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Numerical integration techniques are commonly employed to formulate the system matrices encoun-
tered in the analysis of variable stiffness beams and plates using a Ritz based approach. Computing
these integrals accurately is often computationally costly. Herein, a novel alternative is presented, the
Recursive Analytical Polynomial Integral Definition (RAPID) formulation. The RAPID formulation
offers a significant improvement in the speed of analysis, achieved by reducing the number of numeri-
cal integrations that are performed by an order of magnitude. A common Legendre Polynomial (LP)
basis is employed for both trial functions and stiffness/load variations leading to a common form for
the integrals encountered. The LP basis possesses algebraic recursion relations that allow these inte-
grals to be reformulated as triple-products with known analytical solutions, defined compactly using
the Wigner (3j) coefficient. The satisfaction of boundary conditions, calculation of derivatives, and
transformation to other bases is achieved through combinations of matrix multiplication, with each
matrix representing a unique boundary condition or physical effect, therefore permitting application
of the RAPID approach to a variety of problems. Indicative performance studies demonstrate the
advantage of the RAPID formulation when compared to direct analysis using Matlab’s “integral”
and “integral2”.

1 Introduction

The competitive nature of the aerospace and other industries places increasing importance on the ability of
designers to maximise performance from structural components. To achieve these goals the use of composite ma-
terials has steadily increased to meet these demands. Design in composite materials often requires the balancing
of a multitude of design parameters and the resulting performance characteristics cannot always be predicted
from physical insight alone. Numerical optimisation techniques are increasingly exploited to meet design goals
as the parameter spaces become more complex. For example, in the design of lightweight aerospace structures
it is common practice to analyse many potential load cases, various structural configurations, and the impact of
layup tailoring and anisotropy. Furthermore with advances in the manufacture of variable stiffness components
such as variable angle tow laminates (VAT), continuously varying stiffness profiles can now readily be achieved,
e.g. [1, 2, 3], one such example of the design space’s continuing expansion.

Increasing the number of design variables in an optimisation is not without cost. For efficient optimisation,
the number of design variables that can be considered is intrinsically linked to the time taken for each analysis.
In most instances there is no analytical relationship between design variables and the objective function thereby
requiring computational analysis. This computational cost often prohibits the use of finite element analysis
(FEA) and analytical, or semi-analytical, approximation is sought instead. Often it is sufficient to utilise an
approximate method to identify optimised design candidates that can be subject to more detailed analysis.
Indeed, it is commonplace when analysing beam and plate-like structures with varying stiffness profiles to exploit
a Ritz based formulation.

In particular cases closed form solutions exist for a Ritz analysis, however, there is typically a requirement to
compute many of the integrals associated with the problem numerically. It is, in the authors’ experience, that
the computation of such integrals dominate the analysis time. A comparison is made herein between the typical
adaptive quadratures as employed by Matlab and the triple product formulation using Legendre polynomials
(LP). While alternative techniques exist, such as trapezoid and cuboid methods, Gaussian quadrature, and Monte
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Figure 1: Diagram of a variable stiffness beam symmetric about its mid-plane, subject to a variable out of plane
load.

Carlo techniques that offer potential runtime reduction, there is often an associated loss in accuracy, limiting the
number of basis functions that can be reliably used [4]. Such a restricted basis expansion limits the ability to
capture localised phenomena effectively. This paper outlines an alternative method for the computation of the
integrals encountered directly using LP triple-products and the Wigner (3j) coefficient. The use of this technique
for the analysis of variable stiffness beams and plate-like structures is presented here here as the Recursive
Analytical Polynomial Integral Definition (RAPID) formulation.

The results presented herein extend the technique highlighted in O’Donnell and Weaver [5]. The effectiveness
of the RAPID formulation for plate analysis is demonstrated and additional insight into the formulation provided.
The authors of this paper do not claim that the relationships they present for LPs are novel in their own right,
indeed many of these results are well known, particularly beyond the engineering community, for example [6, 7, 8].
However, to the authors’ best knowledge there is no existing application of these results to the analysis of variable
stiffness plates that expands stiffness matrices and trial functions using a common LP basis in order to exploit
the triple-product integral form to minimise numerical integration costs. In utilising the RAPID formulation
an order of magnitude reduction in the number of numerical quadratures required, as compared to a typical
Ritz analysis, is observed from the formulations definition. This efficiency increase is observed in practice via a
comparative performance study contained herein.

The familiar Ritz formulation for variable stiffness beam structures and identify the integrals that must be
evaluated is now outlined. The RAPID formulation is detailed and implemented for these integrals. A comparison
with numerical quadrature is then presented. The approach is then extended to variable stiffness plate structures
and a second comparative study presented.

2 Variable Stiffness Beams

Consider a Bernoulli beam aligned with the x axis having its origin located at the centre of the midspan, fig 1.
Suppose the beam possesses a variable flexural rigidity along its length, for example caused by varying depth
and/or cross sectional area, and the rate-of-change of these variations are sufficiently small that a one-dimensional
analysis suffices. For brevity it is assumed that the variation in flexural rigidity is symmetric about the neutral
axis, given by (EI)(x), and the effects of a variable transverse loading, q(x) are consider. An energetic formulation
to determine the vertical deflection, w, is now defined. To aid analysis the following non-dimensionalisation is
made,1

x̃ =
x

L
, q̃(x) =

q(x)

q0
, ẼI(x) =

(EI)(x)

(EI)0
, w̃(x) =

w

L
, (1)

the energy of the system can then be written as,

Π = U + T =
(EI)0

2L

1∫
−1

ẼI(x̃)

(
d2w̃(x̃)

dx̃2

)2

dx̃− q0L2

1∫
−1

q̃(x̃)w̃(x̃) dx̃, (2)

or alternatively,

Π̃ = α̃

1∫
−1

ẼI(x̃)

(
d2w̃(x̃)

dx̃2

)2

dx̃−
1∫
−1

q̃(x̃)w̃(x̃) dx̃ with α̃ =
(EI)0
2q0L3

. (3)

1Tilde is used to represent a non-dimensional quantity and a zero subscript the nominal normalising value throughout.
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Letting the unknown displacements be approximated by a series of kinematically admissible trial functions, S(x̃),
with terms Si(x̃),

w̃(x̃) ≈
N∑
i=0

ωiSi(x̃), (4)

the unknown coefficients wi can be determined using the principle of minimum potential energy,

∂Π̃

∂ωi
= 0, (5)

defining a linear system of equations. Solving this system requires obtaining O(N2) integrals of the form,

1∫
−1

d2Si(x̃)

dx̃2
ẼI(x̃)

d2Sj(x̃)

dx̃2
dx̃. (6)

The choice of trial function, S(x̃), affects how efficiently these integrals can be computed and how many terms
are required for a good approximation to the solution. It is often observed that the computational bottleneck
in the analysis of systems such as these is computing integrals of the form given in eq (6). While this may not
be prohibitive for an individual analysis it is significant for optimisation studies where many designs must be
considered. A method outlining how recursive relationships for LPs can be exploited to decrease the number of
quadratures is presented. It is noted that the LPs have been exploited successfully in structural analysis problems
and are amenable to capturing local variations without an excessive number of terms, e.g. [9].

3 Utilising Legendre Polynomials

The LP matrix, P, is defined for a finite expansion of (N + 1) terms,

Pᵀ =
[
P0 P1 P2 · · · Pi · · · PN

]
, (7)

where Pi is the ith LP. This form allows many of the following results to be expressed in terms of matrix
multiplication. The LPs form an orthogonal basis with respect to a weighting function of 1,

1∫
−1

Pm(x)Pn(x) =
2

2n+ 1
δmn, (8)

where δmn is the Kroneker delta. Each successive term may be generated by convenient recursive relations,

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x). (9)

Utilising the recursion relations first explored by Adams [6], the product of two Legendre polynomials may be
written as,

Pm(x)Pn(x) =

m+n∑
l=|m−n|

Wigner (3j)︷ ︸︸ ︷(
l m n
0 0 0

)2

(2l + 1)Pl(x) (10)

where the Wigner (3j) coefficient function is utilised for compactness. Olver et. al. [7] gives the general definition
of the Wigner (3j) coefficient. For consistency with existing definitions the notation common in the physics and
chemistry communities where rows m and j relate to quantum angular momentum of a system is adopted,

Wigner (3j) =

(
j1 j2 j3
m1 m2 m3

)
. (11)

Note that the Wigner (3j) coefficient is not a matrix, the function returns a single scalar value and is differentiated
here by the use of curved parenthesis.

For this investigation the special case of interest, where mi = 0 and ji ∈ N, the Wigner (3j) coefficient is given
by (

k l m
0 0 0

)2

=


(2s−2k)!(2s−2l)!(2s−2m)!

(2s+1)!

[
s!

(s−k)!(s−l)!(s−m)!

]2
2s is even and l, m, and n

satisfy triangle inequality

0 otherwise

, (12)
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Table 1: Examples of different boundary conditions that are satisfied by the modified basis PBC are presented.
The basis modifications polynomials ζ(x̃) and their equivalent form in Legendre polynomials are given.
The multiplication matrix CBC can be obtained by use of eq (10).

Modified Basis Requirements Polynomial modifier, ζ(x̃) Equivalent Legendre polynomial

PBC(±1) = 0 x̃2 − 1 P2 − P0

PBC(±1) = P′′BC(±1) = 0 x̃4 − 6x̃2 + 5 P4 + 15P2 + 14P0

PBC(±1) = P′BC(±1) = 0 x̃4 − 2x̃2 + 1 3P4 − 10P2 + 7P0

PBC(±1) = P′BC(−1) = P′′BC(1) = 0 x̃4 − x̃3 − 3x̃2 + x̃+ 2 4P4 − 7P3 − 25P2 + 7P1 + 21P0

PBC(−1) = P′BC(−1) = P′′BC(1) = P′′′BC(1) = 0 x̃4 − 4x̃3 + 6x̃2 + 28x̃+ 17 P4 − 7P3 − 20P2 + 112P1 + 84P0

with 2s = k + l + m. The triangle inequality must hold on l, m, n for the factorials in the second term of
equation (12) to be defined.2

In order to satisfy the kinematic requirements a modified basis, PBC, can be obtained by pre-multiplying the
Legendre basis by a polynomial, ζ(x̃), that satisfies the required boundary conditions,

PBC = ζ(x̃)P, (13)

where ζ(x̃) can be determined in a similar manner to Jaunky et. al. [10]. For convenience this polynomial can
be written in terms of Legendre Polynomials. For example consider a modified basis Z that is zero at x̃ = ±1.
This boundary constraint is satisfied by ζ = (x̃2 − 1) which is similarly achieved using a Legendre polynomial,
P2(x̃)− P0(x̃). Thus the modified basis is,

Zn(x̃) = (P2(x̃)− P0(x̃))Pn(x̃). (14)

Using equation (10) this modification can be written as a weighted sum,

Zn(x̃) =

 n+2∑
l=|n−2|

(
l 2 n
0 0 0

)2

(2l + 1)Pl(x̃)

− Pn(x̃), (15)

which can be represented by matrix multiplication,

Z = CZP, (16)

where Cz is a (N + 1)× (N + 3) non-square matrix, indicating that the (N + 2)th order LP term is required to
represent the N th term of Z. The components are

CZ ij =



(
2 i− 1 j − 1

0 0 0

)2

(2j − 1)− 1 if i = j,(
2 i− 1 j − 1

0 0 0

)2

(2j − 1) if |i− 3| ≤ j − 1 ≤ i+ 1 and i 6= j

0 otherwise

. (17)

Other modified bases can be obtained in a similar manner and recast into the form,

PBC = CBCP, (18)

where CBC is typically a non-square coefficient matrix reflecting the desired kinematic boundary conditions, table
1.

A similar approach can be utilised to perform a basis transformation in order to utilise other polynomial bases.
For example, the Chebyshev polynomials are often utilised in the analysis of plates for their beneficial convergence
properties, e.g [11, 12]. Efficient transformations between Chebyshev and Legendre polynomials exist and may be
used to determine the appropriate coefficient matrix for transformation [8]. Using a similar matrix multiplication
approach the derivatives of the LP basis may be obtained,

d

dx
Pn+1(x) =


n∑

k=0,2,4,...

(2k + 1)Pk(x) if n is even

n∑
k=1,3,5,...

(2k + 1)Pk(x) if n is odd
(19)

2Triangle inequality: |a− b| < c < a + b for three sides of a triangle a, b, and c.
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The coefficients of the (N + 1)×N differentiation matrix, Cδ, are

Cδ ij =

{
2j − 1 if i > j and i+ j is odd

0 otherwise
(20)

giving

d

dx̃
P = CδP (21)

The second derivative, C2δ, is a (N + 1) × (N − 1) matrix and follows as the product of two differentiation
matrices of compatible sizes,

d2

dx̃2
P = CδC

∗
δP = C2δP, (22)

where C∗δ is the differentiation matrix as before but of reduced size N × (N − 1). Higher derivatives follow by
further multiplication of appropriately sized matrices. By combining both the modified basis and differentiation
matrices the derivatives of Z can be obtained in terms of the LP basis,

d2

dx̃2
Z = CZC∗2δP. (23)

To ensure the desired N+1 term output, the size of C∗2δ must be (N+3)×(N+1) and follows the same definition
as C2δ. The dimension change required is dependent on the modified basis matrix and thus varies in accordance
with the boundary conditions imposed. For the remainder of this paper it is assumed that all required coefficient
matrices are dimensionally compatible and for clarity there is no distinction indicated between matrices of the
same type but having different size. In general it may be stated,

dk

dxk
PBC = CBCCkδP. (24)

Suppose that a matrix, F, defined in integral form,

F =

1∫
−1

dk

dx̃k
PBCf(x̃)

dk

dx̃k
Pᵀ

BC dx̃, (25)

is comparable to the commonly encountered integrals previously discussed, eq (6). Letting f(x̃) be approximated
by a suitably accurate LP expansion,

f(x̃) ≈
M∑
i=0

fiPi, (26)

allows, F to be written in the form,

F ≈
1∫
−1

M∑
i=0

(CBCCkδP) fiPi (CBCCkδP)
ᵀ
dx̃

≈ CBCCkδ

 1∫
−1

M∑
i=0

P(fiPi)P
ᵀ

Cᵀ
kδC

ᵀ
BC,

= CBCCkδ

M∑
i=0

fi

 1∫
−1

PPᵀPi dx̃

Cᵀ
kδC

ᵀ
BC. (27)

this result follows directly from the linearity of integration. This manipulation may appear counter productive,
having replaced a single integral associated with a component of F with a sum of M integrals. However, as all
integrals are now expressible in terms of triple-products of a common basis function these M integrals can be
computed directly via the relationship,

1∫
−1

PiPjPk dx̃ = 2

(
i j k
0 0 0

)2

. (28)
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Thus there is no need to perform the M integrations numerically and the complete solution to F is the compu-
tation of a summation of M , (N + 1)× (N + 1) matrices. This feature allows significant computational savings
to be realised as the computational expense has been reduced from calculating O(N2) integrals directly solving
eq (25) to compute F, to O(M), integrals to compute the weighting coefficients of fk, and an algebraic sum-
mation of known matrices to obtain an approximation of F, eq (27). Herein referring to the adoption of such
integral/summation interchange to improve computational cost for the analysis of variable stiffness beams and
plates as the Recursive Analytical Polynomial Integral Definition (RAPID) formulation. It is noted that where
the variation function f(x̃), can be represented exactly by a LP series expansion the approximation becomes an
equality and the two methods, direct integration and RAPID formulation, give identical results. An applica-
tion of the RAPID formulation for variable stiffness beams and quantification of the performance benefit via an
indicative study is now presented.

4 RAPID Formulation - Beams

Consider the non-dimensional formulation of the variable stiffness beam presented in eq (3). The variable stiffness
and load can be represented using LP series expansions,

ẼI(x̃) ≈
M1∑
j=0

ζkPj , q̃(x̃) ≈
M2∑
k=0

ηkPk. (29)

The unknown displacement function is represented by an appropriately modified basis,

w(x) ≈
N∑
i=0

ωiPBC i = ωᵀPBC = ωᵀCBCP, (30)

having made use of eq (18). Following from the general definition, eq (24), the resulting system, eq (5), can then
be written as,

dΠ̃

dω
= 0 =

α 1∫
−1

dPBC

dx̃2
dPᵀ

BC

dx̃2
ẼI dx̃

ω −
 1∫
−1

PBCq̃ dx̃

 , (31)

or in RAPID form,

dΠ̃

dω
= 0 ≈

αCBCC2δ

M1∑
j=0

ζk

 1∫
−1

PPᵀPj dx̃

Cᵀ
2δC

ᵀ
BC

ω −
CBC

M2∑
k=0

ηk

 1∫
−1

PPk dx̃

 . (32)

The efficiency gains of the RAPID formulation is now presented.

4.1 Computational Efficiency

To compare the computational efficiency and accuracy of the two approaches four beam systems with variable
stiffness and loading are considered. The four cases are detailed in table 2. In order to compare the accuracy of
the RAPID formulation (TP) with a typical analysis the results obtained via direct numerical quadrature (DI) are
computed. It is assumed that stiffness and load expansions contain an equal number of terms, M = M1 = M2.
The error from the RAPID approach is quantified via the norm of the difference between the two methods.
This is calculated for the resulting system matrices associated with energy components U and T , together with
the solution vector w.3 The expansion for the unknown displacement function is computed for N = 15 terms.
The results presented in fig 2 demonstrate typical convergence behaviour as would be expected for any series
approximation.

To provide a representative comparison a computational analysis is undertaken using a 64-bit CPU E8400
@ 3.00GHz with 3.8 GiB RAM using Matlab 2013b [13]. It is expected that some further performance gains
may be obtained using more refined algorithms and alternative languages. However, the objective of this study
is to identify overall trends in behaviour not detailed benchmarking of the implementation. The change in
computational run-time through the use of the RAPID approach is observed, fig 3. The runtime is calculated as
the median of five identical analyses. The RAPID computation time is compared to the runtime associated with
direct numerical integration from Matlab’s “integral” function [14] - calculated with the default parameters. As

3Numerical integration does not give the exact solution so the error presented is relative to another approximation. In this context
error between the approaches serves sufficiently well to provide a comparative measure of accuracy, but not error relative to the
true solution.
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Table 2: Representative loading and stiffness functions investigated for computational benchmarking.

Case ẼI(x̃) q̃(x̃)

Case 1 −0.5x8 + 0.1x3 − 0.3x+ 1.2 −0.3x4 − 0.5x
Case 2 0.75 + 0.5 cos(πx) sin(6πx) cos(4πx)
Case 3 0.5 + exp(−2x2) exp(−10(x− 0.5)2)− exp(−10(x+ 0.3)2)
Case 4 0.5 + exp(−2x2) exp(−100(x− 0.5)2)− exp(−100(x+ 0.3)2)

the unknown expansion terms are increased beyond N & 7 RAPID analysis is computationally more efficient when
compared to direct quadrature. As is expected the computational analysis time for the triple-product approach
increases with the number of terms, M , due to calculating the increasing number of expansion coefficients, fig 3a.
From inspection of fig 2 it is observed that an expansion of M = 20 terms provides a reasonable approximation of
the stiffness and load variations. The computational efficiency gains, when increasing the number of terms in the
displacement trial functions expansion, N , is shown in fig 3b. At low-resolution there is no advantage in using
the RAPID formulation, however as the number of terms increases, to levels typically used [9, 15], significant
computational savings are realised. This behaviour is consistent with the prediction of an order of magnitude
reduction in the number of quadratures required.

It is noted that in these comparisons the computation time for determining the required coefficients of the
triple-products matrices are included in the run-time. If multiple configurations were investigated, for example in
an optimisation study, further savings could be realised. The triple-product and coefficients matrices would not
need to be calculated multiple times. In fact, as the exact evaluation of the Wigner (3j) coefficient is possible [16],
closed form solutions can be obtained when stiffness and load variation is expressible as a finite LP series offering
potential improvements over numerical quadrature. Indeed, if the required stiffness matrices are expressed as LP
expansions a priori no numerical quadrature is required. An extension of the RAPID formulation to the analysis
of variable stiffness plates is now presented.

5 Variable Stiffness Plates

Consider a plate aligned with the xy plane having its origin located at the central mid-point of the plate, fig 4.
The plate has variable stiffness properties, for example due to thickness variations. As before, it is assumed
that the rates-of-change of these variations are sufficiently small that two-dimensional plate analysis suffices.
An energetic formulation based on classical laminate theory (CLT) with d representing bending stiffness given
by its usual definition is utilised [17]. For purposes of brevity it is assumed that there is no-coupling between
in-and out-of-plane behaviour and consider the out-of-plane response only. This simplification does not reduce
the applicability of the RAPID approach which can be adapted for more general problems.

Proceeding with a series of non-dimensionalisations,

x̃ =
x

Lx
, ỹ =

y

Ly
, d̃(x, y) =

d(x, y)

d0
, q̃ =

q(x, y)

q0
w̃(x, y) =

2w

Lx + Ly
(33)

The curvatures, κ, can be written in terms of deflection,

κᵀ =
[
−∂

2w
∂x2 −∂

2w
∂y2 −2 ∂2w

∂x∂y

]
(34)

allowing the non-dimensional energy to be written as,

Π̃ = α11

∫∫
Ã

d̃11

(
∂2w̃

∂x̃2

)2

dÃ+ α12

∫∫
Ã

d̃12

(
∂2w̃

∂x̃2

)(
∂2w̃

∂ỹ2

)
dÃ+ α16

∫∫
Ã

d̃16

(
∂2w̃

∂x̃2

)(
∂2w̃

∂x̃∂ỹ

)
dÃ

+ α22

∫∫
Ã

d̃22

(
∂2w̃

∂ỹ2

)2

dÃ+ α26

∫∫
Ã

d̃26

(
∂2w̃

∂ỹ2

)(
∂2w̃

∂x̃∂ỹ

)
dÃ+ α66

∫∫
Ã

d̃66

(
∂2w̃

∂x̃∂ỹ

)2

dÃ

−
∫∫
Ã

q̃w̃ dÃ (35)

where Ã is the unit square, with

α11 =
d0
2q0

Lx + Ly
4L4

x

, α12 =
d0
q0

Lx + Ly
4L2

xL
2
y

, α16 = 2
d0
q0

Lx + Ly
4L3

xLy
,

α22 =
d0
2q0

Lx + Ly
4L4

y

, α26 = 2
d0
q0

Lx + Ly
4LxL3

y

, α66 = 2
d0
q0

Lx + Ly
4L2

xL
2
y

. (36)
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(a) Case 1.
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(b) Case 2.
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(c) Case 3.
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(d) Case 4.

Figure 2: Convergence of RAPID formulation to results obtained via direct numerical integration for increasingly
refined stiffness/load approximation with M the number of terms for the four cases in table 2.
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(a) Increased runtime with increasing M and fixed N = 15,
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Figure 3: Runtime for RAPID triple-product integration (TP) and direct numerical integration (DI) for each of
the four cases in table 2. Several trend lines are co-located indicating that the integration technique,
rather than the variation of stiffness/load functions, determines the computational cost.
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Figure 4: Diagram of a variable stiffness plate symmetric about its mid-plane, subject to a variable out of plane
load.

Letting the unknown displacement function be approximated by a kinematically admissible two-dimensional trial
function S(x̃, ỹ) with terms Si(x̃, ỹ) that can be composed of basis functions in the x̃ and ỹ directions,

w̃(x̃) ≈ ωS =

N∑
i=0

ωiSi(x̃, ỹ) =

Nx∑
j=0

Ny∑
k=0

ωjkSj(x̃)Sk(ỹ) (37)

defines a system of equations defined by
∂Π̃

ωi
= 0. (38)

Solving this system requires evaluating O(NxNy)2 two-dimensional integrals, for example,∫∫
Ã

∂2Si
∂x̃2

d̃11
∂2Si
∂x̃2

dÃ. (39)

Similarities between eq (39) and the one-dimensional case, eq (6) are observed. It is possible to exploit the
RAPID formulation in a similar fashion for two-dimensional problems using Kronecker multiplication in order to
improve computational efficiency.

6 Two-Dimensional Legendre Polynomials

The techniques outlined for one-dimensional analysis can be readily extended to the two-dimensional integrals.
To account for behaviour in each direction the number of trial functions required is often the square of that
required for a one-dimensional analysis. Evidently, the potential for improvements in computational efficiency
are therefore expected to be more pronounced for the two-dimensional case. The two-dimensional LP basis using
Kronecker multiplication may be defined,

P(x̃, ỹ) = P(x̃)⊗P(ỹ) =


P0(x̃)P(ỹ)
P1(x̃)P(ỹ)

...
PN (x̃)P(ỹ)

 . (40)

As in the one-dimensional case a modified basis, satisfying kinematic boundary conditions, can be obtained by
application of appropriate coefficient matrices in the x and y directions,

PBC(x̃, ỹ) = PBCx(x̃)⊗PBCy(ỹ),

= [CBCxP(x̃)]⊗ [CBCyP(ỹ)],

= [CBCx ⊗CBCy][P(x̃)⊗P(ỹ)], (41)
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where PBCx,y is the modified basis and CBCx,y are the required coefficient matrices. Partial differentiation can be
similarly achieved using matrix multiplication by Cδx,y. Using the derivative matrix defined previously, eq (19),
together with the identity matrix Ix,y in the stationary direction,

∂

∂x̃
P(x̃, ỹ) = [Cδ ⊗ Iy][P(x̃)⊗P(ỹ)],

∂

∂ỹ
P(x̃, ỹ) = [Ix ⊗Cδ][P(x̃)⊗P(ỹ)]. (42)

Combining these results gives,

∂i+j

∂x̃i∂ỹj
PBC(x̃, ỹ) = [CBCxCiδ ⊗CBCyCjδ][P(x̃)⊗P(ỹ)]. (43)

A typical system integral is,

F =

∫∫
Ã

∂i+j

∂x̃i∂ỹj
PBC(x̃, ỹ)f(x̃, ỹ)

∂i+j

∂x̃i∂ỹj
Pᵀ

BC(x̃, ỹ) dÃ (44)

Letting f(x̃, ỹ) be represented by a series expansion,

f ≈=

M∑
i=0

fiPi(x̃, ỹ) =

Mx∑
k=0

My∑
k=0

fjkPj(x̃)Pk(ỹ), (45)

the integrals F can be written in terms of LP basis functions,

F ≈
∫∫
Ã

Mx∑
k=0

My∑
k=0

[CBCxCiδ ⊗CBCyCjδ][P(x̃)⊗P(ỹ)]fjkPj(x̃)Pk(ỹ) [[CBCxCiδ ⊗CBCyCjδ][P(x̃)⊗P(ỹ)]]
ᵀ
dÃ

≈ [CBCxCiδ ⊗CBCyCjδ]

Mx∑
k=0

My∑
k=0

fjk

∫∫
Ã

P(x̃)Pᵀ(x̃)Pj(x̃)⊗P(ỹ)Pᵀ(ỹ)Pk(ỹ) dÃ

 [Cᵀ
iδC

ᵀ
BCx ⊗Cᵀ

jδC
ᵀ
BCy]

≈ C

Mx∑
k=0

My∑
k=0

fjk

 1∫
−1

P(x̃)Pᵀ(x̃)Pj(x̃) dx̃

⊗
 1∫
−1

P(ỹ)Pᵀ(ỹ)Pk(ỹ) dỹ

Cᵀ. (46)

where C is a coefficient matrix that captures all the required partial differentiation and kinematic constraints.
It is noted that if there is an equally refined mesh in each direction 4, 1∫

−1

P(x̃)Pᵀ(x̃)Pi(x̃) dx̃

 =

 1∫
−1

P(ỹ)Pᵀ(ỹ)Pi(ỹ) dỹ

 , (47)

since the x̃ and ỹ triple products integrals differ only by the variable of integration. The analytical triple-products
need only be calculated in one direction offering further efficiency gains. In the example presented O(N2

xN
2
y )

numerical quadratures have been replaced by the O(MxMy) required to calculate the weighting coefficients fjk
and a summation of known matrices. The efficiency savings are the square of the savings made for for the
one-dimensional case, highlighting the potential for the triple-product approach when applied to plates. Variable
stiffness plates are now considered. proceed to consider a variable stiffness plate.

7 RAPID Formulation - Plates

The variation in load over the plate can be described via a series expansion using the two-dimensional LP series,

q̃(x̃, ỹ) ≈
Mx∑
j=0

My∑
k=0

qjkPj(x̃)Pk(ỹ). (48)

The variation of each of the stiffness matrices components can be similarly described. Solving eq (38), results in
a system of the form,

∂Π̃

∂ω
= Λω − Γ, (49)

4For a non-equal refinement the a subset of the larger can be used to define the smaller.
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Table 3: Representative loading and thickness variation investigated for two-dimensional computational bench-
marking.

Case H(x̃, ỹ) q̃(x̃, ỹ)

Wide 1
2 + exp(−2(x2 + y2)) sin(2πy) + 2 cos(πy)

Narrow 1
2 + exp(−10(x2 + y2)) sin(8πy) + 2 cos(4πy)

where

Λ = α11CBC,xx

Mx∑
j=0

My∑
k=0

d11 jkΩjk

Cᵀ
BC,xx + α12CBC,xy

Mx∑
j=0

My∑
k=0

d12 jkΩjk

Cᵀ
BC,yy

+ α16CBC,xx

Mx∑
j=0

My∑
k=0

d16 jkΩjk

Cᵀ
BC,xy + α22CBC,yy

Mx∑
j=0

My∑
k=0

d22 jkΩjk

Cᵀ
BC,yy

+ α26CBC,yy

Mx∑
j=0

My∑
k=0

d26 jkΩjk

Cᵀ
BC,xy + α66CBC,xy

Mx∑
j=0

My∑
k=0

d66 jkΩjk

Cᵀ
BC,xy (50)

with

Ωjk =

 1∫
−1

P(x̃)Pᵀ(x̃)Pj(x̃) dx̃

⊗
 1∫
−1

P(ỹ)Pᵀ(ỹ)Pk(ỹ) dỹ

 , (51)

and with appropriate coefficient matrices enforcing the boundary conditions and derivatives and

Γ =

Mx∑
j=0

My∑
k=0

qjk

 1∫
−1

P(x̃)Pj(x̃) dx̃

⊗
 1∫
−1

P(ỹ)Pk(ỹ) dỹ

 , (52)

completely defining the system in terms of common LP integrals. The computational time required to complete
the analysis can now be compared.

7.1 Computational Efficiency

So as to simplify the comparison between the RAPID and direct integration formulations a plate, composed
of an isotropic material with a thickness variation, H(x̃, ỹ), that causes a variation in stiffness is considered.
The cases investigated are listed in table 3. For direct integration Matlab’s “integral2” function is utilised
[13, 18]. As for the one-dimensional case the norm of the difference between the two approaches is used to
demonstrate convergence for Λ, Γ and ω, the matrices associated with bending energy, out-of-plane work done
and the unknown solutions coefficients. The convergence results are presented in fig 5, where Mx = My = M ,
represents the accuracy of the series approximation. The results are calculated for a trial function expansion
with Nx = Ny = 10 terms. The cost, as shown in fig 6a demonstrates increased runtime with larger M similar
to those observed for the one-dimensional case. Fig 6b compares the computational cost for increasing N , for
fixed M = 20. As was observed in the one-dimensional case at very low refinement there is no advantage to
the RAPID formulation, however as the number of terms increases the efficiency gains become significant. For
the case of two-dimensional analysis it is observed that as the total number of numerical quadratures is the
square of N , owing to expansion in two directions, thus the efficiency savings are more pronounced than for the
one-dimensional analysis.
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(b) Narrow.

Figure 5: Convergence of RAPID formulation to results obtained via direct numerical integration for increasingly
refined stiffness/load approximation with M the number of terms for the two cases in table 3.
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(a) Increased runtime with increasing M and fixed N = 10,
using RAPID formulation. Direct integration (DI) time
is provided for comparison.
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Figure 6: Runtime for RAPID triple-product integration (TP) and direct numerical integration (DI) for each of
the two cases in table 3. The reduction in runtime is more significant for plate analysis requiring trial
function expansion in both the x and y directions thus the total number of trial functions is N2.

12



8 Conclusion

An alternative method for computing integrals encountered in a typical Ritz based analysis for variable stiffness
beams and plates has been presented. This method is computationally efficient compared to direct numerical
quadrature that is typically employed for analysis of these problems. Herein, the Recursive Analytical Polynomial
Integral Definition (RAPID) formulation presented utilises Legendre polynomial (LP) triple products to replace
the O(N2) integrals encountered with a summation of known analytical results. To implement this approach at
most O(M) numerical integrations are required to calculate the expansion coefficients for the stiffness variation.
Typically, M ≈ N , therefore the number of integrations required has been reduced by an order of magnitude when
compared to a direct numerical integration approach. The calculation of these integrals is often the computational
bottleneck in problems of this type therefore the RAPID formulation provides significant runtime reductions.

The order of magnitude decrease predicted in the computational runtime has been observed when comparing
the RAPID formulation to Matlab’s adaptive quadrature functions, “integral” and “integral2” [13, 14, 18].
Furthermore, convergence of the RAPID formulation, in-line with a series approximation, is observed and the
variance between the RAPID approach and direct integration discussed. These results demonstrate that our new
approach is both viable and effective.

The imposition of various boundary conditions and derivatives of the trial function can be achieved via matrix
multiplication, reducing most integrals to a common form. Such a simplification aids the investigation into
various designs. The computational advantage of this approach is significant, particularly when utilised for
component design and optimisation. In fact, as the exact evaluation of the Wigner (3j) coefficients is possible,
closed form solutions can be obtained if the stiffness and load variation is expressible exactly as a finite Legendre
polynomial series. By utilising the RAPID approach an increase in the number of terms in the trial function is
computationally favourable when compared to direct integration. Thus the capture of localised features may be
achieved more efficiently than state-of-the-art approaches currently employed.
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