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Abstract
The photo-sharing website Flickr has become a valuable informal information source in disciplines
such as geography and ecology. Some ecologists, for instance, have been manually analysing
Flickr to obtain information that is more up-to-date than what is found in traditional sources.
While several previous works have shown the potential of Flickr tags for characterizing places, it
remains unclear to what extent such tags can be used to derive scientifically useful information
for ecologists in an automated way. To obtain a clearer picture about the kinds of environmental
features that can be modelled using Flickr tags, we consider the problem of predicting scenicness,
species distribution, land cover, and several climate related features. Our focus is on comparing
the predictive power of Flickr tags with that of structured data from more traditional sources.
We find that, broadly speaking, Flickr tags perform comparably to the considered structured
data sources, being sometimes better and sometimes worse. Most importantly, we find that
combining Flickr tags with structured data sources consistently, and sometimes substantially,
improves the results. This suggests that Flickr indeed provides information that is complementary
to traditional sources.
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1 Introduction

Social media websites such as Flickr1, Twitter2 and Facebook3 have become a popular
platform to share and find information. Flickr, for instance, hosts more than 10 billion
photographs4, many of which are associated with textual data in the form of a title, description
and a set of tags that express what is in the photo. The availability of GPS systems in
current electronic devices such as smartphones enables latitude and longitude coordinates to
be recorded as meta-data. For a large number of photos on Flickr, these coordinates have
been made publicly available5. Together with their textual descriptions, such photos can be
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1 http://www.flickr.com
2 http://www.twitter.com
3 http://www.facebook.com
4 http://expandedramblings.com/index.php/flickr-stats
5 We were able to crawl around 350M georeferenced Flickr photos in September 2015.
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regarded as Volunteered Geographic Information (VGI [11]). The coordinates and textual
meta-data associated with Flickr photos have already proven valuable in many disciplines
such as health [18], geography [4, 12], and ecology [1, 5].

Although there are many organizations that serve environmental data, the information
they provide is far from complete [1]. The idea of using Flickr as a supplementary source of
environmental data is appealing for several reasons. For example, due to the fact that photos
are often uploaded directly after they have been taken, Flickr can provide us with more
up-to-date information than traditional citizen science datasets, which is important e.g. for
monitoring the spread of invasive species and migration patterns of pollinators. Moreover, the
information that is captured by Flickr tags is broader than what is normally recorded, and
includes e.g. subjective assessments about the scenicness of a landscape. In fact, Flickr has
already proven valuable as a resource for ecological analysis. However, ecologists are currently
mostly analysing Flickr data manually. For example [5, 20] manually analysed the content of
social media websites to assess its usefulness for ecology. Manually analysing Flickr is clearly
limited and time-consuming. Moreover, both the structure and the volume of the data present
practical challenges [5], compared to formal or semi-formal citizen science monitoring data
[23]. Nonetheless, these studies prove that Flickr contains valuable information which could
be used to support the available sources [1, 5]. All this highlights the need for automated
methods for extracting environmental information from Flickr.

The main research questions we consider in this paper are whether it is possible to
extract large amounts of high-quality environmental information from Flickr, and if so,
how complementary this information is to publicly available environmental data sets. In
particular, we test the usefulness of Flickr for predicting a broad set of environmental features:
scenicness, species distribution, land cover, and climate data. Our main aim is to provide a
clearer picture of the kinds of environmental characteristics for which scientifically useful
information can be derived from Flickr. Our analysis in this paper will focus on features
that we can ascribe to locations (e.g. there is a coniferous forest at this location) rather
than to individual photos (e.g. this is a photo of a 7-spot ladybird). While the latter is
also important, it requires solving a particular set of challenges beyond the scope of this
paper (e.g. distinguishing photos of sightings from photos that are tagged with the name of
a species for other reasons) and is difficult to evaluate given the lack of ground truth data.

The remainder of this paper is organised as follows. Section 2 gives an overview of related
work. Section 3 presents our methodology for making predictions from Flickr tags and from
traditional data. In Section 4 we then provide a detailed discussion about our experimental
results. Finally, Section 5 summarises our conclusions and plans for future work.

2 Related work

2.1 Citizen science related research
Considerable progress has been made in recent years in citizen science projects in the
environmental sciences that recruit participants to contribute actively to particular campaigns
such as in land cover mapping [9], hydrological surveys [17], ornithology and many forms of
ecological study [6]. In parallel with these initiatives there is growing interest in the potential
of “passive” survey methods that exploit social media to provide additional useful data. For
instance, [27] analysed the visual features of the photographs on Flickr automatically to
observe natural world features such as snow cover and a particular species of flower. In [28]
photos from Flickr were used to estimate snow cover and vegetation cover, and compare these
estimations with fine-grained ground truth collected by earth-observing satellites and ground
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stations. Both the text associated with Flickr photographs and their visual features were
used in [16] to perform land-use classification. The approach was evaluated on two university
campuses and three land-use classes were considered: Academic, Residential, and Sports. In
[7] and [8], they classified a sample of georeferenced Flickr photos according to CORINE land
cover classes. They also evaluated the use of Flickr photos in supporting Land Use/Land
Cover (LULC) classification for the city of Coimbra in Portugal and for comparison with
Corine Land Cover (CLC) level 1 and level 2 classes. The results of this approach were
evaluated manually by experts. Their results suggest that Flickr photos cannot be used as a
single source to achieve this purpose but they could be helpful if combined with other sources
of data.

The authors of [24] explored the relationship between CORINE land cover classes and the
valuation of natural scenery, namely scenicness, scenic beauty, landscape beauty, aesthetics,
or cultural ecosystem services (CES), through user evaluated georeferenced photos from
the ScenicOrNot6 website. They employed the user’s rating of a photo in a specific area
as an evaluation of the land cover of that area. The results of this study showed that the
highest rated areas belong to the forest and semi natural areas, and water bodies classes.
Measures of scenicness are important since they reflect human well-being and can be taken
into consideration in land planning and decision-making processes. Nonetheless, people’s
perceptions of landscapes are subjective and cannot easily be quantified [24]. Some authors
have assessed the beauty of the landscape through groups of evaluators using images, videos
and/or questionnaires [24, 19], while others used geographic information system (GIS) data
such as elevation together with visual assessments and/or questionnaires to predict the
scenicness [2, 21]. Another group of works, such as [3], [10], and [25], quantify landscape
aesthetics according to the number of photos taken near a given location [3] or the number
of people who published photos [10] in photo-sharing websites such as Flickr and Panoramio.
Considering popularity on social media as a surrogate for the level of appreciation of a place
might work with some types of landscapes, but the results might be liable to be biased
towards more accessible places.

Another growing area of interest is in the use of social media data for ecological monitoring.
For example, [1] examined Flickr biodiversity data quality by analysing its metadata and
comparing it with ground-truth data, using Snowy owls and Monarch butterflies as a case
study. They concluded that Flickr data has potential to add to knowledge of these species in
terms of geographic, taxonomic, and temporal dimensions, which tends to be complementary
to the information contained in other available sources. In another similar work, based on a
manual analysis of Twitter posts, [5] confirm that social media mining for ecological analysis
is as important as traditional monitoring and the features derived from Twitter could be
integrated with and hence improve the value of existing sources of such information. In
[20] the content of the Flickr photos was analysed manually to assess the quality of cultural
ecosystem services and derive useful information to manage Singapore’s mangroves.

Despite all the efforts that have been made to explore the role of social media in obtaining
or supplementing environmental information, research in this area is fairly new and research
questions about its effectiveness still remain open.

2.2 Geo-spatial analysis of social media
Many recent studies have focused on analysing social media data, with the aim of extracting
useful information in domains such as geography (e.g. [13]). In particular, there is a large

6 http://scenic.mysociety.org/
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number of studies that derive such information from georeferenced Flickr photos. For
example, [12] described two methods for the automatic delineation of imprecise regions based
on geotagged photos. The first one is a method based on kernel density estimation (KDE)
and the second is based on one class support vector machines (SVMs). Similarly, [4] presents
an approach for automatically defining the geographic boundaries of vague regions by using
one class support vector machines (SVMs) and learning multiple kernels. To describe regions,
they rely on a combination of the Flickr tags of the photos that were tagged with the region’s
name, and external features such as the land cover data, population count, elevation and the
geographical coordinates (latitude and longitude) of Flickr photos that are tagged with the
region’s name. They showed that their method performs better than the simpler methods
described by [12]. Our work is analogous to these approaches, in applying support vector
machine learning methods to Flickr tags in combination with other geo-spatial data, but we
are concerned with characterizing and predicting information about the environment.

The authors of [22] presented and evaluated methods for automatically geo-referencing
Flickr photos using the textual annotations of photos to predict the single most probable
location where the image was taken. They showed that location-specific language models,
based on sets of distinctive tags, can be estimated effectively by analysing the terms people
use to describe images taken at particular locations. They demonstrated how to incorporate
the GeoNames database and they defined extensions to improve their language models using
tag-based smoothing and cell-based smoothing, and by leveraging spatial ambiguity. In
[26], a language modelling approach was used to discover and characterize places of interest
(POIs). They experimented with both Flickr data and Twitter data, finding that Flickr data
on its own is more useful than Twitter data for this task, while combining both sources led
to the best results. Similar to this latter work, we explore the possibility that sets of tags
cannot just distinguish one location from another, but can contribute to classifying aspects
of the environment.

3 Methodology

In the next section, we will consider a number of classification and regression problems
that are aimed at assessing the value of Flickr as a source for environmental information.
Here we first explain how locations are represented in these experiments. In particular,
Section 3.1 explains how feature vectors describing locations can be obtained from the tags
associated with georeferenced Flickr photos. In Section 3.2 we then describe what structured
information sources will additionally be considered.

3.1 Modelling locations using Flickr tags

Many of the tags associated with Flickr photos tell us something about the locations where
these photos were taken. For example, tags might refer to toponyms (e.g. United Kingdom,
England, London), landmarks (e.g. London Eye, Westminster Abbey, Hyde Park) or land
cover types (e.g. forest, beach, airport). Using the Flickr API, we collected the metadata
of all geo-referenced Flickr photos that were uploaded before the end of September 2015,
leading to a total of over 70 million photos with coordinates in Europe (which is the region
our experiments will focus on).

Let L = {l1, ..., lm} be a set of (point) locations, each characterized by latitude and
longitude coordinates. Our aim is to associate with each of these locations a weighted bag of
tags, intuitively encoding for each tag how often it occurs in photos near that location. To
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this end, we first use a BallTree7 to retrieve the set Fl of all Flickr photos whose distance
to the considered location l is at most D. Let us write Ut,c for the set of users who have
assigned tag t to a photo with coordinates c. Then we can define n(t, l) =

∑
d(c,l)≤D |Ut,c|,

with d the Haversine distance. Intuitively, n(t, l) is the number of times tag t appears among
the photos in Fl. However, to reduce the impact of bulk uploading, following [26], we count
a tag occurrence only once for all photos by the same user at the same location.

One problem with using n(t, l) to measure the importance of tag t for location l is that it
gives equal weight to all photos, whereas intuitively we want photos which are closer to l to
influence our characterization of l more than photos which are further away. To this end,
following [26], we use a Gaussian kernel to weight the tag occurrences:

w(t, l) =
∑

d(c,l)≤D

|Ut,c| · exp
(
−
d2(l, c)

2σ2

)
where σ is a bandwidth parameter.

The weight w(t, l) still has the problem that common words (e.g. iphone) are given the
same importance as more specific words. Intuitively, we want the weight of tag t to reflect how
strongly it is associated with location l. A standard way of measuring this in bag-of-words
models is to use Positive Pointwise Mutual Information (PPMI), which essentially compares
the actual number of occurrences with the expected number of occurrences (given how many
tags occur overall near l and how common the tag t is). Specifically, the weight of tag t in
our bag-of-words representation of l is then given by:

PPMI(t, l) = max
(

0, log
(

P (t, l)
P (t)P (l)

))
where:

P (t, l) = w(t, l)
N

P (t) =
∑

l′∈L w(t, l′)
N

P (l) =
∑

t′∈T w(t′, l)
N

N =
∑
t′∈T

∑
l′∈L

w(t′, l′)

with T the set of all tags that appear in the collection. Finally, each location l is represented
as a sparse vector, encoding the weights PPMI(t, l) for all the tags in T .

3.2 Modelling locations using structured data
There is a wide variety of structured data that can be used to describe places. The most
obvious type of structured data are the coordinates of the photo itself. Clearly, latitude and
longitude degrees can be helpful for predicting a range of environmental phenomena (e.g.
Southern areas of Europe tend to be warmer than Northern areas). In addition to geographic
coordinates, we will consider the following sources of structured scientific data:

CORINE Land Cover 20068 is a European dataset which describes land cover with a
100-meter spatial resolution. CORINE uses three levels of description: a top level with 5
classes, an intermediate level with 15 classes and a detailed level with 44 classes.
SoilGrids9 is a global raster dataset, which classifies locations into 116 types of soil, using
a 250 meter spatial resolution

7 http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.BallTree.htm
8 http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006-raster-2
9 https://www.soilgrids.org
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The Digital Elevation Model over Europe (EU-DEM)10 is a Europe-wide digital surface
model, encoding elevation with a spatial resolution of about 30 meter.
European Population Map 200611 is a digital raster grid that reports the number of
residents (night-time population) with a 100-meter spatial resolution.
WorldClim12 is a global raster dataset, containing average monthly recordings of the
following climate features, over the period 1970-2000, using a 1 km spatial resolution:
temperature, precipitation, solar radiation, wind speed and water vapor pressure. In this
work, we convert the monthly averages reported in the dataset to a single annual average.

To encode locations, we consider a feature vector that contains one binary feature for
each CORINE land cover class (being 1 if the location belongs to that class and 0 otherwise),
one binary feature for each SoilGrids class, and 9 real-valued features (encoding latitude,
longitude, elevation, population, and the 5 climate features). The real-valued features have
been normalised using the standard z-score. In experiments where both Flickr data and
structured data are used, we simply concatenate the two corresponding feature vectors.

4 Experiments

In the following experiments, we evaluate how well we can predict a number of environmental
features using Flickr tags and the considered structured data. For all experiments, we have
set the maximum Haversine distance D (cluster radius) to 1 kilometre and the bandwidth
σ to D/3. The choice of D represents a trade-off, where larger values can potentially lead
to better results but also lead to a higher computational cost. The choice of σ = D/3 was
found to be reasonable in a small set of initial experiments. To make predictions, we use
Support Vector Machines (SVMs) for classification problems and Support Vector Regression
(SVR) for regression problems. In both cases, we used the SVMlight implementation13[15].
For each experiment, the set of locations L was split into two-thirds for training, one-sixth
for tuning the parameters of the SVM/SVR models, and one-sixth for testing.

4.1 Predicting the scenicness of a place
In this first experiment, we consider the problem of predicting people’s opinions of landscape
beauty, using the UGC dataset from the ScenicOrNot website14 as ground truth. This website
allows people to evaluate places in Britain by rating photos collected from Geograph15. The
dataset contains 217,000 photos (at distinct locations), each of which has been rated by at
least three people on a scale from 1 (not scenic) to 10 (very scenic). For 25,395 of the photos
in this dataset, our Flickr collection did not contain any georeferenced photos within a 1 km
radius. Therefore, we only report results for the remaining 191,605 photos (i.e. 88.3% of the
full dataset). The number of Flickr photos within a 1km radius of these locations varies
between 1 and 397982.

For this experiment, L thus contains the locations of these 191,605 photos. Table 1 shows
the results for three different variants: only using structured data, only using Flickr data,
and combining both. Based on the tuning data, for the SVR model, we found a Gaussian

10 http://www.eea.europa.eu/data-and-maps/data/eu-dem
11 http://data.europa.eu/89h/jrc-luisa-europopmap06
12 http://worldclim.org
13 http://www.cs.cornell.edu/people/tj/svm_light/
14 http://scenic.mysociety.org/
15 http://www.geograph.org.uk/

http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://data.europa.eu/89h/jrc-luisa-europopmap06
http://worldclim.org
http://www.cs.cornell.edu/people/tj/svm_light/
http://scenic.mysociety.org/
http://www.geograph.org.uk/
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Table 1 Results for predicting scenicness.

Dataset Mean Absolute Error Spearman ρ
Structured 1.031 0.556
Flickr 1.013 0.570
Structured + Flickr 1.006 0.581

kernel to be optimal when only structured data is used, and a linear kernel to be optimal
otherwise. The results in Table 1 show the mean absolute error between the predicted
and actual scenicness scores, as well as the Spearman ρ correlation between the rankings
induced by both sets of scores. Note that the mean value of this data set is 4.372 and the
standard deviations is around 1.6. While the differences are small, we find that using Flickr
outperforms using structured data, and that combining both leads to the best results overall.
Looking at what tags most influence the regression model, among the highest weighted tags
we find terms relating to natural and open-country landscape such as scotland, highlands,
mountains and sea, while among the lowest weighted tags we find names of artificial and
urban phenomena such as station, bus, pub and railway. This reinforces the finding from [24]
that land cover categories are strongly correlated with scenicness scores.

We also tested whether the number of photos (or users) could be used to predict scenicness,
as was suggested in [3, 25, 10] for particular restricted settings. However, we actually found
a negative correlation of around −0.12 (resp. −0.1) between scenicness and the number of
photos (resp. users who have posted photos) near a given location.

4.2 Predicting species distribution
The next experiment we considered was to predict the distribution of species across Europe,
using as ground truth the dataset of the European network of nature protected sites Natura
200016. This dataset contains information about 35,600 species from 7 classes: Amphibians,
Birds, Fish, Invertebrates, Mammals, Plants and Reptilia. In particular, it specifies which
species occur at 26,425 different sites across Europe. For this experiment, L is defined as the
set of these sites.

For species that only occur at a few of the sites in L, it is clearly not possible to estimate
a reliable distribution model. Therefore, we focused our evaluation on 100 species which
occur at more than 500 sites. For each of these species, we consider a binary classification
problem, i.e. predicting at which of the sites the species occurs. Note that as in all analyses
we use all Flickr tags, some of which might include the species name. The results are reported
in Table 2, showing that combining structured data with Flickr data leads to substantially
better results than either structured data alone or Flickr data alone. Comparing Flickr
with structured data directly is more difficult, as Flickr data led to a much higher precision
whereas the structured data led to a much higher recall.

As an example, Figure 1 compares the predictions that were made by the different models
with the ground truth for a particular species: the black woodpecker (dryocopus martius).
For this species, the F1 scores were 0.594, 0.648 and 0.927 for structured data, Flickr data,
and the combined data, respectively. This example shows that highly accurate distribution
models can be learned for species that occur in sufficiently many sites. Interestingly, while
the number of occurrences is overestimated in e.g. Spain and the UK when only Flickr data

16 http://ec.europa.eu/environment/nature/natura2000/index_en.htm

COSIT 2017

http://ec.europa.eu/environment/nature/natura2000/index_en.htm


21:8 Using Flickr for Characterizing the Environment: An Exploratory Analysis

Table 2 Results for predicting species distribution.

Dataset Precision Recall F1 Score
Structured 0.241 0.568 0.338

Flickr 0.577 0.112 0.188
Structured + Flickr 0.650 0.506 0.569

(a) Structured data (b) Flickr

(c) Combination of structured data and Flickr (d) Ground truth data

Figure 1 Prediction of the black woodpecker distribution across Europe.

or only structured data is used, much more accurate predictions are made for these countries
using the combined model. For species that have a more restricted geographic scope (in
terms of number of sites), it is likely that better results can be obtained by looking at a
wider radius (i.e. choosing D � 1 km) and by specifically counting photos that mention the
name of the species, as a separate feature. This is left as an issue for future work, however,
as in this paper our focus is on assessing the overall usefulness of Flickr.
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Table 3 Results for predicting CORINE land cover classes, at levels 1, 2 and 3.

Level 1 Level 2 Level 3
Prec Rec F1 Prec Rec F1 Prec Rec F1

Structured 0.437 0.363 0.397 0.346 0.160 0.219 0.207 0.070 0.105
Flickr 0.499 0.457 0.477 0.205 0.139 0.166 0.145 0.086 0.108

Structured + Flickr 0.523 0.514 0.518 0.270 0.199 0.229 0.184 0.112 0.139

Table 4 Top 5 Flickr tags for CORINE level 1 classes in the SVM models.

Artificial surfaces Agricult. areas Forest & semi nat. areas Wetlands Water bodies
Babenhausen field wald bog lake
Ceskedrahy grass forest moor island
Meppen horse mountains marsh sea
Tuplice vineyard woods swamp boat

Deutsche Reichsbahn meadow mountain saline sailing

4.3 Predicting CORINE land cover classes
In this Section we consider the task of predicting CORINE land cover classes. For this
experiment, we have used the same set L of sites as for species distribution. Since the task is
about predicting CORINE land cover classes, for the results reported in this section we do
not consider any CORINE features in the representations of the locations (as the CORINE
data serve here as ground truth). We experimented with predicting CORINE land cover
classification at levels 1, 2 and level 3, each time treating the task as a binary classification
problem. The results are presented in Table 3, showing again that combining structured
data and Flickr data clearly leads to the best results. The difference in performance between
structured data alone and Flickr data alone is mixed, with e.g. Flickr data performing better
at level 1 but worse at level 2. For level 1, we found that Flickr outperformed structured
data in 4 out of the 5 classes, with the ‘artificial surfaces’ class being the only exception.
This seems related to the small number of sites for this particular class (e.g. only 4% of the
training data sites belong to this class). To illustrate how Flickr tags are used to predict
CORINE classes, Table 4 shows the 5 tags with highest weight in the SVM classifier for each
of the classes at level 1.

By far the largest CORINE class at level 1 is ‘Forest & semi natural areas’. At level 2 this
class has three subclasses. The predictions of the three models for these three subclasses are
compared with the ground truth in Figure 2. Clearly, in this case, the structured data has
resulted in a model that is too simplistic, essentially segmenting Europe into forest areas and
‘Shrub and/or herbaceous vegetation’. Flickr data alone leads to more faithful predictions in
these subclasses, but instances of ‘open spaces with little or no vegetation’ are underreported.
This issue is alleviated in the combined model.

4.4 Predicting climate data
In the last experiment, we assess the usefulness of Flickr tags in the task of predicting climate
data. We again use the same set of sites L as in the species distribution experiment. In
this case, we omit all the climate related features from the feature vector representations as
they constitute the ground truth. We consider 5 different regression problems: predicting
average temperature, average precipitation, average solar radiation, average wind speed, and

COSIT 2017
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(a) Structured data
(b) Flickr

(c) Combination of structured data and Flickr
(d) Ground truth data

Figure 2 Prediction of subclasses of the CORINE class “Forest & semi natural areas”.

average water vapor pressure. The results are reported in Table 5, in terms of mean absolute
error (MAE) and Spearman ρ. Overall, structured data and Flickr data perform comparably.
However, by far the best results are obtained when combining both types of data, showing
again that the information we obtain from Flickr is complementary to what is available as
structured data. As an example of how Flickr tags are used by the regression model, the tag
‘sea’ has a very high weight in the model for predicting water vapor pressure, while the tag
‘mountain’ has a very low weight in this model. In Figure 3, we illustrate the predictions
made by the different models for solar radiation. Clearly, the model based on structured
data is too simplistic, mostly capturing the impact of latitude.

5 Conclusions and future work

In this paper, we have analysed how Flickr tags can be used to supplement structured scientific
data in tasks that rely on characterizing the environment. To this end, we have considered
four different evaluation tasks. The first experiment aimed to predict the scenicness of a place,
as assessed subjectively by humans on the ScenicOrNot website. In the second experiment,
we focused on modelling the distribution of species across Europe, using observations from the
Natura 2000 dataset as ground truth. The third experiment consisted in predicting CORINE
land cover categories. Finally, we looked at predicting five climate related properties. Each
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Table 5 Results for predicting average climate data.

Mean STDEV Structured Flickr Struct+ Flickr
value MAE ρ MAE ρ MAE ρ

Temperature(°C) 9.268 3.490 0.789 0.938 1.623 0.814 0.728 0.940
Precipitation(mm) 66.625 24.827 13.173 0.709 11.660 0.689 10.523 0.755

Solar Rad(kJ m−2day−1) 11478 2388 1726.5 0.747 926.3 0.832 484.8 0.939
Wind Speed(m s−1) 3.605 1.126 0.508 0.791 0.545 0.756 0.429 0.846

Water Vapor Press(kPa) 0.958 0.186 0.060 0.903 0.083 0.719 0.053 0.914

(a) Structured data (b) Flickr

(c) Combination of structured data and Flickr (d) Ground truth data

Figure 3 Prediction of solar radiation (in kJ m−2day−1).

time, we compared three different setups. In a first setup, we used features that were derived
from a number of structured scientific datasets. In the second setup, we used a bag of words
representation, capturing how strongly each tag is associated with photos that appear near a
considered location. In the final setup, we combined both data sources, concatenating the
corresponding feature vectors.

Our main finding is that the combined model substantially and consistently outperformed
the model that only relied on structured data sources. This strongly suggests that Flickr can
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indeed be valuable, as a supplement to more traditional datasets in environmental analyses.
While it may be possible to reduce some of the performance gap by considering additional
scientific datasets, we found the versatility of Flickr data that was displayed in the four
experiments to be remarkable.

There are a number of directions for future work. First, it may be possible to improve
the way we have combined structured features with bag-of-words features by learning
a low-dimensional vector space embedding that captures both kinds of data, similar to
how embeddings of Wikipedia entities were learned in [14] by combining bag-of-words
representations with semantic descriptions from WikiData. Second, many of the considered
features are strongly spatially autocorrelated. As such, we can expect more accurate
predictions by formulating some of the considered tasks as collective classification problems,
where we would intuitively take into account the predictions for neighbouring sites when
making a prediction. Finally, it remains unclear to what extent Flickr can be used for more
fine-grained ecological analyses, e.g. at the level of individual sightings.
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