical U.S. GDP and projected U.S. GDP. 

Figure 7. Plot showing historical U.S. average household size and projected U.S. average household size 
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Step 4- Projecting PGE energy data: We performed a regression analysis on all the data mentioned in 

Steps 1, 2,3  against the PGE annual load profile. MS-Excel Data Analysis tool was used for the analysis 

where PGE historical energy data was set as the y-variable and DP, population and household size were 

set as the multiple x-variables. Table 2 show the regression analysis statistics.  

Below is the regression equation we used in the analysis: 

Future Energy = intercept + (GDP coefficient*period year GDP) + (Oregon population 

coefficient*period year population) + (average household size coefficient*period year household size) 

Table 2. Main statistics from the regression analysis of PGE energy data     

 

 

 

 

 

 

 

 

 

 

 

 

Plugging in the forecast x-variables values for each year in the equation, we obtained the energy 

demand for that year. Annual energy forecast for 2020 to 2050 can be seen below in Fig. 8 and Fig. 9. 

The total annual energy demand is expected to grow from approximately 21,000 GWh in 2020 to 

27,000 GWh in 205, while the annual energy peak demand is expected to rise from approximately 3900 

MW in 2020 to 4900 MW in 2050.  

 

 
 Coefficients 

Standard 
Error 

t Stat P-value 

 

Regression Statistics 

Intercept 72948.7 15291.2 4.8 6.16E-05 Multiple R 0.87 

US GDP 
(Billions) 

-0.3 0.1 -2.4 0.025622 R Square 0.76 

Oregon 
Population 

(Million) 
3494.0 1490.4 2.3 0.026977 

Adjusted R 
Square 

0.73 

US Average 
Household 

Size 
-23700.5 5721.2 -4.1 0.000322 

Standard 
Error 

493.08 

 Observations 30 
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   3.2 Energy Efficiency and Demand-Response  

Energy efficiency (EE)  procurement data (projections from 2020 to 2036) was directly obtained from 

the Energy Trust of Oregon study within the PGE 2016 IRP report (Table 3). This data shows that PGE 

will obtain varying amounts of cost-effective energy efficiency from 2020 through 2036. Since the PGE 

2016 IRP report did not contain any EE data projections beyond 2036, we assumed a constant yearly EE 

Figure 8. PGE historical annual energy profile and projected annual energy profile 

 

Figure 9. PGE historical annual peak energy demand and projected annual peak energy demand 
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acquisition equal to the quantity that will be acquired in 2036. We obtained the Distributed Energy 

Resources (DR) data projections directly from the 2016 PGE IRP report (Table 4).  

 

Table 3. Energy Efficiency data projections from 2020 to 2050 

Year New EE Cumulative EE Year New EE Cumulative EE 

2020 29.5 29.5 2036 13.5 315.6 

2021 27.1 56.6 2037 13.5 329.1 

2022 24.4 81 2038 13.5 342.6 

2023 23.5 104.5 2039 13.5 356.1 

2024 21.5 126 2040 13.5 369.6 

2025 20.8 146.8 2041 13.5 383.1 

2026 19.3 166.1 2042 13.5 396.6 

2027 18.4 184.5 2043 13.5 410.1 

2028 16.3 200.8 2044 13.5 423.6 

2029 15.8 216.6 2045 13.5 437.1 

2030 14.6 231.2 2046 13.5 450.6 

2031 14.8 246 2047 13.5 464.1 

2032 14.4 260.4 2048 13.5 477.6 

2033 14 274.4 2049 13.5 491.1 

2034 13.9 288.3 2050 13.5 504.6 

2035 13.8 302.1    

 

Table 4. Distributed Energy Resources data projections from 2020 to 2050. 

Year DER Year DR 

2020 -11 2036 -37 

2021 -12 2037 -39 

2022 -13 2038 -42 

2023 -14 2039 -45 

2024 -15 2040 -48 

2025 -17 2041 -51 

2026 -18 2042 -54 

2027 -19 2043 -57 

2028 -21 2044 -61 

2029 -22 2045 -64 

2030 -24 2046 -68 

2031 -26 2047 -72 

2032 -28 2048 -76 

2033 -30 2049 -80 

2034 -32 2050 -84 

2035 -34   

 

3.3 Existing Capacity and Generation Plants 

EIA Form 860 Generator Sheet is available from the EIA website and it provides independent yearly 

data for all U.S. electric utilities from 2001 to 2018. We extracted the relevant generation and capacity 

data for PGE from EIA Form 860. This included data for all- (1) all generation plants, (2) all generators 
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for each plant, (3) nameplate capacity, (4) commercial operation/ installation and retirement years for 

every generator present in each resource type. Furthermore, we consolidated some of the generators 

based on their resource type and similar installation and retirement years to obtain the aggregated 

capacities for the generators (Table 5).  

 

Table 5. Existing PGE generator and capacity table.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Generator Online  Offline  Type 
Capacity 

(MW) 

Faraday 1 1907 2020 Hydro 17.4 

Faraday 2 1958 2058 Hydro 19.2 

North Fork 1958 2058 Hydro 40.8 

Pelton 1957 2057 Hydro 109.8 

River Mill 1 1911 2020 Hydro 9.9 

River Mill 2 1927 2027 Hydro 3.9 

River Mill 3 1952 2052 Hydro 5 

Round Butte 1964 2064 Hydro 372.5 

Sullivan 1 1924 2024 Hydro 14.4 

Sullivan 2 1952 2052 Hydro 1 

Boardman 1980 2021 Coal 642.2 

Oak Grove 1 1924 2024 Hydro 25.5 

Oak Grove 2 1931 2031 Hydro 25.5 

Coyote Springs 1995 2035 CT 266.3 

Beaver 1 1974 2020 CCGT 586.2 

Beaver 2 2001 2041 CCGT 24.5 

Post Westward 2007 2047 CT 483 

Post Westward 
Unit 2 

2009 2049 CT 225.6 

Big glow Canyon 
Wind Farm 

2007 2027 
Onshore 

Wind 
Turbine 

449.7 

Baldrock Solar 
Highway 

2012 2037 
Solar 

Photovolta
ic 

1.7 

Carty 
Generating 
Station 

2009 2049 CT 500 

Tucannon River 
Wind Farm 

2014 2034 
Onshore 

Wind 
Turbine 

266.8 

Salem Smart 
Power Center 

2013 2028 Batteries 5 

Timothy Lake 
Powerhouse 

2018 2118 Hydro 1.2 

Colstrip 1984 2030 Coal 296 
   TOTAL 4394 
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In the absence of retirement years in EIA Form 860, we assumed the following lifetime for common 

generating plants (Table 7). These assumptions are based on the average lifespan of these types of 

plants historically owned and operated by PGE.  

 

Table 6. Lifetime assumptions for different PGE generating plants.  

 

Based on the retirement years of existing plants and assuming no new resource additions, the existing 

available capacity is expected to go down from a 4394 MW in 2019 to 549.5 MW in 2050 (Table 8). The 

decreasing capacities of each resource type is graphically shown in Fig. 10. 

 

Table 7. Existing capacity of various PGE resources- 2019 to 2050. 

Year 
Hydro 
(MW) 

Coal 
(MW) 

Natural 
Gas (MW) 

Wind (MW) 
Solar 
(MW) 

Storage 
(MW) 

Total 
(MW) 

2019 646.1 938.2 2085.6 716.5 1.7 5 4394 

2050 549.5 0 0 0 0 0 549.5 

 

 
 

 
             

Natural Gas Wind Hydro Solar Batteries 

40 Years 25 Years 100 years 30 years 15 Years 

              Figure 10. Load & Resource gap. Black line indicates PGE  projected load growth. Colored stacks 
indicate decreasing capacities of various PGE resource types (2018 to 2050) 
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3.4 Load and Resource Table 

A Load and Resources Table was formulated by combining all previously aggregated data- (1) load 

forecast, (2) EE and DR data, (3) existing capacity table (available resources). The Load and Resources  

table uses a 17% planning reserve margin to estimate the total capacity. It calculates the final system 

deficit for every year by taking the difference between the total capacity and total load projected for 

that particular year. The gap between the total load and total resource capacity (4356 MW) indicates 

the resource need assessment as shown previously in Fig. 10. 

 

3.5 Capacity Expansion Model (Stack model) 

Model overview: A stack model was used to perform capacity expansion for every ten years- 2020, 

2030, 2040, and 2050. Primary inputs in the model were drawn from the Load and Resources table and 

include- (1) existing generators by capacity, online year and retirement year, (2) generators classified 

based on total cost, heat rate and capacities tranches, and (3) energy consumption and peak demand 

data from 2018 to 2050. Renewable capacity expansion was estimated for wind and solar resources 

based on Oregon’s Renewable Portfolio Standard. Net generation was then calculated using the 

thermal and renewable capacity expansion estimates. We then used net generation to obtain load 

duration curves (LDC) and screening curves (SC). LDC and SC were used to determine the lowest cost 

8760 dispatch of thermal resources. The 8760 dispatch numbers were then used to inform thermal 

resource capacity expansion. We used the Microsoft Excel Solver analysis tool to calculate the outputs. 

Primary output or decision variable was the new capacity of the generators for the year modeled. 

Other outputs included total renewable share, emission intensity, curtailment, and total system 

generation cost. The models are set to minimize the system generation cost and constrained by the 

specific requirements as per the different scenarios. Additionally, average retail rate of electricity was 

calculated based on the levelized cost of electricity (LCOE) in each scenario.   

Solar capacity: We used the NREL modeling tool System Advisor Model (SAM) and obtained the 8760 

load shape profile for solar generation in PGE service territory. A weather file for the City of Oregon 

was used as the base for the load shape simulation. We chose eight different locations for prospective 

solar plant installations and simulated an average scaled load shape profile. In-state site locations were 

preferably chosen to avoid any additional transmission costs. Inputs used in the SAM model were- (1) 

15 degrees tilt (2) 180 degrees azimuth alongside a standard module type (3) 1.2 DC/AC and (4) 96% 

inverter efficiency.  

Wind Capacity: To add wind capacity we used the NREL Wind Prospector tool and obtained an average 

scaled 8760 load shape profile for wind generation in PGE service territory. Weather data for the year 

2010 was used as the base weather profile to match simulated data. Six prospective location sites were 

selected with respective capacity factors ranging between 33% to 40%. In-state site locations were 

preferably chosen to avoid any additional transmission costs. 
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Fixed and Variable cost data: Average cost data for each resource type was obtained from the NREL 

Annual Technology Baseline (ATB) document. Annual cost was calculated using the capex ($/kW), 

capital recovery factor (CRF), fixed cost and variable cost for operation and maintenance ($/kW-yr). 

Resource type specification used were- (1) Wind, TRG 1-mid, 0.49 capacity factor (CF), (2) Solar, TRG-

mid, 0.16 CF (3) Coal-new-avg CF, 0.21 CF, (4) Natural Gas- CT-Constant CF, 0.33 CF,  (5) Hydro, NPD-1 

mid, 0 .40 CF, (6) Biomass, Dedicated Mid, 0.56 CF (7) Natural Gas+CCS, Gas-CC-CCS-Avg. ,0.61 CF. 

Fuel Costs: While fuel costs for coal and natural gas were obtained from the NREL ATB document, 

biomass fuel cost was obtained from PGE’s published research. Fuel costs for CCS power plants were 

treated differently. We assumed that CCS plants capture 90% of the CO2 emitted into the atmosphere.  

To achieve zero emissions in our scenarios, we introduced a mix of 90% natural gas and 10% biogas. 

This was used as a fuel mix for the CCS plants in the 2050 zero emissions+ CCS scenario.  Since 

capturing and storing biogas emissions achieves negative emissions, the escaped CO2 emissions would 

be offset. We assumed a cost of $25/MMBTU for biogas fuel and $50/tonne of CO2 for transportation 

and storage costs. 

Transmission and Distribution (T&D) Costs: We assumed T&D costs to be the difference between the 

reported 2020 PGE average retail rate and our own calculation of the levelized cost of electricity for 

2020. To determine the ratio between transmission and distribution we looked at PGE historical data 

for T&D costs as reported in FERC Form 1. After obtaining the total costs and the ratio, we assumed a 

fixed percent linear growth till 2050. A higher percentage growth assumption was used in scenarios 

with greater number of renewables in the system. 

3.6 Determining Thermal Capacity 

LDCs and SCs are important tools to determine the amount of thermal generation needed to meet load 

economically (Fig.11 and Fig.12). To create an LDC we took PGE’s 8760 annual demand profile and 

sorted it from the highest to the lowest load hour (Fig. 11). A Screening Curve (cost curve) 

demonstrates the generation cost of a type of plant as a function of operation (Fig. 12). The fixed and 

variable costs for each generation type- coal, CCGT, CT, biomass, CCGT + CCS was first determined. The 

least-cost frontier of each generation type was then determined using these cost numbers (Fig. 12).  
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Figure 11. Load Duration Curve constructed using 8760 hourly data 

Figure 12. Screening Curve constructed for each thermal technology. Least cost frontier is determined 
using these curves and indicated here in red ink. 
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Overlay and 8760 Dispatch: The amount of each type of thermal resource needed to meet the net 

generation in the least-cost way was determined by using the LDC and SC. This is called the 8760 

dispatch overlay and was constructed by the LDC data over the SC data in MS-Excel. As an example, 

below is the resulting 8760 dispatch capacity for the 2020 Reference Case. The model selected most of 

the capacity build out to be CCGT, followed by CT, and no Coal (Fig. 13). The capacity values obtained 

in the 8760 Dispatch were then used as inputs in the Capacity Expansion Model to optimize the total 

new capacity needed for the test year.   

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 13. Overlay of LDC and Screening Curve to produce an 8760 dispatch 
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4. Results & Modeling Outcomes  

The overall results summary obtained from the modeling process is shown below in Table 8.   

Table 8. Summary of results obtained for all cases  

 Reference Case 
2020 

Reference Case 
2050 

High Renewable 
Case 2050 

Carbon Capture 
Seq. Case 2050 

System Overview     

Peak Demand (MW) 3873 4906 4906 4906 

Nameplate Capacity (MW) 5467 9373 11571 10544 

Dependable Capacity (MW) 4531 5739 5738 5738 

Energy Sales (MWh) 21,040,958 27,437,876 30,708,016 29,385,919 

RES Energy (MWh) 5,370,624 15,037,266 23,077,264 20,272,556 

RES Share % 26% 55% 85% 75% 

Carbon-free energy (MWh) 5,370,624 15,037,266 23,077,264 20,272,556 

Carbon-free share % 26% 55% 100% 100% 

Emissions (MMT) 8.51 4.25 0.00 0.00 

Emission Intensity 
(kgCO2/MWh) 

405 155 0 0 

Curtailment (MWh) 0 287,857 3,557,998 2,235,901 

Curtailment Share % 0% 2.41% 20.44% 14.28% 

System Costs     

Fixed Gen Costs (mill$) 753 957 1431 1639 

Variable Gen Costs (mill$) 358 220 363 369 

Distribution Costs (mill$) 853 1150 1436 1334 

Transmission Costs (mill$) 568 765 956 888 

CCS storage+ transportation 
(mill$) 

- - - 181 

Total Costs (mill$) 2532 3092 4186 4411 

Average Retail Rate ($/kWh) 0.12 0.11 0.15 0.16 

Nameplate Capacity     

Coal (MW) 938 0 0 0 

CCGT (MW) 1386 3276 0 0 

CT (MW) 1773 1744 0 0 

CCGT+CCS (MW) 0 0 0 4843 

Wind (MW) 717 2396 3402 3227 

Solar (MW) 2 1066 1844 1153 

Hydro (MW) 646 890 1624 1321 

Biomass (MW) 0 0 4701 0 

Total (MW) 5467 9373 11,571 10,544 

Net Generation Share     

Coal 29.5% 0.0% 0.0% 0.0% 

CCGT 43.4% 45.1% 0.0% 0.0% 

CT 1.6% 0.1% 0.0% 0.0% 

CCGT+CCS 0.0% 0.0% 0.0% 31.0% 

Wind 14.8% 37.9% 48.1% 47.7% 

Solar 0.0% 5.5% 8.6% 5.6% 

Hydro 10.7% 11.3% 18.5% 15.7% 

Biomass 0.0% 0.0% 24.8% 0.0% 
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4.1 Nameplate Capacity, Dependable Capacity and Net Generation 

Nameplate capacity, also known as rated capacity or installed capacity, is the maximum power output 

that a power plant can produce. In other words, it is the maximum capacity a power generator is 

designed to run at under ideal conditions. However, the final energy generated from a power plant, 

also depends on other factors besides the nameplate capacity. These factors include the CF (i.e., 

capacity factor) of the generators as well as the dispatch over a given period. Fig. 14 below shows the 

nameplate capacity of the three cases across the modeling period. The nameplate capacities rise 

incrementally over time to meet the growing load from 2020 to 2050.The High Renewables case shows 

the highest nameplate capacity additions from 2020 to 2050 reaching 11,571 MW in 2050. 

 
 

 

The dependable capacity is defined as the load carrying capacity or the baseload capacity of a power 

plant that can be sustained during a restricted period of time. These restrictions often include seasonal 

variations affecting load, power outages, maintenance etc. Since it is always a portion of the total 

nameplate capacity, it should at least be equal to the planning reserve margin of the system.  

Fig. 15 shows the peak load, dependable capacity, and total nameplate capacity in the three cases for 

the year 2050. Due to the intermittency and variability of renewables, solar and wind do not serve the 

dependable capacity as reliably as natural gas plants. Adding greater renewable capacity thus requires 

parallel building of greater natural gas capacity. It is needed in order to obtain adequate dependable 

capacity. This can be seen in the High Renewables case, where the dependable capacity makes up a 

large portion i.e., almost half of the total nameplate capacity.  

 

Figure 14. Nameplate Capacity of all cases from 2020 to 2050 
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While nameplate capacity refers to the maximum instantaneous power, the net generation is the 

actual energy produced over a time period to meet demand. Fig. 16 and 17 show the total nameplate 

capacity and the net generation share of various resource mixes in the three cases for 2050. Thermal 

resources such as coal and natural gas make up most of the energy mix in the 2020 Reference case, 

however, with an RPS target in due course, renewables are added progressively to the energy mix by 

2050. The High Renewables case builds out a higher amount of solar and wind in order to meet the 

zero-emissions target while the CCS case builds out a significant amount of CCGT+CCS plants in order 

to achieve the same.   

The share of renewables in the total capacity mix is often different from the share of renewables in the 

total generation mix. This is because of the variability in solar and wind generation. Large amounts of 

solar and wind production may exceed the amount of load during a time period, which can lead to 

unintended curtailments. To ensure justifiable and reasonable results, we limited curtailment to ~20% 

in all modeled years across all cases in the capacity expansion model. Because of the high share of 

renewables in the High Renewables approach, it has the highest curtailment among all cases. The 

curtailment in the High-Renewables Case is  ~20% while the CCS case is ~14%. 

 

Figure 15. Relationship between peak demand, nameplate capacity and dependable capacity in all cases 
(2050) 
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While the High Renewable case displays a generation mix composed of 85% renewables (solar, wind, 

hydro) in 2050, the CCS Case shows a generation mix composed of 75% renewables (solar, wind, hydro) 

in 2050. In the High Renewables case, biomass makes up the remaining 15% of the generation mix. 

Since biomass is classified as a renewable resource under the state of Oregon, the system in this 

scenario would technically qualify as a 100% renewable mix.  

 

Both the High Renewables case and CCS case show their highest generation share met by wind 

resources at approximately 48%. This is followed by 26% biomass in the High Renewables case and 31% 

CCGT+CCS generation in the CCS case. Solar generation makes up around ~9% while hydro is 

approximately at ~16% of the total generation mix in both cases.    
  

Figure 16. Breakdown of nameplate capacity (2050) by the various energy resources in all cases 



 
23 

 

 

 

 

4.2 Annual System Costs and Retail Rates 

As overall capacity grows from 2020 to 2050, the system cost also grows alongside the capacity 

expansion. Fig. 18 demonstrates the overall rising system costs in the three cases.  

 
 

 

Figure 17. Net generation share of different energy resources in all cases (2050 to 2050) 

 

Figure 18. Total system costs in all cases from 2020 to 2050 
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Both the High Renewables case and the CCS case show much higher system costs relative to the 

Reference case. This is because of the higher renewable penetration and expensive technologies 

integrated in both scenarios. The CCS case shows the highest system cost at $4,411 million followed by 

the High Renewables Case at $4,186 million. Fig. 19 shows the breakdown of the 2050 total system 

costs in all three cases. System costs include fixed generation costs, variable generation costs, and 

T&D. Since renewables have high fixed costs and high T&D costs, the total system cost rises by a 

significant amount for both the High Renewables case and the CCS case. The highest system costs are 

seen in the CCS Case which is because of the additional costs incurred due to carbon capture storage 

and transportation as well as the biogas fuel costs. 

 
 

 

Retail rate of electricity was calculated by dividing the total system costs by the total energy 

generation. As demonstrated in Fig. 20, there is an increasing trend of retail rate in the High Renewable 

case as well as the CCS case. The highest retail rate of electricity is seen in 2050, at $0.16/kWh in the 

CCS Case as compared to a lesser $0.15/kWh in the High Renewables Case. Interestingly, the Reference 

case shows a decline in the retail rate of electricity falling from $0.12/kWh in 2020 to $0.11/kWh in 

2050. This is likely due to the rapidly increasing generation outpacing the rising system costs over the 

modeling period. 

 

Figure 19. Breakdown of total system costs in all cases (2050) 
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4.3 Carbon Intensity 

The main research goal of this project was to achieve a zero-emissions target by the year 2050. 

Thereby, the reduction in carbon intensity was a key performance indicator of the scenarios. As 

expected, zero carbon emissions were achieved in both the High-Renewables case and the CCS case. 

Fig. 21 demonstrates the declining carbon emissions in the three cases from 2020 to 2050. The 

Reference case shows a decrease in emission intensity by almost 38% over this period. Although both 

the High Renewables case and the CCS case reach zero-emissions by 2050, the CCS case shows a 

potential to reach this target much earlier than 2050. This is caused by the non-linear decline in 

emission intensity for this scenario. In contrast, the High Renewables case displays an almost linear 

decline in emission intensity over 2020 to 2050.  

 

 Figure 20. Retail rate of electricity in all cases from 2020 to 2050. 
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5. Discussion and Conclusions 
 

PGE’s  climate stewardship and environmental initiatives are an integral part of making Oregon a 

carbon free state. With abundant renewable resource availability in the state, PGE has an advantage in 

making expeditious advancements in going above and beyond the Renewable Portfolio Standards set 

by the state. Our research goal of achieving zero-emissions by 2050 has been modeled in this study. 

We examined two different approaches to achieve this target, a High Renewables case and a CCS case. 

 

• The CCS case is estimated to have the highest system costs at $4,411 million to achieve the zero-

emissions target by 2050. This is followed by the High Renewable case at $4,186 million. The CCS 

case is $600 million more expensive than the High Renewable case.  

 

• The annual cost of achieving a zero-emissions target is at least $1.1 billion more than the business-

as-usual Reference case (Fig. 22). This is seen as the annual system cost difference between the 

Reference case 2050 and the High Renewables case 2050. Since this might be significantly 

expensive for the utility, it needs to be kept in perspective.  

 

• The CCS case has the highest retail rate of electricity at $0.16/kWh in the year 2050. This is 

$0.0083/kWh higher than the High Renewables case which stands at $0.15/kWh. The retail rate in 

the High Renewables case is $0.04/kWh higher than the business-as-usual Reference case (Fig. 23). 

 

Figure 21. Carbon emissions intensity in all cases from 2020 to 2050 
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In view of the above findings and analysis, we would like to recommend the High Renewable case as a 

more cost-effective and feasible approach to achieve zero-emissions by 2050. Although our study 

includes several aspects to building a safe and reliable planning system, it is not a comprehensive 

study. Additional factors that can be considered in future studies are battery storage additions, high 

electrification scenarios, energy efficiency and other types of demand side management. 

  Figure 23. Change in retail price of electricity across all cases (2050) 

 Figure 22. Change in total system costs across all cases (2050) 
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6. Appendix 
 

I. Key Performance Indicators for all years 

 

Reference 
Case 

2020 2030 2040 2050 

Energy Sales (MWh) 21,040,958 22,772,227 24,846,819 27,437,876 

Carbon-free share % 26% 35% 50% 55% 

Renewable Share % 26% 35% 50% 55% 

Emission intensity 
(kg CO2/MWh) 

406 262 175 
155 

 

Retail rate of 
electricity ($/kWh) 

0.12 0.12 0.11 0.11 

 

 

High Renewables 
Case 

2020 2030 2040 2050 

Energy Sales (MWh) 21,044,670 23,327,511 27,714,216 30,708,016 

Carbon-free share % 42% 60% 80% 85% 

Renewable Share % 42% 60% 80% 85% 

Emission intensity 
(kg CO2/MWh) 

367 210 94 
0 
 

Retail rate of 
electricity ($/kWh) 

0.13 0.13 0.14 0.15 

 

 

Carbon Capture 
Sequestration Case 

2020 2030 2040 2050 

Energy Sales (MWh) 21,040,958 22,833,540 25,636,869 29,385,919 

Carbon-free share % 46% 89% 99% 100% 

Renewable Share % 37% 50% 65% 75% 

Emission intensity 
(kg CO2/MWh) 

358 107 17 
0 
 

Retail rate of 
electricity ($/kWh) 

0.13 0.14 0.15 0.16 
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II. System costs for all years 

 

Reference 
Case 

2020 2030 2040 2050 

Fixed Generation 
(mill$) 

753 739 852 957 

Variable Generation 
(mill$) 

358 349 227 220 

Distribution (mill$) 853 942 1041 1150 

Transmission (mill$) 568 627 693 
765 

 

CCS Storage plus 
transportation 

- - - - 

Total 2532 2657 2813 3092 

 

High Renewables 
Case 

2020 2030 2040 2050 

Fixed Generation 
(mill$) 

907 1019 1220 1431 

Variable 
Generation (mill$) 

304 341 276 363 

Distribution (mill$) 853 1015 1207 1436 

Transmission 
(mill$) 

568 675 803 
956 

 

CCS Storage plus 
transportation 

- - - -  

Total 2631 3050 3506 4186 

 

Carbon Capture 
Sequestration 

Case 
2020 2030 2040 2050 

Fixed Generation 
(mill$) 

965 1131 1347 1639 

Variable 
Generation (mill$) 

310 325 222 369 

Distribution (mill$) 853 990 1149 1334 

Transmission 
(mill$) 

568 659 765 
888 

 

CCS Storage plus 
transportation 

34 176 186 181 

Total 2730 3281 3670 4411 
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III. Nameplate capacity for all years 

 

Reference 
Case 

2020 2030 2040 2050 

Coal (MW) 938 296 0 0 

CCGT (MW) 1386 2169 2295 3276 

CT (MW) 1773 1928 2352 1744 

CCGT+CCS (MW) 0 0 0 0 

Wind (MW) 717 1247 1996 2396 

Solar (MW) 
 

2 329 867 1066 

Hydro (MW) 646 575 709 890 

Biomass (MW) 0 0 0 0 

Total (MW) 5467 6543 8220 9373 

 

 

High Renewables 
Case 

2020 2030 2040 2050 

Coal (MW) 938 296 0 0 

CCGT (MW) 611 25 25 0 

CT (MW) 1475 1475 1209 0 

CCGT+CCS (MW) 0 0 0 0 

Wind (MW) 1396 2266 3285 3402 

Solar (MW) 
 

308 765 1110 1844 

Hydro (MW) 646 782 1134 1624 

Biomass (MW) 1017 2452 3232 4701 

Total (MW) 6395 8061 9995 11571 

 

 

Carbon Capture 
Sequestration 

Case 
2020 2030 2040 2050 

Coal (MW) 938 296 0 0 

CCGT (MW) 611 25 25 0 

CT (MW) 1475 1475 1209 0 

CCGT+CCS (MW) 900 2409 3213 4843 

Wind (MW) 964 1687 2451 3227 

Solar (MW) 
 

501 638 902 1153    

Hydro (MW) 855 902 1193 1321 

Biomass (MW) 0 0 0 0 

Total (MW) 6248 7432 8992 10544 
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IV. Electricity net generation for all years 

 

Reference 
Case 

2020 2030 2040 2050 

Coal (%) 29.5% 7.3% 0.0% 0.0% 

CCGT (%) 43.4% 56.8% 47.9% 45.1% 

CT (%) 1.6% 1.2% 2.3% 0.1% 

CCGT+CCS (%) 0.0% 0.0% 0.0% 0.0% 

Wind (%) 14.8% 23.8% 34.9% 37.9% 

Hydro (%) 10.7% 8.8% 10.0% 11.3% 

Solar (%) 0.0% 2.1% 5.0% 5.5% 

Biomass (%) 0.0% 0.0% 0.0% 0.0% 

 

 

High Renewable 
Case 

2020 2030 2040 2050 

Coal (%) 30.9% 8.5% 0.0% 0.0% 

CCGT (%) 18.8% 0.7% 0.5% 0.0% 

CT (%) 8.7% 28.0% 19.1% 0.0% 

CCGT+CCS (%) 0.0% 0.0% 0.0% 0.0% 

Wind (%) 28.8% 42.2% 51.5% 48.1% 

Hydro (%) 2.1% 4.7% 5.7% 8.6% 

Solar (%) 10.7% 11.7% 14.3% 18.5% 

Biomass (%) 0.0% 4.2% 8.9% 24.8% 

 

 

Carbon Capture 
Sequestration 

Case 
2020 2030 2040 2050 

Coal (%) 33.6% 10.4% 0.0% 0.0% 

CCGT (%) 20.4% 0.9% 0.6% 0.0% 

CT (%) 0.3% 0.1% 0.0% 0.0% 

CCGT+CCS (%) 8.2% 38.7% 36.6% 31.0% 

Wind (%) 19.9% 32.1% 41.5% 47.7% 

Hydro (%) 3.4% 4.0% 5.0% 5.6% 

Solar (%) 14.2% 13.8% 16.3% 15.7% 

Biomass (%) 0.0% 0.0% 0.0% 0.0% 
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V. Technology and Fuel costs for all years  

 

Coal 2020 2030 2040 2050 

CAPEX ($/kW) 3981 3869 3766 3639 

Overnight Capital Cost 
($/kW) 

3660 3558 3463 3346 

Fixed O&M ($/kW-yr) 33 33 33 33  

Variable O&M 
($/MWh) 

5 5 5 5   

Fuel Cost ($/MMBtu) 2 2 2 2 

Annual Cost ($/kW) 304.37 296.92 290.03 281.52 

 

 

CCGT 2020 2030 2040 2050 

CAPEX ($/kW) 923 852 825 800 

Overnight Capital Cost 
($/kW) 

903 833 807 782 

Fixed O&M ($/kW-yr) 12 12 12 12 

Variable O&M 
($/MWh) 

7 7 7 7  

Fuel Cost ($/MMBtu) 2.99 3.06 2.18 2.18 

Annual Cost ($/kW) 81.29 76.53 74.69 73.04 

 

 

CT 2020 2030 2040 2050 

CAPEX ($/kW) 1154 1154 1154 1154 

Fixed O&M ($/kW-yr) 2.1 2.1 2.1 2.1 

Variable O&M ($/MWh) 9.69 9.69 9.69 9.69 

Fuel Cost ($/MMBtu) 2.99 3.06 2.18 2.18  

Annual  Cost ($/kW) 89.11 88.12 87.11 85.02 

 

 

CCGT+CCS 2020 2030 2040 2050 

CAPEX ($/kW) 2222 1987 1852 1726 

Overnight Capital Cost 
($/kW) 

2174 1943 1811 1688  

Fixed O&M ($/kW-yr) 34 34 34 34 

Variable O&M ($/MWh) 7 7 7 7 

Fuel Cost ($/MMBtu) 5.19 5.32 4.46 4.46 

Annual Cost ($/kW) 189.49 173.75 164.70 156.29 
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Biomass 2020 2030 2040 2050 

CAPEX ($/kW) 
 

3908 3823 3669 
3491 

 

Overnight Capital Cost 
($/kW) 

3749 3667 3519 3349 

Fixed O&M ($/kW-yr) 112 112 112 112 

Variable O&M ($/MWh) 6 6 6 6 

Fuel Cost ($/MMBtu) 3 3 3 3 

Annual Cost ($/kW) 378.78 373.11 362.78 350.90 

 

 

Wind 2020 2030 2040 2050 

CAPEX ($/kW) 1528 1252 1116 978 

Overnight Capital Cost 
($/kW) 

1494 1225 1092 957 

Fixed O&M ($/kW-yr) 42 39 36 33 

Variable O&M ($/MWh) 0 0 0 0  

Annual Cost ($/kW) 144.71 122.75 110.71 98.54 

 

 

Hydro 2020 2030 2040 2050 

CAPEX ($/kW) 6370 6370 6370 6370 

Overnight Capital Cost 
($/kW) 

6231 6231 6231 6231 

Fixed O&M ($/kW-yr) 117 117 117 117 

Variable O&M ($/MWh) 0 0 0 0  

Annual Cost ($/kW) 544.18 544.18 544.18 544.18 

 

 

Solar 2020 2030 2040 2050 

CAPEX ($/kW) 1075 862 766 683 

Overnight Capital Cost 
($/kW) 

1060 850 756 674 

Fixed O&M ($/kW-yr) 13 10 9 8 

Variable O&M ($/MWh) 0 0 0 0  

Annual Cost ($/kW) 84.82 67.26 60.47 53.94 
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