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Benefiting from the massive available data provided by Internet of multimedia things (IoMT), enormous
intelligent services requiring information of various types to make decisions are emerging. Generally, the IoMT
devices are equipped with limited computing power, interfering with the process of computation-intensive
services. Currently, to satisfy a wide range of service requirements, the novel computing paradigms, i.e., cloud
computing and edge computing, are potential to be integrated for service accommodation. Nevertheless, the
private information (i.e., location, service type, etc.) in the services is prone to spilling out during service
offloading in the cloud-edge computing. To avoid privacy leakage and meanwhile improve the service utility,
including the service response time and energy consumption for service executions, an Locality-sensitive-hash
(LSH) based offloading method, named LOM, is devised. Specifically, LSH is leveraged to encrypt the feature
information for the services offloaded to the edge servers with the intention of privacy preservation. Eventually,
comparative experiments are conducted to verify the effectiveness of LOM with respect to promoting service
utility.
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1 INTRODUCTION
In recent years, as connected objects and devices increase at railway speed, Internet of multimedia
things (IoMT) has gained sustainable development [1][2]. With IoMT, enormous intelligent services
(e.g., intelligent medical diagnostic, smart farming and real-time navigation) requiring surrounding
insight are springing up [3]. Such services often rely on a gigantic amount of data for service
implementation. Generally, the data analysis process of the services requires a huge amount of
computing power which can be hardly satisfied by the IoMT devices [4][5]. To alleviate the negative
effects on the power restrictions, drawing support from external resources with more computing
ability is imperative.
Currently, cloud computing has been an extremely acclaimed way to host the IoMT services

on account of the on-demand resource provision [6]. Taking advantage of cloud computing, the
execution time of the IoMT services could be significantly reduced [7]. Although the resources in
the cloud are guided by elastic supply to avoid uneven feeding, the energy consumption for the
execution and offloading processes of the services is not easy to be eliminated [8]. Moreover, the
transmission delay of offloading the cloud services and transforming the execution feedbacks is
unfriendly to time-critical or real-time services.

Edge computing (EC) fully utilizes computing resources in the edge, alleviating the transmission
delay significantly [9][10]. Generally, EC employs the geographically distributed edge nodes (EN)
to execute time-critical or real-time services. Benefiting from the low end-to-end latency, EC
greatly enables the computation-intensive and latency-critical services in IoMT [11][12]. But for the
computing ability of EN is relatively limited, the efficient execution of computing-intensive services
is hard to achieve. To accomplish the services that require abundant computing resources, it is
meaningful to offload computing-intensive services to the cloud [13]. Thus, cloud-edge computing
(EC combined with cloud computing) is potential to provide computing power of different scales,
accomplishing various intelligent services [14].
Normally, individuals enjoying the intelligent services are reluctant to release their service

information to the ENs in the consideration of privacy preservation [15]. Given the inherent
privacy disclosure risks during propagation, it is essential to guarantee the secure service offloading
in the cloud-edge computing [16]. Technically, encryption algorithm is capable of reducing privacy
disclosure risks by encoding the private information. However, encrypting private information in
the service means relying solely on the limited information to schedule proper service offloading,
conflicting the promotion of service utility. In addition to protecting the private information,
promoting service utility is at an even higher priority in the cloud-edge computing [17].
The service utility is evaluated by the service response time and the energy consumption. On

the one hand, the less service response time brings about the better quality of service (QoS). On
the other hand, reducing the energy consumption of executing services is a crucial criteria in the
large-scale distributed computing system. But the trade-offs between decreasing offloading latency
and reducing the energy expenditure are challenging to be achieved in the cloud-edge computing.
In this paper, a collaborative service offloading over big data based on Locality-sensitive-hash

(LSH), called LOM, is proposed to promote utility of services and meanwhile achieve privacy
preservation. The main contributions of our paper are as follows:
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• TheM/M/S/∞/∞ queuing model is constructed for offloading IoMT services according to
the queuing theory, and then the average waiting time in the EN could be calculated.
• A cloud-edge computing paradigm is introduced to allocate external resources for data
processing while the transmission delay and the execution consumption during service
offloading are modeled.
• A LSH-based scheduling algorithm is leveraged to extract suitable services from massive data
for collaborative offloading with privacy preservation.
• Comparative experiments are performed to demonstrate the validity and effectiveness of
LOM.

The remainder of this paper is organized as follows. In Section 2, the related work of this paper is
introduced. In Section 3, we present the system model and the optimization problem are presented.
In Section 4, we propose the offloading method LOM which is based on LSH. Section 5 covers the
experiment results and analysis. Finally, we conclude our work in Section 6.

2 RELATEDWORK
IoMT is providing a solid support for the real-time multimedia services and bringing these intel-
ligent services more sustainable development [18]. Benefiting from the involvement of multiple
multimedia wireless devices and sensors, IoMT is capable of propagating more more types of data
contents, i.e., audios, images, videos, etc [19]. For the IoMT devices are powerless to execute the
computation-intensive and real-time services, cloud-edge computing is leveraged to provide IoMT
with tremendous computing resources.

Cloud-edge computing combined with terminals has obtained increasing advancement due to
its effect on extending computing capability for intelligent services. Ren et al. [20] focused on the
collaboration between the cloud and the edge, and they formulated a joint allocation problem in
terms of computation and communication resources to optimize the propagation latency. Lin et al.
[21] contributed to the data placement of scientific workflow, and they optimized the transmission
latency among different data centers by the combination of cloud and edge computing. Hao et al.
[22] studied how to assign the tasks into cloud and edge while proposed a two-layer collaborative
paradigm to address the allocation problem. Ruan et al. [23] presented a three-tier cloud-edge
framework to improve executing performance and minimize the service latency. Thai et al. [24]
proposed a generic framework of edge-cloud computing with the intention of offering horizontal
and vertical offloading among service terminals. Hong et al. [25] studied the computation offloading
in the edge-cloud environment and adopted a game theory based method to promote the service
quality.

To efficiently decide where to offload enormous services in the integrated edge-cloud computing,
investigating a proper method is imperative. Moreover, to avoid privacy disclosure, the offloading
method is supposed to be integrated with privacy protection technique [26]. He et al. [27] developed
a privacy-aware task offloading method using the generic Lyapunov optimization framework with
the premise of minimizing cost for mobile edge computing. Xu et al. [28] put forward a joint
offloading method to obtain the balance between the privacy preservation and computation utility.
Min et al. [29] protected the usage pattern and the user location of the healthcare devices by
changing the rate of offloading. Bai et al. [30] conceived an energy-aware offloading technique
with a stress on the information security.

LSH is a potential technique to encrypt the sensitive information meanwhile retrieve the suitable
services within satisfactory time. Hu et al. [31] constructed the LSH index tables based on the
effective features which are extracted by the neural network to detect the repeated image. Shao et
al. [32] proposed an innovative fly LSH algorithm for the wireless multimedia sensor networks,
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and solved the problem of conducting rapid query over the high-dimensional and large-scale data.
Ding et al. [33] developed the two-step LSH which generates the binary codes and maintains
the semantic similarity for big data retrieval system. Wu et al. [34] analyzed the mechanism of
consistent weighted sampling and proposed an improved algorithm to estimate the similarity with
more accuracy. Li et al. [35] focused on the collision produced by the LSH-based similarity, and
they proposed a network-efficient method to reduce the network cost of distributed processing
framework. Guo et al. [36] built a privacy-aware index structure by LSH to equip the IoT applications
with more efficiency and security.

However, most researchers neglect the application of LSH to protecting individual privacy in
the cloud-edge computing. Apart from the privacy preservation, the service response time and
the energy consumption are supposed to improve the efficiency of services. In view of this, an
LSH-based offloading method for IoMT services in cloud-edge is designed.

3 SYSTEMMODEL AND PROBLEM DEFINITION
In this section, an IoMT service offloading framework is constructed in the integrated cloud-edge
environment. Additionally, the communication model, energy consumption model and service
delay model are respectively built and expounded. The key terms and corresponding descriptions
are listed in Table 1.

Table 1. Key Terms and Descriptions

Term Descriptions
J The quantity of ENs
N The quantity of multimedia terminals
S The quantity of VMs in an EN
ED The set of ENs, ED =

{
ed1, ed2, · · · , ed J

}
MT The set of multimedia terminals,MT = {mt1,mt2, · · · ,mtN }

F ej The computing rate of the j-th EN
f cd The computing rate in the cloud data center
ηcd The operating power of one VM in the j-th EN
ηej The operating power in the cloud data center
wi The data size of the i-th service
mi The computation size of the i-th service
ri ,yi The propagation rate between the i-th terminal and the yi -th EN

3.1 An IoMT Service Offloading Framework in Cloud-edge Computing
As depicted in Fig. 1, an IoMT service offloading framework which is composed of N terminals
providing services, J ENs and a cloud data center is constructed. In addition to an edge server (ES),
an EN is provided with a base station (BS) to support offloaded services by its enough computing
resources. Each EN is assumed to associate with densely distributed IoMT devices through wireless
signal. As to some computation-intensive services, EN could offload them to the cloud data center
which is equipped with abundant computing resources via backbone network. For the backbone
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Fig. 1. An IoMT service offloading framework in edge-cloud environment

network is obsessed with network congestion, the speed of data transmission is considered to be
slow [11].
Devices set is represented byMT = {mt1,mt2, · · · ,mtN }, each device equipped with only one

service requesting for offloading due to its limited capabilities. Each service is considered to arrive
simultaneously and the computing part of each service is assumed to be atomic and is unable to
split [12]. As for a terminalmti , i ∈ MT , the offloading service of it is donated by Ti = (wi ,mi ),
wheremi denotes the CPU cycles accomplishing the service requires andwi represents the service
data size.
Let ED =

{
ed1, ed2, · · · , ed J

}
indicates the collection of ENs. Denote edj (edj ∈ ED) as the j-th

EN. Then the j-th EN computation ability is defined as F ej . In addition, each EN is provided with S

virtual machines (VM) which averagely share the computing resources of EN. Thus, the computing
power of one VM at j-th EN is represented as

f ej =
F ej

S
. (1)

In our model, one VM is capable of executing only one service. Besides, service could be delegated
to the EN within server hop counts by optical fiber. Furthermore, to overcome the long waiting
time in the edge, EN could propagate the service to the other ENs or cloud data center when it is
overloaded.

3.2 M/M/S/∞/∞Queuing Model of Services in EN
As mentioned above, each EN is considered to have S VMs and its set is represented by V I =
{Z1,Z2, · · · ,ZS }. As for an EN, we consider its arriving offloaded services obeys Poisson distribution
with parameter of µ. Analogously, the service time is assumed to follow Poisson distribution and its
parameter is expressed by λ. ThenM/M/S/∞/∞ queuing model for offloaded services is applied
in EN. According to our queuing model, when the system enters stable sate, the service intensity of
one VM could be denoted by

ρ =
µ

λ
, (2)
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And the service intensity of one EN is
ρS =

µ

S · λ
. (3)

Define Pk as the possibility that there equals k services offloaded to the EN. Then the probability
that the size of the EN being idle could be calculated, and it is denoted as

P0 =
1

S−1∑
n=0

1
n! · ρ

n +
ρS

S !(1−ρS )

. (4)

Based on P0, the possibility that there k services in the EN waiting execution is calculated , and
it is expressed as

Pk =

{
(µ/λ)k

k ! · P0, (1 ≤ k ≤ S),
(µ/λ)k

S !S (k−S ) · P0, (k > S).
(5)

When there are not enough free VMs in the EN, the offloaded services are supposed to line up
until there are free VMs in the EN. Derived from (3) and (4), mean queue length of services could
be calculated by taking limit and doing accumulation and it is expressed as

L =
∞∑

k=S+1
(k − S) · Pk =

P0 ·ρS

S !

∞∑
k=S+1

(k − S) · ρk−SS

=
P0 ·ρS

S ! ·
d

dρS
(
∞∑
k=1

k · ρkS ) =
P0 ·ρS ·ρS
S !(1−ρS )2

(k ≥ S).
(6)

Based on (6), the average waiting time tq in the EN could be dudeced as

tq =
L

µ
=

P0 · ρ
S

S!(1 − ρS )
·

1
S · λ − µ

. (7)

3.3 Communicating Model From Terminals to ENs
Each terminal is assumed to be connected with the closest EN, and the range of spectrum from
termial to EN is denoted by B which is a constant in our paper. In addition, the wireless channels
of different ENs are considered to be orthogonal to avoid interference between ENs. Let ζi , j to
indicate the associating relationship between the j-th EN and the i-th terminal.

ζi , j =

{
0, no connection
1, otherwise. (8)

For one terminal is associated with one EN, the ζi , j is assumed to subject to
N∑
i

J∑
j

ζi , j = 1. (9)

Define yi -th EN as the EN directly connected to the i-th terminal through wireless channel. Then
letMi ,yi as the channel gain that differs slightly for different wireless channel, and the propagation
power is denoted as pi ,yi . Thus, based on Shannon formula, the propagation rate between i-th
terminal and yi -th EN could be given by

ri ,yi = B · log2(1 +
pi ,yi ·Mi ,yi

p0
), (10)

where p0 is Gaussian white noise power that is assumed to be a constant during the whole
offloading. (10) implies that the high transmission power of the terminal could reduce the transmis-
sion delay but at the expense of energy expenditure. Given the quite small output size compared
with service input size, the transmission from ENs to terminals is neglected.
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3.4 Energy And Delay Model
In what following, the delay and energy model will be presented in terms of the execution in the
EN, the execution in the cloud data center and the data transmission. Additionally, the number of
terminals is considered to be unchanged during service offloading.
Generally, terminal sends offloading request for its service and then it will be received by its

associated EN. Then the EN decides where the service is supposed to be offloaded, the cloud data
center or the EN within serval hop counts. A decision variable σi ∈ {0, 1} is defined to reveal the
offloading destination for the i-th service, where σi = 1 expresses the service is received by an EN
at the edge while σi = 0 shows that service is propagated to the cloud data center.

3.4.1 The Analysis of Wireless Transmission. In our model, we assume each terminal propagates
its service to the connected EN directly with no local computing. The latency of the i-th terminal
propagating service to its connected EN could be expressed as

tmt
i =

wi

ri ,yi
. (11)

The energy consumption during wireless communication between the i-th terminal and its
connected EN is given by

emt
i = t ti · pi ,yi . (12)

3.4.2 The Analysis of Services at Edge Layer. As to σi=1, the offloaded service is received by
edge layer and it will be propagated to a EN within hop counts of its connected EN. The hop
counts between ENs is expressed by hyi , j which is defined by Manhattan distance. Denote θ as the
propagation delay of one hop. The communication latency between the j-th EN and yi -th EN is
calculated as

t teyi , j = (θ +
wi

χ
) · hyi , j . (13)

where χ is the optical fiber transmission speed. When the service is offloaded to its connected
for execution, the communication latency between ENs could be nonexistent.

Then, the energy expenditure and computing latency could be respectively expressed as

eeei , j = wi · η
e
j , (14)

teei , j =
mi

f ej
+ t

q
j , (15)

where ηej is the operating power of one VM in the j-th EN and tqj is queuing latency.

3.4.3 The Analysis of Services in Cloud Layer. As to σi=0, the offloaded service is received by cloud
layer and it will be propagated to the cloud data center to achieve more powerful computing ability.
The latency of propagating the i-th service to the cloud data center is presented by

tcdi = ψ +
mi

f cd
+
wi

ν
, (16)

whereψ is congestion latency on the backbone network, f cd is the computing ability of the cloud
data center and ν is the normal propagation rate of backbone network.

The operating power of cloud is denoted as ηcd . Thus, energy expenditure of accomplishing the
i-th service in the cloud be given by

ecdi = wi · η
cd . (17)
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3.5 Problem Definition
As mentioned above, there are numerous services in IoMT applying for offloading on account
of poor computing resources in the terminals. To improve the QoS in IoMT, minimizing service
response time and energy expenditure is extremely important. For the service offloading in the
cloud-edge environment has been analyzed in the above, the energy consumption and service
response time could be given by

Ei = emt
i + σi · e

ee
i , j + (1 − σi ) · e

cd
i . (18)

Ti = tmt
i + σi · (t

q + t teyi , j + t
ee
i , j ) + (1 − σi ) · t

cd
i , (19)

We devote to minimizing energy consumption and response time of all the services. Thus, our
optimization target is formulated as

P1 min
N∑
i=1
(tmt
i + σi · (t

q + t teyi , j + t
ee
i , j ) + (1 − σi ) · t

cd
i ), (20)

s .t .
s∑
j=1

f ej ≤ F ej , f
e
j ≥ 0, (21)

N∑
i=1
(1 − σi ) · f cd ≤ F cd , f cd ≥ 0, (22)

f ej ≤ f cd ,∀j ∈ [1, J ], (23)

P2 min
N∑
i=1
(emt
i + σi · e

ee
i , j + (1 − σi ) · e

cd
i ), (24)

s .t .(21) − (23),
where (21) and (22) imply that the allocated computing resources for services are not supposed
to surpass the maximal available resources supplied by the EN and cloud, and (23) means the
computing resource allocated by the EN to each service cannot exceed the computing resources
allocated by cloud.

4 LOM DESIGN
In this section, the design of LOM to offload IoMT services with privacy preservation is expounded
and presented at length. Firstly, the hash index table is established using LSH. Then each EN
conducts service retrieval to receive IoMT services. In the last, the overview of LOM is explicated.

4.1 Hash Index Table Established With LSH
Since there are massive services in the IoMT, retrieving suitable services for offloading is supposed
to be time-consuming. By establishing the hash index tables using LSH, EN is able to retrieve
services for offloading efficiently. In addition, the data security could be achieved, for hashed
passwords are irreversible and thus can’t be decrypted. LSH is based on LSH Cluster to reduce the
dimensionality of complex data, and the key elements in the LSH Cluster is the variables obeying
p-stable distribution.

Definition 1 (p-stable distribution) For anyd real numbers, i.e., β1, β2, ..., βd , we can randomly
choose d independent identically distributed variables, i.e., α1,α2, ...,αd . If these variables are
sampled from p-distributions, the random variable

∑X
i=1 βi ·αi will have the same distribution with

the variable (
∑X

i=1 |βi |
p )1/p · τ , where τ is a random variable tallying with p-distribution. It is
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well-known that the p-stable distribution exists for any p ∈ (0, 2]. In this paper, we choose p = 1, in
which case the p-stable distribution will be standard normal distribution.

Definition 2 (LSH Cluster) The LSH cluster Y (Y =
{
y : Ad → R

}
) is a cluster of functions

mapping data fromd dimensions in domainA to the set of real numbers. The clusterY is (r1, r2,p1,p2
)-sensitive when it meets

P[ym(v) = ym(q)] > p1, (∥v − q∥ < r1), (25)

and
P[ym(v) = ym(q)] < p1, (∥v − q∥ > r1), (26)

for any v,q ∈ Ad ,ym ∈ Y , where P indicates the possibility vector v and vector q are put into the
same hash bucket. The probability that vectors hashed into the same value is in proportion to their
previous distance. Thus, the cluster Y is called locality-sensitive.

In LOM, the feature vector of offloading service are hashed by LSH and thus the services requiring
for similar computing resources are probable to gain same hash value. Firstly, themaximal number of
hop counts in ENs is determined, which is denoted by Limhop . Then, feature vectors of each service
connected to its agreeable EN are constructed. In this paper, the dimension of each feature vector for
service is d , composed of time delay, energy consumption etc. We set vi , j = {βi , j ,1, βi , j ,2, ..., βi , j ,d }
as the j-th service feature vector belonging to the i-th EN. Afterwards, the hash process will be
done, and the LSH function that corresponds to Gaussian distribution is proposed by

ya,c (vi , j ) =
⌊a · vi , j + c

o

⌋
=

⌊∑d
n=1 αn · βi , j ,n + c

o

⌋
, (27)

where αn (n ≤ d) is a variable independently and randomly sampled from the standard normal
distribution, o ∈ Z+ is a positive integer called quantization step and c is a positive integer chosen
from (0,o]. Each LSH functionya,c will mapvi , j fromd-dimension vector onto an integer. The similar
vector has high possibility to be mapped onto proximal integer or the same integer. Generally, the
local sensitivity could be proven from a geometrical point. The projection a ·vi , j maps each feature
vector vi , j onto a real line. As for two vectors vi , j and vi ,k , the distance between their hash value,��a · vi , j − a · vi ,k ��, follows the same distribution with



a · vi , j − a · vi ,k

p · τ , where τ is a variable
randomly chosen from the Gaussian distribution. Furthermore, the real line is cut into segments
based on the quantization step o and then the feature vectors of services will be distributed to
different segment according to its hash code, which can preserve the local sensitivity of each vector.
To reduce the probability of mapping dissimilar service to the same real number and improve

the discriminating power of hash process, a second function cluster G (G = {д : Ad → U k }) is
constructed. The second function д(v) = (y1(v),y2(v), ...,yk (v)) is constructed by picking up k
hash functions y(v) in the LSH Cluster Y {y : Ad → R}. Relying on the function д(v), the feature
vector vi , j of the j-th service could be mapped from d dimensions in domain A to k dimensions in
domainU . The hashed vector can be expressed asUt = {u1,u2, ...,uk }.

In addition, to increase the stability of choosing hash functions and hold the high query accuracy,
L functions are randomly select from the clusterG = {д : Ad → U k } to conduct multiple groups of
hash process. Then these feature vectors of services will be saved in hash buckets of L hash tables.
When conducting vector query service, ENs just go through all L hash tables and take the certain
quantity of services as the final results.
Note that store all possible hash buckets would waste a lot of space, LSH applies other two

functions F and F ′ to hash the bucket,

F (u1,u2, ...,uk ) = ((
∑k

i=1
ri ·mi ) mod prime) mod N , (28)
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and
F ′(u1,u2, ...,uk ) = (

∑k

i=1
ri
′ ·mi ) mod prime, (29)

where N is the number of feature vectors for services, prime is a big prime number 232 − 3, and ri
and r ′i are random real numbers. The function F and F ′ contribute to constructing the index based
on the hash bucket of each vector. for all L hash tables, and the amount of space complexity can be
decreased from O(k) to O(1).

Fig. 2. An example of constructing hash tables from service 1 to service 13 by LSH.

Algorithm 1 Constructing hash table by LSH
Input: wi ,mi , f

e
j ,η

e
j ,B, Limhop, L

Output: Hash index table
1: Generate LSH Cluster and randomly choose L groups, each group including k hash functions
2: for j = 1 to J do
3: Pick the j-th EN from ED
4: Receive its offloading requests and add them to the list Require
5: Calculate the feature vector of the service list Require according to (7), (18) and (19)
6: for lnum = 1 to L do
7: while Require is not empty do
8: Pick a service x from Require
9: Calculate LSH index for x in the i-th hash table according to (27), (28) and (29) and

add it to the i-th hash table
10: Delete x from Require
11: end while
12: end for
13: end for
14: return Hash index tables
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As shown in Algorithm 1, each EN will construct L groups of hash tables by LSH to obtain short
query time. First, LSH cluster is generated based on random number of Gaussian distribution and
then choose L groups, each group including k hash functions. With the energy consumption model
and delay model, the feature vector of each service could be calculated. Algorithm 1 elaborates
how feature vectors of services are hashed by LSH. Each EN goes through its covering services
and initializes the feature vectors of them. Then these feature vectors are hashed by LSH cluster,
formulating L hash tables and calculating hash indexes.

Take Fig. 2 for example, the services requesting for offloading are usually divided into different
groups, and these in the same group are supposed to own the similar feature vectors. Then, these
services will be mapped into in L hash tables, and the similar services have high probability to be
put into same bucket. It can be seen from Fig. 2 that service 1, service 2, service 3 and service 4
have similar feature vectors. In the hash index tables, service 1, service 2 and service 3 are mapped
into same group in the first hash table while service 1, service 3 and service 4 are mapped into
same group in the L-th hash table. In addition, for LSH is based on probability theory, there will
be some handful errors during the identification of similarity. As it can be seen, service 5, service
8 and service 10 are put into same group in the first hash table though service 10 is not similar
with service 5. But for services are offloaded in a large scale, these handful classification errors are
subtle and could be neglected in the analysis.

Algorithm 2 Service retrieving
Input: ED, F , F ′
Output: Service receiving listUj
1: for j = 1 to J do
2: Pick the j-th EN from ED
3: Calculate the feature vector Vj of the j-th EN
4: if length(Require)<S then
5: Uj ←− Require
6: else
7: for i = 1 to l do
8: Initialize rlen = lenдth(Require)
9: for r = 1 to rlen do
10: Pick the r -th service from Require
11: Intializ k1 and k2 as the two hash index in the i-th table of the r -th service
12: if F (Vj ) == k1 && F ′(Vj ) == k2 then
13: Add the r -th service to theUj
14: Delete the r -th service in Require
15: end if
16: end for
17: end for
18: end if
19: end for

The service retrieval process is interpreted in Algorithm 2. Benefiting from the inherent advantage
ofmaintaining sensitivity of LSH, the hashed values of previous similar services have high possibility
to be resemble, which are convenient for each EN to retrieve suitable services. Besides, once the
EN has sufficient free resources for the services requiring for offloading, it would receive all the
services to make advantages of its computing capacity.
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4.2 Method Overview

Algorithm 3 Overview of LOM
Input: S,wi ,mi ,hash index table
Output: Time, Enerдy
1: Set Time = 0 and Enerдy = 0
2: Calculate the hash index tables according to Algorithm 1
3: for j = 1 to J do
4: InitializeUj according to Algorithm 2
5: Pick the j-th EN from ED
6: Set len = lenдth(Uj )

7: for i = 1 to len do
8: Pick the n-th service as the i-th inUj

9: if tten +
mn
f ej
< tcdn then

10: Strike out n inUj
11: Offload n-th service to the cloud
12: Update Time and Enerдy
13: else
14: Strike out n inUj
15: Offload n-th service to the EN
16: Update Time and Enerдy
17: end if
18: end for
19: end for

LOM is based on LSH to retrieve suitable offloading service for ENs with quite short time and high
accuracy. Each EN will construct feature vectors for all the services at first. Then the vectors are
mapped into different hash value by LSH according to Algorithm 1. Afterwards each EN initialize
its own feature vector based on its computing ability and operating state. Then, the EN could
quickly retrieves the proximal vector of its feature vector in hash tables to gain suitable services
according to Algorithm 2.

The overview of LOM is presented in Algorithm 3. Each EN will retrieve the suitable services in
all hash index tables. If the number of its retrieved services is smaller than the number of its VMs,
then these services will be all offloaded to the EN for next judgment. If the number of retrieved
services is bigger than the number of its VMs, then these retrieved hashed vectors will be compared
by the Euclidean distance to the hashed feature vector of EN and the first S (the number of VMs)
will be offloaded to the EN for next judgment. Additionally, the queuing latency of ENs is compared
to the propagation latency on the backbone network to the cloud data center. Thus, we could offload
some long-time waiting services to the cloud while most are accomplished in the EN. In the last, a
handful of remaining services will be all offloaded to the cloud for rich computing resources.

The programming chart of LOM is present on the Fig .3. Firstly, the LSH function clusters, which
are based on p-stable distribution variables a1,a2...ad , are generated. Then, an EN is picked from
the EN collection, and the feature vector of the EN which is with the same formula of service
feature vector is calculated according to its computing ability and energy consumption level. EN
receives the service offloading requests meanwhile add them to the request list. Afterwards, the
feature vector of services in the request list are hashed by the L groups LSH function clusters to
construct L hash index tables for the corresponding EN. Practically, the two hash key values of the
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Fig. 3. The programming chart of LOM.
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hashed feature are calculated by (28) and (29). Then the service would be retrieved by the two hash
key values by the feature vector of the ES. Moreover, the VM capacity of server and the queuing
time are taken into account to give decision to the ES whether the service will be propagated to the
cloud.

5 EXPERIMENTAL EVALUATION
5.1 Experiment Setup
The simulation parameters setting for evaluating LOM are set in Table 2.

Table 2. Simulation Parameters

Parameter Value Parameter Value

N [1000,4500] B 40 MHZ
J 1000 f ej [4,8] Gigacycles/s
S 5 ηej [0.4,1] J/Gigacycle
wi [2,5] M bits f cd 15 Gigacycles/s
mi [2000,5000] Megacycles ηcd 0.8 J/Gigacycle
p0 -120 dBm Limhop 5

In this section, abundant results are shown to examine the above analysis and validate the
behavior of our method. The covering radius for each EN is 500m in the emulation. Multiple
terminals served by the corresponding EN via the radio channels. are stochastically distributed
in the covering area of ENs. According to [11], the channel gain Mi ,yi is subject to exponential
distribution with parameter of 1 and the noise power density p0 is -120 dBm. We consider that the
size of each service is [2,5] Mbits and each service requires [2000,5000] Megacycles for execution.
Generally, there are ten VMs in each EN to bear the offloaded services and the computing ability of
each VM is set by [4,8] gigacycles/s and the energy consumption is [0.4,1] J/Gigacycle. To avoid
excessive offloading distance in the edge layer, we limit the hops counts range from 1 to 5. Also,
the computing ability of cloud equally allocated to each service is 15 Gigacycles/s and the energy
expenditure is 0.8 J/Gigacycle. The service scale ranges from 1000 to 4500 and the growth is 500.
The number of VMs in each EN is set as 5. The propagation rate on the optimal cable and the
backhaul link is set as 2.997 × 108 m/s. The step length o is set as 4 according to [34], which could
promote the precision rate of service retrieval level.

5.2 Comparative Algorithms
Time-greedy (TG), energy-greedy (EG) and all-to-cloud (ATC) are three comparative algorithms
leveraged to conduct offloading in this paper. In the experiment, the total number of services
is set from 1000 to 4500 and the interval that is a constant is 500. Then the performance of our
method will be compared by the above comparative algorithms with the number of services, and
the introductions of three comparative algorithms are as follows.
• TG: Services requiring for offloading are sorted based on the running time for each EN. Then
the EN will receive offloaded services until its VMs are all not free. In the last, the cloud data
center will receive remaining services not yet offloaded.
• EG: Compared to TG, EG chooses to sort services requiring for offloading based on the energy
consumption for each EN. Similarly, each EN is supposed to receive offloaded services as
long as it has free VMs and the other services will be offloaded to the cloud.
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• ATC: ENs drop out in ATC algorithm and there is only one cloud data center to receive
offloaded services. Although ATC is supposed to gain less execution time, the congestions on
the backhauls could not be neglected.

5.3 Analysis on Energy Consumption

Fig. 4. Energy consumption in the ENs compared by LOM, TG and EG.

5.3.1 Analysis on Energy Consumption in The ENs . As it can be seen in Fig. 4, EG consumes
the least energy in the ENs and TG maintains the most consumption of energy. LOM keeps mild
energy expenditure compared to TG and EG. Since EG owns great stability on reducing energy
consumption, it always keeps lowest executing energy consumption. LOM consumes slightly higher
executing energy in the ENs in the majority of service scales, for it takes other energy consumption
factors (e.g. propagation expenditure) together. It reveals that LOM focuses on reducing the overall
energy consumption not limited to some parts.
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Fig. 5. Energy consumption in the cloud compared by LOM, TG and EG.

5.3.2 Analysis on Energy Consumption in The Cloud. Fig. 5 compares energy consumption in cloud
by TG, EG and LOM with different number of services. EG consumes less energy than TG but more
energy than LOM. LOM produces the least energy consumption among TG, EG and LOM, for it
is capable of offloading services to the cloud. It is evident that LOM could better conduct overall
service scheduling.

5.3.3 Analysis on Total Energy Consumption. The comparison of total energy consumption is
showed in Fig. 6. We add the ATC strategy to the comparison where all the services will be
offloaded to the cloud for parallel cloud computing. From Fig. 6 it can be seen that ATC produces
the most energy consumption because it expends a huge amount of energy on the backhauls during
high uploading period. The energy expenditure of TG is in the nick of ATC for it doesn’t lay stress
on the energy consumption level when making offloading decisions. In line with our expectations,
LOM consumes similar energy with EG, maintaining relatively low energy consumption with the
number of services throughout the whole simulation. Furthermore, LOM produces less energy than
EG with increasing services, which implies stability of LOM could be improved with the increasing
number of offloaded services.
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Fig. 6. Total energy consumption with the increasing number of services compared by LOM, TG, EG and ATC.

5.4 Analysis on Service Response Time
5.4.1 Analysis on Delay in the ENs . The offloading delay in ENs is analyzed in this part. Based on
the data shown in Fig. 7, the offloading delay in the ENs tends to increase stablely with the growing
number of services. When the services are offloaded to the ENs , LOM expends less offloading delay
than EG but still longer than TG. LOM not only focuses on decreasing the time latency but also
contributes to reducing the energy consumption. On this ground, LOM couldn’t achieve the less
delay than TG in the ENs.

Fig. 7. Offloading delay in the ENs compared by LOM, TG and EG.
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Fig. 8. Total offloading delay with the number of services compared by LOM, TG, EG and ATC.

5.4.2 Analysis on Total Delay. As expanded in Section II, the propagation time of services offloaded
to the associated EN, the waiting time, the propagation time of services offloaded from the associated
EN to the final server and the executing time of services make up the total offloading delay. The
comparison of the total offloading delay is presented in Fig. 8. It can be seen that ATC needs the
most offloading time, for the increasing services may lead to the congestion on the backhauls,
which will produce serious transmission delay. LOM consumes less offloading latency than EG
and ATC, for our method gives higher priority to service response time. In addition, LOM keeps
close delay with TG, and the difference of the total offloading delay between all scales of services is
subtle.

6 CONCLUSION AND FUTUREWORK
To acquire short IoMT service response time, low energy consumption and better preserving
individual privacy in edge-cloud environment , LOM is designed. Firstly, the private information
is encrypted by hashing the feature vector of each service with LSH technique. Then the hash
index tables will be constructed, which are convenient for each EN to retrieve suitable services
and receive offloading requests. Afterwards, the remaining services requiring for more computing
resources is propagated to cloud. In our next work, we will distribute to transferring LOM to the
real scene, taking account of unique features in IoMT.
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