
Novel Tools and Methods

Fast, Flexible Closed-Loop Feedback: Tracking
Movement in “Real-Millisecond-Time”

Keisuke Sehara,1 Viktor Bahr,2 Ben Mitchinson,3 Martin J. Pearson,4 Matthew E. Larkum,1 and
Robert N. S. Sachdev1

https://doi.org/10.1523/ENEURO.0147-19.2019

1Institute of Biology, Humboldt University of Berlin, D-10117 Berlin, Germany, 2Eridian Systems, D-10179 Berlin,
Germany, 3Department of Computer Science, University of Sheffield, Sheffield, S10 2TP United Kingdom, and 4Bristol Robotics
Laboratory, University of Bristol and University of the West of England, Bristol, BS16 1QY United Kingdom

Abstract
One of the principal functions of the brain is to control movement and rapidly adapt behavior to a changing
external environment. Over the last decades our ability to monitor activity in the brain, manipulate it while also
manipulating the environment the animal moves through, has been tackled with increasing sophistication.
However, our ability to track the movement of the animal in real time has not kept pace. Here, we use a dynamic
vision sensor (DVS) based event-driven neuromorphic camera system to implement real-time, low-latency
tracking of a single whisker that mice can move at �25 Hz. The customized DVS system described here converts
whisker motion into a series of events that can be used to estimate the position of the whisker and to trigger a
position-based output interactively within 2 ms. This neuromorphic chip-based closed-loop system provides
feedback rapidly and flexibly. With this system, it becomes possible to use the movement of whiskers or in
principal, movement of any part of the body to reward, punish, in a rapidly reconfigurable way. These methods
can be used to manipulate behavior, and the neural circuits that help animals adapt to changing values of a
sequence of motor actions.

Key words: feedback; kinematics; motor; neuro-morphic; somatosensory; virtual reality

Introduction
Context matters. Whether a stimulus is large or small,

whether it includes the center and surround, whether it is
passively applied or actively perceived, whether cortical

circuits are active or inactive when the stimulus occurs, all
matter for perception of a stimulus. One state of the art
development in which context can be changed rapidly,
flexibly and in many dimensions at one time is to immerse

Received April 17, 2019; accepted September 16, 2019; First published
October 14, 2019.
The authors declare no competing financial interests.
Author contributions: K.S., V.B., B.M., M.J.P., M.E.L., and R.N.S.S. designed

research; K.S. performed research; K.S., V.B., B.M., and M.J.P. contributed
unpublished reagents/analytic tools; K.S. analyzed data; K.S. and R.N.S.S.
wrote the paper.

This work was supported by Deutsche Forschungsgemeinschaft Grants
2112280105 and LA 3442/3-1 and LA 3442/5-1 (to M.E.L.) and Project Number
327654276–SFB 1315; the European Union’s Horizon 2020 Research and
Innovation Program and Euratom Research and Training Program 2014–2018
Grant 670118 (to M.E.L.); the Human Brain Project EU Grant 720270, HBP
SGA1 and SGA2, “Context-Sensitive Multisensory Object Recognition: A Deep
Network Model Constrained by Multi-Level, Multi-Species Data” (to M.E.L.);

Significance Statement

Here, we implemented a method for tracking and reacting to movement in real time at low latency, i.e., in
2 ms. We use a neuromorphic camera chip to track movement of a whisker and generate an output based
on whisker position. With training, mice learn to move whiskers to virtual target locations. Combined with
the recent sophisticated techniques for monitoring and manipulating brain activity, methods like ours can
be used to manipulate behavior or neural circuits that help animals adapt to changing values of a sequence
of motor actions.

Methods/New Tools

November/December 2019, 6(6) ENEURO.0147-19.2019 1–18

https://orcid.org/0000-0003-4368-8143
https://orcid.org/0000-0002-8642-4845
https://orcid.org/0000-0001-9799-2656
https://orcid.org/0000-0002-6627-0199
https://doi.org/10.1523/ENEURO.0147-19.2019


animals in virtual worlds and to artificially modify the
interaction between the animal and the world. In virtual
reality systems, animals are placed on floating-balls,
treadmills or floating “air-track” systems, and the move-
ment of the platform is tracked in relation to a streaming
visual or “real” world presented to the animal (Hölscher
et al., 2005; Dombeck et al., 2007; Harvey et al., 2009;
Sofroniew et al., 2014; Nashaat et al., 2017; Voigts and
Harnett, 2018; Dominiak et al., 2019). These systems can
even be used to introduce counterfactual features into the
“real” sensory environment, creating illusions that can be
used to understand how the brain interprets the external
world, creates representations of the world, or remembers
features of the world (Keller et al., 2012). Combined with
recent genetic, optical or electrophysiological techniques,
these virtual-reality systems provide amazing opportuni-
ties for studying learning, memory and perception.

While these systems are extraordinarily powerful, they
are primarily based on real-time tracking of artificial ele-
ments, i.e., the movement of a ball, platform, or a tread-
mill, and not on tracking the aspect of behavior that the
brain directly controls, the body. The major challenge for
generating feedback in real time is that for feedback to be
meaningful it has to be fast; consequently, when behav-
ioral events occur, they have to be tracked accurately and
rapidly. Although it is becoming obvious that behaviors
occur in multiple sensorimotor dimensions simultaneously
(Musall et al., 2018; Dominiak et al., 2019; Stringer et al.,
2019), the dominant approach in systems neuroscience is
still to track behavior in a single dimension: a cue triggers
a movement and the endpoint of movement is fixed in-
flexibly at a single spatial location detected by a contact,
or a beam break (Evarts, 1966, 1968; Bermejo et al., 1996;
Bermejo et al., 1998; Sachdev et al., 2001; O’Connor
et al., 2010; Stüttgen and Schwarz, 2010). A powerful and
promising new avenue, that has the potential to be more
flexible, has been to use image-processing methods that,
in combination with machine vision approaches, extract a
certain feature of the animal body from video frames
(Mathis et al., 2018). However, currently these ap-
proaches suffer from a high order of data parallelism and
redundancy at each step of data processing, i.e., data
acquisition, data transfer to the host computer, and con-
version of the acquired frames. Consequently, these sys-
tems work at latencies of 50–100 ms, which make them
unsuitable for tracking fast events such as whisker mov-
ing at frequencies up to 25 Hz (Forys et al., 2018; Štih
et al., 2019).

Another solution has been to perform parallel process-
ing at the level of sensors, thus reducing the computation
time and permitting real-time tracking. The Pixy camera is
one iteration of this solution; it preprocesses objects
based on a color code (Nashaat et al., 2017). The dynamic
vision sensor (DVS) is another realization of a sensor-level
computation approach (Delbruck, 2008). It is a retina-
inspired neuromorphic camera where each sensor unit of
the camera can be in principle viewed as a difference filter
that detects a change in luminance at given position.
Compared to the Pixy camera, it has a transfer speed
more suitable for behavioral experiments, especially for
low latency real-time tracking of whiskers. The DVS neu-
romorphic sensors have been reported to implement real-
time low-latency solutions for detecting lines and line
segments (Conradt et al., 2009; Grompone von Gioi et al.,
2012; Everding and Conradt, 2018), corners (Vasco et al.,
2016; Mueggler et al., 2017), and other more complex
shapes (Lagorce et al., 2015). Here, we created a virtual
spatial area around the mouse’s face and built the “FastE-
vent” system to track whisker position, and generate
feedback based on position of whiskers. This system can
be conditioned to track a whisker in real time at low
latency. Tracking compares favorably to offline tracking
with high-speed cameras. With our system it is possible to
generate behaviorally relevant feedback from whisker
movement and positioning in 2 ms.

Materials and Methods
FastEvent system for tracking whiskers
The DVS camera

Here, we use a neuromorphic camera system, the DVS
camera (DVS240C; IniVation, RRID:SCR_017283) to track
whiskers at a short latency in real time. It consists of a 240
� 180 matrix of sensor units. Each sensor unit contains a
set of transistors and a photodiode (Delbruck, 2008;
Brandli et al., 2014). Unlike cameras consisting of a CCD
or CMOS arrays, each sensor unit uses a differentiator
circuit and two comparator units as its output, and each
unit generates an ON or OFF event when an increase or
decrease in luminance is detected. In contrast to the
conventional CMOS/CCD cameras, the DVS camera is
frameless; it sequentially collects and transmits informa-
tion about when and where luminance changes occurred.
The biases of each transistor component, i.e., gains and
thresholds for luminance changes, in the sensor units can
be configured programmatically to adjust the ON/OFF
events and ensure that they occur primarily during behav-
iors of interest. To ensure that event detection occurred
rapidly, at short latency, the source-follower bias on the
DVS was kept high (Lichtsteiner et al., 2008).

Data representation on the DVS camera
As a whisker (or any other object) moves in front of the

sensor matrix, the field programmable gate array (FPGA)
unit on the DVS camera collects the ON/OFF events from
the sensor array and converts the events into a format
referred to as the address-event representation (AER), a
64-bit binary representation of each event, consisting of
the following: (1) a device-internal timestamp; (2) the po-
larity of the response, i.e., ON or OFF; and (3) x- and

and the Einstein Stiftung.
Acknowledgements: We thank the Charité Workshop for technical assis-

tance, especially Alexander Schill, Jan-Erik Ode, and Daniel Deblitz. Sina E.
Dominiak and Marcel Staab also contributed to various aspects of training and
preparation.

Correspondence should be addressed to Robert N. S. Sachdev at
robert.sachdev@charite.de or Matthew E. Larkum at matthew.larkum@
gmail.com

https://doi.org/10.1523/ENEURO.0147-19.2019
Copyright © 2019 Sehara et al.
This is an open-access article distributed under the terms of the Creative
Commons Attribution 4.0 International license, which permits unrestricted use,
distribution and reproduction in any medium provided that the original work is
properly attributed.

Methods/New Tools 2 of 18

November/December 2019, 6(6) ENEURO.0147-19.2019 eNeuro.org

https://scicrunch.org/resolver/SCR_017283
mailto:robert.sachdev@charite.de
mailto:matthew.larkum@gmail.com
mailto:matthew.larkum@gmail.com
https://doi.org/10.1523/ENEURO.0147-19.2019
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


y-coordinates of the source sensor unit, as well as other
internal Boolean flags. In short, the read out of the AER
provides the location and timing of luminance changes on
the matrix of sensors. The series of AER events in the DVS
camera were output via a USB 2.0 high-speed connection
to the host computer (Lenovo K450e, 3.2 GHz Core i5
4460, with 12 GB DDR3-RAM, 1 TB SATA HDD, and
NVIDIA GeForce GT 720, running Windows 8.1 and Java
SE 1.8 runtime environment; Fig. 1A). The communication
between the camera and computer is controlled via a
libusb-based driver bundled with the camera. The nomi-

nal interval of communication for the host program was
configurable and was set to 1 ms, ensuring a low latency.

User interface software
The DVS camera is supplied with a Java-based open-

source software called jAER (http://jaerproject.org/). Here,
we used jAER to modify the transistor biases of the sensor
array, to configure the USB communication, and to visu-
alize the spatiotemporal distribution of events coming
from the DVS camera. Each iteration of communication
with the DVS camera is represented as a packet of events

A

B

Figure 1. Real-time whisker tracking and triggering with a neuromorphic camera. A, Overview of the FastEvent system. A whisker of
an awake head-fixed animal was tracked using a DVS camera. to enhance contrast for post hoc and real-time trackings, the tracked
whisker was painted with UV paint (magenta) and illuminated with a UV light. The behavior of the animal was recorded with the DVS
camera, and a second color camera recording at 200–300 FPS was used as a reference. The data from the neuromorphic camera
were sent to the PC in the form of a series of “events” and were then preconditioned. In the preconditioning step, the ROI was clipped,
hot-pixels were removed, and noise was reduced with the aid of a graphical user interface, jAER (dotted-line box), that is supplied
with the camera. The jAER was customized to estimate object position and generate triggers based on the location of an object (green
boxes). Briefly, object positions were estimated by computing weighted averages of the events inside the ROI. The distance between
the estimated whisker position and the “target region” (not shown for this figure) was monitored and transmitted to a custom-made
independent service program, i.e., the “FastEventServer.” The FastEventServer drove TTL output from a designated board. B, The
neuromorphic camera detects motion of the vibrissae. Single representative frames derived from different time points of behavior are
shown from a high-speed camera (top panels). For images from a DVS camera (bottom panels), events that occurred within the
�20-ms period were integrated and displayed. Scale bars � 5 mm.

Methods/New Tools 3 of 18

November/December 2019, 6(6) ENEURO.0147-19.2019 eNeuro.org

http://jaerproject.org/


inside the software (Delbruck, 2008). Analytical proce-
dures, being referred to as “filters,” can be used to pro-
cess each packet and to filter events or generate a new
set of events inside the packet. In addition, a set of filters
can be chained together to process event packets se-
quentially one after another.

jAER comes with generic built-in filters, and some were
used here: (1) the XYFilter was used to pass events on-
ward if they occur inside a user-specified region of inter-
est (ROI; Fig. 1A, ROI selection); (2) the HotPixelFilter was
used to remove the events generated on sensor units that
produce a large number of dark events (Fig. 1A, hot-pixel
removal); and (3) the BackgroundActivityFilter was used
to remove solitary events, i.e., when a single sensor unit
generates an event and no adjacent units emit an event at
the same time (Fig. 1A, noise reduction).

In addition to using the generic built-in filters, we de-
signed a custom-made MeanTracker filter that tracked
whisker position. This filter was used to estimate positions
of a labeled object (Fig. 1A, position estimation). The
MeanTracker assumed that there was only a single lumi-
nescent object in the field of view, and computed this
object’s position by calculating the center of mass of the
detected object. Using a weighted-average scheme, the
MeanTracker updated the estimated position of the object
each time an event packet was received.

More specifically, the MeanTracker filter computed the
weighted average of the i-th event packet, xi, based on
the recorded positions of individual events in the the i-th
packet, {xij} (j � 1, . . ., N), as:

xi �
1
N �

j

xij.

For each time point t, the weighted contribution of the
i-th packet wi, whose reception time was ti, was com-
puted as:

wi � e
ti�t

� ,

where � is the integration time constant. By using pairs of
the weight wi and the position xi, the position of the
object, xe(t), at each time point t, was estimated as a
weighted average of the contributions of all the packets
up to the time point:

xe(t) �
� iwixi

� iwi

.

We introduced this weighted-averaging approach be-
cause the number of events in each packet varied con-
siderably. When the number of packets is too small, noise
events coming from unlabeled objects contribute inordi-
nately in the event packet, and can lead to inaccurate
position estimates. We therefore used a short 200- to
300-�s integration time constant � to ensure that at least
tens of events contribute to position estimation even
when not much movement was observed. Real-time es-
timation of labeled–object positions was output to a

comma separated variable (CSV) file, referred to as the
MeanTracker log which was saved for post hoc analysis.

Virtual target-based position evaluation
The position of the tracked object computed by Mean-

Tracker was evaluated (Fig. 1A) by specifying a rectangu-
lar “virtual target” region on the jAER graphical interface,
and by assessing whether the tracked object position was
inside or outside of the target region. The virtual target
region was interactively specified throughout a single re-
cording session. The status of the evaluation was also
logged to the MeanTracker log file. The coordinates of the
virtual target region were logged to another CSV file and
were referred to during analysis.

Generating feedback
The output from the MeanTracker was a TTL-high or

TTL-low level, reflecting the position of the tracked object,
i.e., whether it was inside or outside the virtual target
region. Through a UDP communication, the resulting eval-
uation was output to a custom C��-based program
called the FastEventServer. This server, which ran on the
same PC that ran the jAER, commanded the output to a
driver program (Fig. 1A).

The output driver for FastEventServer was based on the
Arduino UNO single-board microcontroller (https://
www.arduino.cc/, RRID:SCR_017284). It used an ordinary
USB-serial communication that is built into the Arduino UNO
(i.e., a serial communication over a USB 1.1 full-speed connec-
tion). Because the original UNO kernel (also known as boot-
loader) cannot work at rates that are �1 kHz, we implemented
a custom kernel, which we call the arduino-FastEventTrigger
kernel, using LUFA (http://www.fourwalledcubicle.com/
LUFA.php; release 100807), based on the Arduino-usbserial
project (https://github.com/arduino/ArduinoCore-avr/tree/
master/firmwares/atmegaxxu2/arduino-usbserial). The Ar-
duino-FastEventTrigger kernel has the Atmega16u2 USB-to-
serial chip (instead of the main ATmega328P chip on the UNO)
generating the output in response to the USB–serial com-
mands.

Hardware for detecting the timing of the triggered out-
put

To determine the response latency of the FastEvent
system, we used the auxiliary TTL-level digital input port
equipped on the DVS camera. The FPGA unit on the
camera treats the edges of TTL signals as “special
events” and gives them timestamps, as it does for the
sensor ON and OFF events. By plugging the output of the
FastEvent sytem to this TTL input port, it was possible to
estimate the total response latency by examining the
sensor event timestamps and comparing them to the
special event timestamps. The difference in the timing of
these events corresponded to the delay between the
onset of motion and the output of the FastEvent system.

Set-up specifications
The DVS camera was used with a Kowa LM5NCR

objective (f � 4.5 mm, F1.4 with manual iris; the iris was
fully or almost fully opened during the experiments). The
resulting field of view for the DVS camera was �40–50 mm.
The ROI of tracking was selected so that it covered the
full-sweep of the UV-painted part of the whisker, and

Methods/New Tools 4 of 18

November/December 2019, 6(6) ENEURO.0147-19.2019 eNeuro.org

https://www.arduino.cc/
https://www.arduino.cc/
https://scicrunch.org/resolver/SCR_017284
http://www.fourwalledcubicle.com/LUFA.php
http://www.fourwalledcubicle.com/LUFA.php
https://github.com/arduino/ArduinoCore-avr/tree/master/firmwares/atmegaxxu2/arduino-usbserial
https://github.com/arduino/ArduinoCore-avr/tree/master/firmwares/atmegaxxu2/arduino-usbserial


was typically 20 – 40 pixels (3–5 mm) along the medio-
lateral axis and around 100 pixels (�15 mm) along the
anteroposterior direction. The Arduino-based output
board was connected to the computer with a USB 1.1
cable. A BNC connector was attached to the output of
the Arduino-based board and this output was con-
nected directly to the DVS camera and other data
acquisition devices.

Experiments using a plucked whisker
Preparation

A B1 whisker was plucked from an anesthetized mouse.
The whisker was glued to the arm of a servo motor
(Futaba S3114) and painted using the UV dye (see the
section below). The servo motor was driven by an Arduino
UNO board, by means of the “Servo” library (https://
www.arduino.cc/en/Reference/Servo). The motor swept
the whisker 12° back and forth in 1–6° step. The interval
between steps was 20–300 ms. The whisker was driven at
different frequencies, in a particular sequence from a low
frequency to a high one: 0.139 Hz (1°/step, 300-ms clock
cycle, five sweeps), 0.417 Hz (1°/step, 100-ms clock cy-
cle, five sweeps), 1.04 Hz (1°/step, 40-ms clock cycle, five
sweeps), 2.08 Hz (1°/step, 20-ms clock cycle, 10 sweeps),
4.17 Hz (2°/step, 20-ms clock cycle, 20 sweeps), 6.25 Hz
(3°/step, 20-ms clock cycle, 20 sweeps), 8.33 Hz (4°/step,
20-ms clock cycle, 40 sweeps), and 12.5 Hz (6°/step,
20-ms clock cycle, 40 sweeps).

Data acquisition
The sequence of motion was repeated several times

using different integration time constants for the Mean-
Tracker on the FastEvent system. The DVS camera was
positioned for a top view, capturing the back and forth
rotation of the whisker. As a check of the actual motion of
the motor and whisker, a Basler acA800-510uc high-
speed camera was deployed at 200 FPS. In addition to
the computer running the FastEvent system, another Win-
dows 10 computer was used to run a custom-made
acquisition software (ZR view, Robert Zollner, Eichenau)
to acquire high-speed videos.

Analysis
We estimated the angle of whisker rotation, individually

from the high-speed videos and from the MeanTracker
log files generated from the FastEvent system, before
comparing the two data types.

To track whisker motion on the high-speed videos, the
“videobatch” python library was used. In this analysis we
used the data acquired at a lower frequency (0.139 Hz)
and fit the commanded movement of the whisker to the
actual motion recorded with the high-speed camera.
The result of this fitting process was used to estimate the
angle of rotation.

For the FastEvent tracking data, the center of rotation in
the field of view during each trial was first estimated by
visual examination of the two-dimensional movement his-
tograms derived from the raw AER data. The radius and
the angle of rotation at each time point were then com-
puted based on the x- and y-coordinates recorded on the
MeanTracker log file.

To correct for the different time bases for high-speed
camera tracking and the FastEvent tracking, the two data
streams were temporally scaled. Briefly, we first split the
data into periods of individual frequency settings. Then
we manually marked the first and the last turns in each
frequency setting for both high-speed and FastEvent
tracking streams. Finally, we fit the periods between the
two time points with a least-squares approach. The RMS
error was defined as the moment-to-moment absolute
difference between the fitted horizontal motion based on
the high-speed video and the horizontal motion from the
MeanTracker log file (i.e., FastEvent tracking). The gain of
motion was defined as the ratio of the SD for the motion
on FastEvent tracking and SD of the motion tracked in the
high-speed video.

LED-based experiments for estimating the trigger
latency

Two LEDs (588 nm, yellow, 5 mm in diameter) were
positioned side by side, �15 mm apart, and their flicker-
ing was captured in a top view by the DVS camera. We
configured the view so that only one LED was located
inside the target region. The on/off sequences of the LEDs
were controlled by an Arduino UNO so that their flashing
alternated at 4 Hz (250 ms/cycle). To minimize the effect
of the integration time constant on the FastEvent tracking,
each LED was flashed only for 62 ms (i.e., 1/4 cycle) of
every cycle. Because the event rate can affect the pro-
cessing latency, the brightness of the LEDs was tuned so
that the average DVS event rate matched the event rate
during the animal experiments (i.e., 10–50 events/ms).
The on/off command signals for the LEDs, and the output
triggers from the FastEvent system, were recorded at
�16.6 kHz using the Power1401 interface (CED, RRID:
SCR_017282) and the Spike2 software (CED, RRID:
SCR_000903).

Animal preparation
All animal procedures were performed in accordance

with protocols approved by Charité–Universitätsmedizin
Berlin and Berlin Landesamt für Gesundheit und Soziales
(LaGeSo) for the care and use of laboratory animals.

Animals
C57 black six mice (n � 5; RRID:IMSR_JAX:000664)

were used in this study. Mice were used for validation
during system and behavioral task development (i.e., pro-
filing the tracking and triggering) and were trained in a
behavioral task. Animals were housed under the 12/12 h
reverse light/dark cycle.

Surgery
A headpost was surgically attached on the skull. Ani-

mals were anesthetized with ketamine/xylazine (90/10
mg/kg body weight) and placed on a feedback regulated
heating pad. After subcutaneous lidocaine injection, skin
and fascia were removed. A lightweight aluminum head-
post was attached using a Rely-X (3M) cement, followed
by Jet acrylic black cement. Animals were monitored
during recovery and were given antibiotics enroflaxicin
and analgesics (buprenorphine/carprofen).

Methods/New Tools 5 of 18

November/December 2019, 6(6) ENEURO.0147-19.2019 eNeuro.org

https://www.arduino.cc/en/Reference/Servo
https://www.arduino.cc/en/Reference/Servo
https://scicrunch.org/resolver/SCR_017282
https://scicrunch.org/resolver/SCR_000903
https://scicrunch.org/resolver/IMSR_JAX:000664


Whisker painting
UV painting of a whisker increased its reflectance and

helped tracking, in both the post hoc analyses of high-
speed videos (Nashaat et al., 2017; Dominiak et al., 2019)
and in the real-time DVS tracking by amplifying the signal-
to-noise ratio to the other non-painted objects. At the
beginning of each recording session, a small amount of
UV paint (UV glow) was applied on the C1 whisker. During
data acquisition, a custom powered, inhouse UV-LED
torch, was used to deliver UV-A (370–400 nm) illumina-
tion that made the painted whisker glow. The UV torch
generated a beam with 3- to 3.5-cm diameter, with �300
mW of power, and a radiance of �10°. The torch was
positioned 20–25 cm above the animal, with the beam
directed from behind the animal, toward the painted whis-
ker (for more details, see Nashaat et al., 2017).

System profiling experiments
For profiling tracking and triggering using the FastEvent

system, we tracked a labeled whisker in naïve mice, i.e.,
those that had not been trained in any specific behavioral
task with their whiskers. After surgery, mice were habitu-
ated to the experimenter, to the setup, to head-fixation,
and to whisker painting, before being used in the exper-
iments. Three to 4 d of handling, head fixing, and painting
were sufficient to acclimate them. During acquisition, the
animal was head-fixed, and its whiskers were tracked
under UV illumination.

The DVS camera and a Basler acA800-510uc high-
speed color camera were positioned above the animal.
High-speed videos (250–270 FPS) and FastEvent system
data were acquired simultaneously. Two data acquisition
computers were used; one was used to run the FastEvent
system, the other Windows 10 computer was used to
acquire the high-speed video with the ZR view inhouse
acquisition software. The output of the FastEvent system,
i.e., the output of the Arduino-based board, was moni-
tored as an input in the auxiliary input port of the DVS
camera (see the descriptions above for details).

Sensory feedback experiments
We performed a visual association experiment, where

mice were trained to lick after a flash of an LED during the
auditory Go-cue. During training and during the experiment,
mice were water deprived up to 85% of their initial body
weight. Mice were first trained to perform a visual detection
task in which a visual cue (800-ms duration, flashing at 2–5
Hz) was presented in their field of view, at random intervals.
Visual stimuli were generated using a green (568 nm) LED
and were delivered through a fiber optic cable.

The intervals between stimuli were exponentially dis-
tributed with a mean value of 8–10 s. Mice obtained a
reward if they responded to the cue by licking during the
response window which began 3 s after the onset of LED
flashes. To suppress spontaneous licking behavior, a time
out punishment was imposed; if a mouse licked in the
second before the visual stimuli began, the onset of
the next visual cue was delayed, i.e., there was increase in
the waiting period. The hit rate and the rate of spontane-
ous licking were used to assess the animal’s perfor-
mance. For monitoring the licking behavior, a piezo

element was attached to the lick port, and its signal was
amplified using an inhouse custom made amplifier. A drop
of water (2–5 �l) was used as the reward, and its delivery
was controlled using a solenoid valve (Takasago PS-
1615NC).

Once the animals had learned the association between
the visual cue and the reward, the Passive behavioral
paradigm began. In this paradigm, mice were trained to
lick in response to the visual cue (800-ms duration, flash-
ing at the 2- to 5-Hz frequency) when an auditory cue, i.e.,
a cue that turned on before the visual cue, was also
audible. The auditory Go-cue was generated using a pi-
ezo buzzer, and was delivered intermittently at 3–5 Hz for
up to 5 s. The latency to the visual cue after the auditory
cue turned on was variable but it was at least 250 ms and
up to 2.5 s. The auditory cues were terminated right after
the animal licked irrespective of whether the visual cue
had already been presented or not. Mice were rewarded
only when they licked after the visual stimulus was flashed
on. Intervals between individual auditory Go-cues were
set randomly (exponentially distributed with 8–10 s
mean), but as described above, they were reset if the
animal licked �1 s before the beginning of the auditory
cue.

After several sessions in which mice performed the
Passive behavioral paradigm, we trained mice in an Active
paradigm. Mice had to perform almost the same task in
both the Passive and Active paradigms, except that in the
active task, the visual stimulus was generated as a sen-
sory feedback. Based on the output from the FastEvent
system, the LED turned on when the painted whisker was
inside the virtual target region. Mice were rewarded if they
licked after the LED turned on, i.e., the painted whisker
was moving into the virtual target region, and the auditory
Go-cue (delivered intermittently at 3–5 Hz for up to 5 s)
was also active. Note that once the cross-threshold event
was triggered during the cued period, the animal could
move its whiskers out of the target region. During licking,
there was no requirement for the whiskers to be at any
particular target region.

Hardware
Licking, whisk events, as well as multiple other tasks

were monitored, controlled and stored using a single-
board computer (STM32 NUCLEO-F411RE, ST Micro-
electronics) which in turn was controlled and monitored
by a PC with a Python program based on the “ublock”
custom library.

A Basler acA800-510uc high-speed camera was used
to acquire videos at 200 FPS, by means of the ZR View
acquisition software running on a Windows 10 computer.
Data acquisition was configured such that a single trial of
video frames centered around reward delivery, i.e., 2.5 s
before and 2.5 s after the reward, were saved as individual
movies. The timing of the sensory cues, reward, the TTL
output from the FastEvent system, and the beginning and
end of each trial were also captured with Spike2 software,
via a 1401 data acquisition interface.

Methods/New Tools 6 of 18

November/December 2019, 6(6) ENEURO.0147-19.2019 eNeuro.org



Analytical procedures
Experimental design and statistical analysis

For each animal experiment, we used two adult (at least
60 d old) male mice with the C57B6 background. We ran
four behavioral sessions for the system profiling (i.e.,
no-task) experiments, and 13 behavioral sessions (two
Passive, and 11 Active) for the experiments with behav-
ioral tasks. For the Active paradigm we acquired and
analyzed 1479 trials, and for the Passive paradigms, we
used 337 trials. We used Kolmogorov–Smirnov (KS) test
to examine differences.

During examination of whisking strategy under the Ac-
tive paradigm, each of the 11 behavioral sessions (five to
six sessions each from the two animals) consisted of at
least 10 trials out of at least five target locations. To
determine whether the univariate linear regression model
had a non-zero slope, we used Mann–Whitney U test. To
determine whether the multivariate linear regression
model had a significant explained variance, we compared
the results of the raw dataset with the outcomes from the
corresponding shuffled dataset, using Wilcoxon signed-
rank test. To compare the amount of variance explained
by the set point and by the amplitude during each session
we used the Wilcoxon signed-rank test. To compare the
variance explained in the different trial phases (i.e., Wait,
Hit, Lick; see below for definitions) in each session we
used a Wilcoxon signed-rank test with Holm–Bonferroni
correction.

Software
Positions of the labeled whisker in high-speed videos

were tracked using a custom-made ImageJ (RRID:
SCR_003070) plugin (“Pixylator”) or the equivalent “vid-
eobatch” custom Python library. These libraries work in a
similar fashion as the real-time tracking on jAER does, i.e.,
they compute the weighted average of luminance inten-
sities of the region with similar hue values (Dominiak et al.,
2019). To generate event data at arbitrary time points the
AER-format log files generated by jAER were read and
analyzed in Python, by using the “aerpy” custom library.

Python (https://www.python.org/, version 3.7.2, RRID:
SCR_008394; van Rossum, 1995), Scipy (http://www.
scipy.org/, version 1.2.0, RRID:SCR_008058; Jones et al.,
2001), NumPy (http://www.numpy.org/, version 1.15.4,
RRID:SCR_008633; van der Walt et al., 2011), Bottleneck
(https://github.com/kwgoodman/bottleneck, version 1.2.1),
Matplotlib (https://matplotlib.org/, version 3.0.2, RRID:
SCR_008624; Hunter, 2007), Pandas (https://pandas.
pydata.org/, version 0.23.4; McKinney, 2010), and Jupyter
(https://jupyter.org/, version 1.0.0; Perez and Granger, 2007)
were used for general analytical procedures.

Alignment of DVS and high-speed camera data
The spatial and temporal scaling of the DVS camera

system varied from experiment to experiment. When the
system was being tested and profiled, the time course of
whisker positions in each MeanTracker log file was first
aligned to the corresponding high-speed video data by
matching the manually-selected representative whisker
positions that were evident as peaks in a trace of whisker
movement. A linear regression between the two sets of

temporally-aligned whisker positions (in the high-speed
video and in DVS) was then performed to determine the
spatial scale of the DVS compared to that of the high-
speed video. To determine the scale of the DVS during
training sessions, histograms of the whisker position ac-
quired with the high-speed videos and in the DVS Mean-
Tracker logs, were compared. In particular, the curve of
each MeanTracker histogram was fit to its high-speed
video counterpart by linear transformations of the position
and the log-fraction, by minimizing the squared-error in
the direction of the log-fraction. The resulting coefficient
for transformation was used to estimate the target posi-
tions for the whisker.

Behavioral events
Lick and threshold crossing (whisk) events were ex-

tracted from the session log file generated by the ublock
Python library during the behavioral task. To calculate
success rates, trials in which mice were rewarded were
considered a “success.” Trials were discarded, unless
they included one whisk event during the auditory cue
period, or unless the mouse responded to the auditory
cue with a lick. In the calculation of whisk event fre-
quency, we performed a post hoc debouncing procedure,
so that neighboring whisk events had a minimum inter-
event interval of 20 ms.

Timestamp-based estimation of trigger latency
We examined the difference in device-internal time-

stamps between the sensor events (i.e., when the motion
occurred) and its special events counterpart (i.e., when
the TTL output was delivered). To do so, we picked up the
first event packet that contributed in changing the trigger
status, i.e., the first event packet after the estimated
whisker position crossed the border of the target region.
The earliest event timestamp in the event packet was
considered to be the timestamp for the event packet, and
thus were the time point of motion event generation (i.e.,
trigger evaluation). We then identified the corresponding
special event in the series of events in the AER log file:
because special events occur when the DVS camera
detects edge signals in its auxiliary input, this event
should correspond to the physical occurrence of the trig-
ger. For each border-crossing events, we computed the
difference between the timestamp of the motion-derived
event packet and the timestamp of the corresponding
special event.

Analysis of whisker dynamics
Upper and lower bounds including the entire envelope

of whisker position were calculated based on the minimal
and maximal values within a 100-ms radius sliding win-
dow. To minimize the effect of any abrupt changes, the
results of the sliding-window analysis were further
smoothed using the 100 ms-radius sliding-mean filter.
Lower bound of the envelope was then defined as the
(instantaneous) set point. The difference between the up-
per and the lower bounds of the envelope was defined as
the (instantaneous) amplitude.

For the analysis of trial-aligned whisker motion, we split
each trial into three periods: a Wait (–1.5 to –0.5 s relative
to the reward trigger), Hit (–0.5 to 0 s), and Lick (0 to

Methods/New Tools 7 of 18

November/December 2019, 6(6) ENEURO.0147-19.2019 eNeuro.org

https://scicrunch.org/resolver/SCR_003070
https://www.python.org/
https://scicrunch.org/resolver/SCR_008394
http://www.scipy.org/
http://www.scipy.org/
https://scicrunch.org/resolver/SCR_008058
http://www.numpy.org/
https://scicrunch.org/resolver/SCR_008633
https://github.com/kwgoodman/bottleneck
https://matplotlib.org/
https://scicrunch.org/resolver/SCR_008624
https://pandas.pydata.org/
https://pandas.pydata.org/
https://jupyter.org/


�1 s) periods. The lower and upper bounds of whisker
movement, as well as the amplitude, were averaged for
each period, and each trial. To estimate the slope of each
whisking parameter, with respect to the target location,
we performed a linear regression.

To estimate the contribution of set points and amplitudes
to the variability of target positions, a multiple linear regres-
sion model was built. For each trial-based period p for all
trials from each behavioral session, we solved a regression
problem to estimate contribution for the variability of set
points, Xsetpoint, and amplitudes, Xamplitude, to the variability of
target positions, Xtarget, for individual trials:

Xtarget � ApXsetpoint � BpXamplitude � Cp,

where the subscript p stands for one of the Wait, Hit, and
Lick trial-based periods. For all the positional values, the
averages during corresponding trial-based periods were
used. After estimating the optimal parameter set {Ap, Bp,
Cp}, the residual variability was computed by subtraction
of the estimated target position (i.e., from the set point
and the amplitude of the trial), X̂target, from the actual target
position Xtarget to be summed up as:

SSdata � �
trial

(Xtarget � X̂target)2.

The R2 values, R2
data, were calculated from SSdata and

the total variance of the target, SStotal � � �Xtarget–E
�Xtarget��2, as R2

data � 1 – SSdata/SStotal. For the shuffled
dataset, regression and the rest of calculation were per-
formed using the shuffled target positions to derive
R2

shuffled. Wilcoxon signed-rank test was used to compare
the statistics between R2

data and R2
shuffled for each trial-

based period. For multiple pairwise tests between differ-
ent trial-based periods, Wilcoxon signed-rank test was
performed with Holm–Bonferroni correction.

To estimate the contribution of set points and ampli-
tudes, the data sets were partially shuffled. In the case of
set points, regression analysis was performed on the set
point values after they had been shuffled. The variability
with shuffled set points, R2

�setpoint, was first computed.
The contribution of the set point was then estimated as
R2

data – R2
�setpoint. The same procedures were followed in

the case of amplitude. Wilcoxon signed-rank test was
used to compare contributions of set points and ampli-
tudes for variability of targets. For multiple pairwise tests
between different trial-based periods, Wilcoxon signed-
rank test was performed with Holm–Bonferroni correction.

Code availability
The software described in the paper is freely available

online at https://github.com/viktorbahr/jaer (FastEvent
modified jAER, version 0.3.1), https://github.com/
gwappa/arduino-fasteventtrigger (Arduino board-based
trigger output generator, commit 4b0790f), https://
os.mbed.com/users/gwappa/code/STM32_Whisking/
(STM32 nucleo-based task controller, revision 32:
1416e015016c), https://github.com/gwappa/python-
ublock/ (the ublock task-control/monitor program, version
0.1.1), https://github.com/gwappa/Pixylator (Pixylator

color-tracking plugin for ImageJ, version 0.5), https://
github.com/gwappa/python-videobatch (videobatch
batch-tracking program, version 1.0), https://github.com/
gwappa/python-aerpy (aerpy, commit 694d5ca).

Results
Implementation of neuromorphic camera-based real-
time tracking

Proof of principle experiments in five mice were per-
formed with the customized neuromorphic camera sys-
tem. To determine whether single whiskers could be
tracked using the DVS camera, the whisker was painted
with UV paint, backlit and tracked with a conventional
camera-based tracking approach (Dominiak et al., 2019),
and with a neuromorphic camera (Fig. 1A). Once the
sensitivity of pixels had been tuned, the labeled whisker
could be clearly detected by the DVS camera and simul-
taneously by the high-speed color camera (Fig. 1B).

Next by collecting packets of motion events, i.e., lumi-
nance changes above a certain threshold in individual
pixels, an object-tracking algorithm was implemented by
integrating events over time. To reduce the effect of
“noise,” i.e., to remove events that did not derive from the
labeled whisker, and to account for variability in the num-
ber of events in individual packets, each packet was
weighted with an inverse exponential of the time elapsed
(for details, see Materials and Methods).

To profile the real-time tracking efficiency of this sys-
tem, we performed experiments on a plucked B1 whisker
driven by a servo motor. To examine the effect of integra-
tion time constants on the real-time tracking, we used
three different values for the time constant: 100, 300, and
1000 �s (Fig. 2A–D). An integration time constant of 300
�s was almost as effective as the high-speed camera-
based post hoc tracking (Fig. 2, top panels). Nevertheless,
the real-time-tracked trace appeared noisier, and overshot
the post hoc tracking especially at times when the whisker
changed directions. These differences in the tracking results
seem to reflect the differences in the tracking strategies. The
FastEvent system is based on tracking of the leading edge
of motion, whereas the high-speed camera-based tracking
is based on the center of mass of the object.

Increasing the integration time constant to 1 ms de-
creased the apparent noise in the traces (Fig. 2A, bottom
traces), possibly because of the increased number of
events per estimation. The observation that increasing the
integration time constant reduced the variability in the
observed radius of motion during tracking (Fig. 2B) and
led to smaller tracking errors at low frequencies (Fig. 2D)
support this possibility. But there were negative conse-
quences of increasing the time constant to 1 ms: it cre-
ated a low pass-filtering effect on the estimate of position
(Fig. 2A,C), which led to larger errors in the frequency
domain corresponding to whisking (�5 Hz; Fig. 2D).
Taken together, these observations suggested that a 200-
to 300-�s integration time constant for the FastEvent
system was the most stable for tracking frequencies up to
30 Hz. The angular errors were almost stable at �1°,
resulting in �0.3-mm positional error for the three inte-
gration time constants here (Fig. 2D).

Methods/New Tools 8 of 18

November/December 2019, 6(6) ENEURO.0147-19.2019 eNeuro.org

https://github.com/viktorbahr/jaer
https://github.com/gwappa/arduino-fasteventtrigger
https://github.com/gwappa/arduino-fasteventtrigger
https://os.mbed.com/users/gwappa/code/STM32_Whisking/
https://os.mbed.com/users/gwappa/code/STM32_Whisking/
https://github.com/gwappa/python-ublock
https://github.com/gwappa/python-ublock
https://github.com/gwappa/Pixylator
https://github.com/gwappa/python-videobatch
https://github.com/gwappa/python-videobatch
https://github.com/gwappa/python-aerpy
https://github.com/gwappa/python-aerpy


A B

C D

E G

F H

Figure 2. Real-time whisker tracking in artificial settings and in awake mice. The motion of a plucked whisker attached to the arm of
a servo motor sweeping at �0.1 to �12 Hz, was tracked using a high-speed camera post hoc tracking (blue) and was simultaneously
tracked with the FastEvent real-time tracking system (orange) using different integration time constants. A, Representative angular
positions from different sweep frequencies. Data are shown for 300-�s and 1-ms integration time constants. B, The radii of motion
detected by both tracking methods. Error bars for the FastEvent system corresponding to the 2.5th and the 97.5th percentiles of the
data. C, Effects of changing the integration time constants on the gain of the angular motion detected with the real-time system. The
regression curves for 100-, 300-, and 1000-�s integration time constants are generated by fitting Butterworth filter characteristics to
the observed values. D, Effects of integration time on RMS error. The moment-to-moment positional RMS error was averaged and
plotted for individual sweep frequencies, and for each integration time constant. Once the real-time FastEvent system settles on a
correct frequency of motion, it can track whisker position at �0.3-mm accuracy. E–H, Tracking of whisker motion from awake
animals. E, Whisker-position traces were derived from a high-speed camera (blue) and the DVS neuromorphic camera (orange) in
awake head-fixed mice. Whisker positions were recorded simultaneously with both cameras for 1 min and aligned post hoc. F,
Wavelet (i.e., time-varying) power spectra. The offline high-speed camera and the neuromorphic camera tracked the whisker similarly,
suggesting that the DVS camera tracked whisker dynamics precisely in real time. The power spectra were generated from the traces
shown in E. G, Plot of the RMS error for the offline and real-time data. The medians and 2.5th and 97.5th percentiles across four
sessions are shown. The black point above the plot represents the grand average (mean), and the error bars are the SDs, 0.674 �
1.235 mm. H, Plot of the difference in phase for data analyzed offline and acquired in real time. The plot represents the mean � SD

Methods/New Tools 9 of 18

November/December 2019, 6(6) ENEURO.0147-19.2019 eNeuro.org



When we used awake, head-fixed mice that had not
been trained in a task, and tracked their whiskers, the
data from the real-time tracking of whisker position and
post hoc tracking of the same trials and sessions gener-
ated comparable data (Fig. 2E). The moment-to-moment
difference in position estimated by the two methods was
�1 mm (Fig. 2G).

Analysis of the time varying power spectra of whisking
showed that both the offline high speed (Fig. 2F, top) and
the DVS camera (Fig. 2F, bottom) captured the same
frequency components. The statistics of the differences in
the data acquired by the DVS and offline high-speed
camera show that the majority of the data acquired in the
two data streams fell between �15° of each other (Fig.
2H). Together, these results demonstrate that the DVS
neuromorphic camera can be used to track single mouse
whiskers in real time.

Generating feedback in real time
The goal of real-time tracking of behavior is to provide

feedback to the animal, i.e., to manipulate the environ-
ment around the animal or to optogenetically manipulate
the brain. To achieve this goal, we implemented an output
from the DVS camera system that tracked whisker motion
to a virtual target in real time (Fig. 3A). Whenever the
whisker was within the virtual target region (Fig. 3B, blue),
an output event was triggered (Fig. 3B, pink). The latency
to trigger an output was measured by taking the output (a
TTL pulse) when the whisker moved to a target position
and feeding it back directly into the DVS camera (Fig.
3A,B; Movie 1). We found that the TTL signals fed back to
the DVS camera closely tracked the estimated whisker
position, and they reflected whether the whisker was in
the virtual target region (Fig. 3C). Feedback to the DVS
camera when the whisker entered or exited the target
region occurred at around �1.6 ms (Fig. 3C; Movie 1).

Although our method, based on internal timestamps, is
easy to use and provides an estimate of the trigger la-
tency, it does not provide an estimate of the latency from
the time point when an object moved. Because it was
difficult to know the exact timing of whisker movement
and the subsequent output/generation of a trigger, we
used another electronic approach. We measured the mo-
tion created by flashes of a pair of LEDs turning on and
off. Motion was captured by the DVS camera, and the
timing of trigger generation measured against the flash of
light from the LED (Fig. 3D). When we use this method to
estimate the latency, a miniscule �0.1 ms, over and
above the latency estimated based on the internal time
stamps method, was added to the value of the latency
estimate (Fig. 3E; N � 502 ON events; timestamp based,
1.19 � 0.23 ms, external recording based, 1.29 � 0.17
ms). The additional 0.1 ms probably arises from the pro-
cesses inside the DVS camera that generate and time-
stamp an event. This latency of event generation was
consistent with the earlier reports on the DVS system

(Lichtsteiner et al., 2008; Brandli et al., 2014). Taken to-
gether, our system can track motion and generate feed-
back signals at low latency below 2 ms.

Mice can associate the real–time feedback with
whisker positions

Can mice be trained to move a particular whisker to a
target area, and can they make use of real-time feedback
from the whisker position? To examine whether feedback
could be used by mice, we trained two mice to whisk
toward a virtual target (Fig. 4A,B). An auditory cue initiated
the trial and it stayed on for 5 s, or until mice licked.
Correct positioning of whiskers in the rectangular target
region activated the visual stimulus, i.e., a fiber optic
connected to an LED placed in front of the mouse (for
detailed descriptions, see Materials and Methods).

To examine the effect of training to move to a virtual
target, we compared the whisker positions in the passive
task (Fig. 4C), to whisker position in an active task (Fig. 4D).
In the passive paradigm, whisker position was not associ-
ated with a target, but the LED indicated that mice could lick.
Compared to the Passive task (Fig. 4E, black), during the
Active task (Fig. 4E, blue) mice positioned their whiskers to
generate whisk events, i.e., threshold-crossing events, sig-
nificantly more often during the cued period (p � 1.32 �
10	26, KS test; N � 236 passive vs 646 active trials; Fig. 4E,
left). In addition, the latency from auditory cue onset to a
whisk event (Fig. 4E, right), and the latency from the visual
cue onset to a lick event (Fig. 4F) were both significantly
shorter for active trials (auditory cue response, p � 2.81 �
10	74, KS test; visual cue response, p � 8.84 � 10	23, KS
test; N � 337 passive vs 1479 active trials). Thus, we con-
cluded that mice learned to respond proactively in the active
trials, as compared to their behavior in the passive trials. Our
results indicate that mice can associate the sensory feed-
back to their active behavior.

Although mice learned a behavior during the task, it was
not clear that they associated the position of the whisker
with any sensory feedback. To examine whether mice
learned to reposition their whiskers when the virtual target
location changed, we varied target positions back and
forth during single sessions (Fig. 5A). Each target position
was used until mice had made 6–12 attempts to locate
the target. Plots of whisker positions during individual
trials showed that mice learned to position their whiskers
to a virtual target (Fig. 5B).

To examine the strategy that mice employed in search
of the target, each trial was split post hoc into three
phases of behavior: (1) the “Wait” epoch before mice
started to move whiskers (0.5–1.5 s before reward); (2) the
“Hit” epoch in which mice move their whiskers to the
target area (0.5 s before reward); and (3) the “Lick” epoch
(0–1 s after reward delivery), in which mice licked a lick
tube to obtain a reward. As the target position moved (Fig.
5A–D, dotted lines), the distribution of whisker positions
also moved toward the target (Fig. 5B). As the target

continued
in phase differences across the 1- to 30-Hz frequency range. Histograms from four sessions (two sessions each for two animals) were
averaged. The black point and the gray error bars indicate the grand average and SDs, 20.0 � 27.3°.

Methods/New Tools 10 of 18

November/December 2019, 6(6) ENEURO.0147-19.2019 eNeuro.org



locations became more difficult, i.e., required larger pro-
tractions, the starting position during the Wait phase did
not shift when the target position shifted (Fig. 5B, right
most panels). But in these trials, when the animal moved
its whiskers, the position of the whisker during the Hit
phase shifted toward the target position. Using these
traces of whisker position, we plotted single trial histo-
grams in the trial-based phase of behavior (Fig. 5C). We
also plotted the average of whisker position for trials that
had the same target location (Fig. 5D). The plots show
that, especially in the Hit phase, distribution of whisker
positions shifts toward the target location. Although there
is a large distribution of whisker positions during each
behavioral phase, i.e., mice move their whiskers back and

forth through the same spatial location, our results indi-
cate that mice adapted their behavior to target position
and move their whiskers to target locations, especially
during the Wait and Hit phases.

To assess whether mice change the set point of whisker
position, i.e., hold their whiskers at or near the target
location, or make large amplitude movements of their
whiskers, as target positions change, we computed upper
and lower bounds (an envelope) of whisker motion during
each trial (Fig. 6A). The lower bound of the envelope was
defined as the set point of the C1 whisker and the differ-
ence between the upper and lower bound of the envelopes
was defined as the whisking amplitude. The analysis re-
vealed that the set point position and target position were

Figure 3. Real-time, low-latency triggers generated by whisker position. A, Schematic of the behavioral experiment. Whisking
behavior of awake, freely-whisking head-fixed animals was recorded using the DVS camera. After processing on the host computer,
TTL pulses were generated based on whisker position. These pulses were injected back into the auxiliary TTL port of the DVS camera
(magenta), which in turn reported pulses on the same time base as the motion-related events. B, Comparison of internal trigger (blue)
and actual trigger generation (magenta). Whisker positions were estimated in real time and are shown at the bottom (black, solid line).
An arbitrary position threshold (blue, dotted line) was set for the session, and at any location above this position a TTL-high level was
generated (region shaded blue). To estimate the round-trip latency, the timing of the output detected by the program (position
evaluation, blue rectangles) and the timing of the TTL pulses detected at the DVS camera (triggers, orange rectangles) were compared
post hoc. C, Timestamp-based estimation of round-trip latency, plotted as histograms. Latency distributions for ON events (the
whisker going into the target, TTL low to high; top panel) and OFF events (going out of the target, TTL high to low; bottom panel) are
examined separately. Most of the triggers were generated within 2.5 ms (mode of histograms, �1.6 ms). D, External recording-based
estimation of trigger latency. To generate exactly timed motion, two LEDs flashed in alternations at 4 Hz (left, bottom). This flickering
was captured by the DVS (left, top). Command signals to the LEDs (right, gray and black traces) and generated triggers from the DVS
(right, blue traces) were recorded. E, Comparison of timestamp- and external recording-based estimation of trigger latency. Because
of the latency to luminance event generation, timestamp-based estimation resulted in slightly shorter latencies (N � 502 ON events;
timestamp-based, 1.19 � 0.23 ms, external recording-based, 1.29 � 0.17 ms).

Methods/New Tools 11 of 18

November/December 2019, 6(6) ENEURO.0147-19.2019 eNeuro.org



correlated with each other during the Wait and Hit phases of
the task, whereas this tendency was less obvious during the
Lick phase (Fig. 6B). The whisking amplitude also tended to
increase as the target moved further away from the resting
set point of the whiskers (Fig. 6C).

To examine how the position of the whiskers changed
with the different target locations, we quantified the slope
of whisker position for 11 different behavioral sessions
from two animals. The set point of whisking was signifi-
cantly correlated with the target position and was signif-
icantly more correlated with target during the Hit phase
than in the Wait and Lick phases (Fig. 6D, left). There was
no significant effect of changing the target location be-
tween the Wait, Hit, and Lick phases on the amplitude of
whisking (Fig. 6D, right).

Finally, to examine the individual contributions of the
set point and whisking amplitude during the 3 phases of
behavior, we used a multivariate regression model (for a
detailed description of the model, see Materials and
Methods). The analysis revealed that for every trial, and
for each phase of the task, the variability in set points and
amplitudes explained some of the variance in the position
of the target. The variance explained by whisking param-
eters was significantly reduced when target position data
were independently shuffled (Fig. 6E). The R2 value for
Wait phase was 0.100 � 0.079; Hit phase was 0.160 �

0.090; and Lick phase was 0.086 � 0.076, whereas the R2

values for target-shuffled dataset were: Wait, 0.003 �
0.003; Hit, 0.011 � 0.018; and Lick, 0.009 � 0.012. These
results suggest that, while the correlations are not high,
possibly because each session has multiple and changing
target locations, because mice were not yet expert in the
task, or because mice change their whisking strategy as
the target location changes, mice do indeed learn to
position their whiskers to the target position.

There was a trial phase dependent component to these
effects. The R2 values were significantly larger for the hit
phase than for the Wait phase (�p � 0.038, Wilcoxon
signed-rank test with Holm–Bonferroni correction), imply-
ing that the whisker movements during the Hit phase
reflected the variability of target positions more than the
whisker positions during the Wait phase. But there were no
significant differences between the Hit and Lick phases (p �
0.082) or the Wait and Lick phases (p � 0.182).

To examine the behavioral strategy of the mice in
greater detail, we computed the fraction of target position
variance explained by variance of set points and variance
in whisking amplitude. The shuffled set-point position R2

value was subtracted from the actual R2 value, to gener-
ate the fraction of target position variance explained by
set points during the Wait phase (0.077 � 0.080), the Hit
phase (0.118 � 0.095), and the Lick phase (0.052 �
0.073). Following a similar manipulation for the whisking
amplitude, the fraction of target position variance ex-
plained by variance in the whisking amplitude was 0.015
� 0.017 in the Wait phase, 0.033 � 0.035 in the Hit phase,
and 0.037 � 0.058 in the Lick phase.

In both the Wait and the Hit phases the set points ex-
plained more of the target position variability, than the
whisking amplitude did (Fig. 6F, black vs gray plots; Wait, �p
� 0.016; Hit, �p � 0.041, Wilcoxon signed-rank test). There
was no significant difference in the variance explained by the
two parameters for the Lick phase (p � 0.182).

Additionally, the set point during the Hit phase ex-
plained a significantly greater portion of the variance than
it did in the Wait or Lick phases (Fig. 6F, black plots, Hit vs
Wait, �p � 0.033; Hit vs Lick, �p � 0.013, Wilcoxon
signed-rank test with Holm–Bonferroni correction). This
observation was consistent with the plot of the whisker
position slopes in the different trial phases (Fig. 6D, left).
There was no similar significant effect for the amplitude of
whisking (Fig. 6F, gray plots; Wait vs Hit, p � 0.547; Hit vs
Lick, p � 0.722; Wait vs Lick, p � 0.572, Wilcoxon
signed-rank test with Holm–Bonferroni correction). Taken
together, these results indicate that mice learn to position
their whiskers to the target, and they primarily adjust the
set-points in the Wait and the Hit phases.

Discussion
Here, we have established real-time tracking of whisker

position that can be used to generate feedback at low
latency, i.e., within 2 ms. In doing so, we have created a
virtual feedback environment, one in which the movement
of whiskers to particular locations in space elicits reward.
Mice respond to changes in the invisible target-locations
by changing positions of their whiskers. In principle, whis-

Movie 1. Real-time tracking of whisker positions of a freely
whisking mouse. The setup is as described in Figure 2. During
the �3-min session, the animal was head-fixed and allowed to
whisk freely under a high-speed (270 FPS) and a neuromorphic
(DVS) cameras. The crosses indicate the estimate of whisker
position, the dotted line indicates the virtual target position.
Changes in colors of signs from white to magenta shows the TTL
signal generated from the FastEvent system, as it was fed back
to the DVS camera (i.e., the timing of real-time feedback). Infor-
mation from the DVS camera was aligned and then down sam-
pled to annotate the high-speed video. A 5-s period was used to
generate the video. [View online]

Methods/New Tools 12 of 18

November/December 2019, 6(6) ENEURO.0147-19.2019 eNeuro.org

https://doi.org/10.1523/ENEURO.0147-19.2019.video.1


Figure 4. Mice associate sensory feedback with whisking. A, Schematic of the setup. The mouse was head-fixed with one of its whiskers
being dabbed with UV paint. A buzzer (brown) was placed around the setup, and a 568-nm LED (green) was set in the animal’s visual field.
The water spout (gray) was positioned to deliver water reward and to monitor the animal’s lick behavior. A virtual target region (magenta)
was placed around the sweeping region of the painted whisker. The position of the virtual target was adjusted during individual sessions
using the FastEvent system. B, Behavioral task. The task is a multisensory association task, where the animal waits until it receives both
auditory (brown) and visual (green) cues at the same time. The animal reports its sensation by a lick on the spout, which triggers reward
delivery (2- to 5-�l water). C, Passive paradigm. In the passive paradigm, both auditory and visual cues were controlled by the task
controller. In this paradigm, whisk events (trigger, magenta), generated when whisking behavior reached the target position, were monitored
and recorded, but were not reported back to the animal. Sensory cues, trigger events and licks are shown in the raster display above the
trace of whisker position. D, Active paradigm. In the active paradigm, the visual cue is generated by feedback of whisk events (trigger) when
the painted whisker goes into the virtual target region. The auditory cue is controlled by the task controller. Whisker positions in C, D across
sessions and trials were aligned by their base whisker position (the median position of the whisker during the initial 30 s of each session
without engagement to any behavioral tasks). E, Profiles of threshold crossing (whisk) events based on whisker-position. Events that
triggered an output event during successful trials are selected and trial-wise distributions of frequency of whisk events during the
auditory-cued period (left) and the latency to the initial whisk events from the onset of the auditory cue (right) were plotted as cumulative
histograms. For calculation of frequency, we first performed post hoc debouncing procedures so that whisk events had an interval of at least
20 ms. Only trials with more than two whisk events were used for this analysis. The average interevent intervals were inverted to compute
the event frequency. Compared to those in the passive paradigm (black), trials in the active paradigm (blue) were found to have significantly
more frequent threshold crossing events (p � 1.32 � 10	26, KS test; N � 236 passive vs 646 active trials from six to seven sessions each
for two animals), with a lower latency to the auditory cue onset (p � 2.81 � 10	74, KS test; N � 337 passive vs 1479 active trials from six
to seven sessions each for two animals). F, Latency of lick response from the onset of the visual cue during the auditory-cued period of
successful trials. Cumulative histograms were generated for the active (blue) and the passive (black) paradigms. The latency was
significantly smaller for trials in the active paradigm than those in the passive paradigm (p � 8.84 � 10	23, KS test; N � 337 passive vs
1479 active trials from six to seven sessions each for two animals).

Methods/New Tools 13 of 18

November/December 2019, 6(6) ENEURO.0147-19.2019 eNeuro.org



ker movement or movement of any part of the body, to
any and all points in space around the animal, can be
used to rotate real or virtual platforms and to deliver
optogenetic stimuli to the brain.

Comparison to existing real-time approaches
Creating a virtual feedback space around the animal

requires fast and flexible behavioral tracking and feed-
back from the movement sequences. One state of the art

A

B

C

D

Figure 5. Behavioral responses to changing target positions. A, Psychometric responses to changing target positions. The
distribution of whisker positions in the initial 30-s period of the session is plotted as a histogram (gray). The distribution is from a period
during the spontaneous whisking epoch, when there was no task. The success rates for mice positioning their whiskers in the course
of the Active task, that required mice to position their whiskers to target locations, are plotted as lines (black in the foreground). Note
that the virtual target regions were changed randomly after every 6–12 trials. The same target regions could appear multiple times
intermittently. The x-axis for the black lines, the plot of success rates, corresponds to the target position. The dotted lines represent
the target positions used in B–D, with the number on the line indicating the corresponding target position. B, The third, fourth, and
sixth successful trials of whisking behavior when the target position was varied during a single session are plotted here. C,
Distribution of whisker positions during different behavioral phases of each trial. A histogram is generated for each represen-
tative trial shown in B. The three behavioral phases include those before the animal whisks to the target (Wait), in approach to
the target (Hit), and after obtaining reward (Lick). D, Histograms of whisker distributions averaged across trials throughout the
single session. The mode of the distributions of whisker position as the animal approached the target (Hit) correlated with the
virtual target positions.

Methods/New Tools 14 of 18

November/December 2019, 6(6) ENEURO.0147-19.2019 eNeuro.org



strategy for tracking behavior is to use DeepLabCut (Ma-
this et al., 2018). With some training, the algorithm can be
used to track the movement of any part of the body, but
to date the real-time latency for tracking behavior with

DeepLabCut ranges around 90 ms, including acquisition
latency (Forys et al., 2018), or 50 ms without accounting
for the time necessary for acquiring a video frame (Štih
et al., 2019). Another state-of-the-art approach is to use

A

B C

D E F

Figure 6. Strategy of whisker positioning with respect to changing target positions. A, Computation of upper and lower bounds of
whisker positions during each successful trial. Lower and upper bounds of high-speed-tracked whisker positions were computed
using a 100-ms radius sliding window. B, Linear regression of the upper and lower bound related to changes in target position. Each
dot corresponds to a target position and is the average value of lower or upper bounds during each of the behavioral phases. There
was a shift in the envelope of whisker positions as the target position moved further away. C, Linear regression of whisking amplitude
with respect to changing target positions. Data are from the same session as in B and are plotted similarly. Whisking amplitude was
computed as the difference between lower and upper bounds. D, Slopes of linear regression of set points and whisking amplitudes
during different behavioral epochs and phases. Data are from 11 behavioral sessions in two animals. A Mann–Whitney U test was
performed to examine whether the set of slopes for each trial phase were significantly larger than zero (symbols at the bottom; ���p
� 0.001, ��p � 0.01, �p � 0.05). Wilcoxon signed-rank test with Holm–Bonferroni correction was used to compare values between
pairs of different trial phases (symbols at the top; �p � 0.05, NS, p � 0.05). E, Multivariate linear regression analysis. The variance
of the actual whisker positions (black) explained the variability of target positions more effectively than the variance of the shuffled
target positions (gray; symbols at the bottom; ��p � 0.01, Wilcoxon signed-rank test). The variance in Hit phase explained a
significantly larger portion of the variability in target positions than during the Wait phase (symbols at the top; �p � 0.05, NS, p � 0.05,
Wilcoxon signed-rank test with Holm–Bonferroni correction). F, Comparison of regression coefficients for set points (black) and
amplitudes (gray). Variability of set points were found to explain target variability more than variability of amplitudes do, during the Wait
and Hit phases (symbols at the bottom; �p � 0.05, NS, p � 0.05, Wilcoxon signed-rank test). Variability of set points reflected target
variability more during the Hit phase than during the Wait or the Lick phases (black symbols at the top; �p � 0.05, Wilcoxon
signed-rank test with Holm–Bonferroni correction). There was a tendency for amplitude values to increase as the trial proceeded from
the Wait through the Hit to the Lick phases, but there was no significant difference between them (gray symbols at the top; NS, p �
0.05, Wilcoxon signed-rank test with Holm–Bonferroni correction). Refer to the main text for the exact R2 and p values.

Methods/New Tools 15 of 18

November/December 2019, 6(6) ENEURO.0147-19.2019 eNeuro.org



FPGAs to compute object positions frame-by-frame, but
these methods are computationally costly and so far have
not been deployed in real time (Guo et al., 2015).

A common alternative to the marker-less approaches is
to use markers. When markers are applied to the body,
individual parts of body can be tracked with both tempo-
ral and spatial precision. Markers have been used in a
variety of settings including in cinematics, sports medi-
cine, and robotics (Marey, 1883; Winter et al., 1972; Jarret
et al., 1976) and have been deployed in real-time appli-
cations (Michael et al., 2010). Motion tracking with mark-
ers consists of affixing a light-reflective or light-emitting
spherical marker on a part of the body and estimating the
location of the marker in 3D, at submillimeter spatial
accuracy (Cappozzo et al., 2005). Spatial and temporal
estimation based on conventional or depth-sensing vid-
eography can be rapid, with fast tracking speeds and
latencies as short as 1.5 ms (Muro-de-la-Herran et al.,
2014). Alternatively, when wearable sensors are used as
active markers, e.g., accelerometers and magnetic sen-
sors, they can have an update rate of �1 kHz (Sabatini,
2011).

These marker-based methods have also been used in
animals, including mice (Bélanger et al., 1996; Leblond
et al., 2003; Abbas and Masip Rodo, 2019). Markers have
been used to track mouse whiskers off-line in 3D using
multiple high-speed cameras (Snigdha et al., 2011), or to
track mouse reaching behavior in real time at 10-ms
latency (Becker and Person, 2018). Because reflective
markers are often too large to be affixed onto multiple
body parts of small animals, methods that employ paint-
ing or dying have also been developed for off-line tracking
of rat whisking (Rigosa et al., 2017) or real-time tracking of
fruit fly locomotion at 80 Hz (Kain et al., 2013). One
inexpensive, easy to use paint-based real-time method is
the use of color tracking with a cheap Pixy camera that
works at a temporal resolution of �30 ms (Nashaat et al.,
2017).

Yet another approach for fast feedback is to use CCD
arrays (Bermejo et al., 1998) or photodiodes receiving
infrared laser beam positioned at single predetermined
points in space (O’Connor et al., 2013) for tracking move-
ment. These sensors detect events almost as rapidly as
they occur, but the approaches are less flexible than
those described above. In addition, in the case of CCD
arrays especially for the slenderer mouse whiskers, a light
weight marker has to be affixed to whiskers to enhance
their detectability.

In contrast to these other approaches, the neuromor-
phic camera-based FastEvent system achieves fidelity of
tracking, comparable to that achieved with offline, high-
speed camera-based tracking, and it generates feedback
rapidly within 2 ms. Currently, we use inexpensive Arduino
systems to control the input and output, but the feed-
back time may be reduced even further by changing the
input output control of the driver boards. Another impor-
tant advantage of the FastEvent system is its capability of
online configuration. The graphical functionality of the
jAER code makes it possible to set and reset the ROI and

the target region online while the animal is performing the
task.

Algorithmic considerations
Our FastEvent system achieved the real-time low-

latency feedback principally because of the following two
factors. The first factor is the design of the DVS neuro-
morphic camera. Its sensor units work on the principle of
the retina as luminance change detectors, and it can
transmit information about motion in the field of view in a
compressed, frameless representation. The use of event-
based neuromorphic cameras such as DVS cameras thus
helps increase the transmission and computation effi-
ciency. The second reason for the low latency is based on
simple assumptions that we make in tracking (1) there is
only one object to track in the field of view, and that (2) the
tracked object appears consistently in the field of view,
even if its shape and size change in the course of imaging.
These assumptions led us to implement a center-of-mass
approach.

While our algorithm is simple enough to run within tens
of microseconds on a standard PC, it is not suitable for
tracking the pose of an animal, or tracking the movement
of multiple body parts simultaneously (Mathis et al., 2018),
or tracking the curvature of a whisker at a point of contact
(Huet et al., 2015). Some of these limitations of our system
can potentially be overcome by implementing additional
more complex real-time computations. Many machine
vision studies using DVS cameras report that it is possible
to rapidly extract different image features from the field of
view (Conradt et al., 2009; Grompone von Gioi et al.,
2012; Lagorce et al., 2015; Vasco et al., 2016; Mueggler
et al., 2017; Everding and Conradt, 2018). But as the
complexity of computations increases, the time taken to
track in real-time increases, and it may therefore become
necessary to pre-compute the computationally expensive
calculations (Lagorce et al., 2015).

Note additionally, that in our experiments with the
plucked whisker we achieved submillimeter accuracy. But
in experiments with awake animals, our accuracy for lo-
cating a whisker was on the order of a millimeter. One
possible explanation for this difference in performance is
that in the awake behaving animal, there is interference,
there is movement of other, from the non-labeled whis-
kers. This type of contamination can be limited by (1)
removing the source of potential contamination, e.g., by
trimming other whiskers, (2) enhancing the luminance of
the object of interest, e.g., by using the UV paint (Nashaat
et al., 2017), as well as (3) selecting the ROI to track
objects. Alternatively, imposing some spatial constraints
on the update of tracked positions in MeanTracker could
be used to distinguish the object of interest from the
irrelevant objects.

The image-processing approach for providing a feed-
back based on object positions may at first seem to be an
overkill, compared with more conventional approaches
such as the use of photodiodes (Bermejo et al., 1996,
1998; O’Connor et al., 2013). But the FastEvent system
provides the experimenter with more freedom and flexi-

Methods/New Tools 16 of 18

November/December 2019, 6(6) ENEURO.0147-19.2019 eNeuro.org



bility in the experimental design. For example, with this
approach, it is possible to reset the ROI for object track-
ing, while also resetting the virtual target regions during a
behavioral session. This feature allows more variation in
the experimental design, i.e., precise rules for rewarding
mice or for optogenetic stimulation. The pixel array-based
design of the neuromorphic camera makes it possible to
generate a dense map of the animal’s behavioral strategy
by changing the virtual target position pixel by pixel while
monitoring the neural and behavioral activity. Lastly, the
position of the virtual target can be controlled dynamically
in the course of an experiment, in accordance with the
animal’s behavioral state. The FastEvent system thus pro-
vides an efficient method for fine-tuning the experimental
design easily, rapidly, and flexibly.

Real-time tracking approaches like the one we have
described here can be used to generate patterned stim-
ulation of the brain, or to move real and virtual environ-
ments around animals. We expect this tool set to be
deployed and used to study the rapid reconfiguring of
activity in neural circuits as animals adapt to a dynami-
cally changing environment.

References
Abbas W, Masip Rodo D (2019) Computer methods for automatic

locomotion and gesture tracking in mice and small animals for
neuroscience applications: a survey. Sensors 19:3274.

Becker MI, Person AL (2018) Graded and bidirectional control of
real-time reach kinematics by the cerebellum. bioRxiv 330555.

Bélanger M, Drew T, Provencher J, Rossignol S (1996) A comparison
of treadmill locomotion in adult cats before and after spinal tran-
section. J Neurophysiol 76:471–491.

Bermejo R, Harvey M, Gao P, Zeigler HP (1996) Conditioned whisk-
ing in the rat. Somatosens Mot Res 13:225–233.

Bermejo R, Houben D, Zeigler HP (1998) Optoelectronic monitoring
of individual whisker movements in rats. J Neurosci Methods
83:89–96.

Brandli C, Berner R, Yang M, Liu SC, Delbruck T (2014) A 240 � 180
130 dB 3 �s latency global shutter spatiotemporal vision sensor.
IEEE J Solid-State Circuits 49:2333–2341.

Cappozzo A, Della Croce U, Leardini A, Chiari L (2005) Human
movement analysis using stereophotogrammetry. Gait Posture
21:186–196.

Conradt J, Cook M, Berner R, Lichtsteiner P, Douglas RJ, Delbruck
T (2009) A pencil balancing robot using a pair of AER dynamic
vision sensors. 2009 IEEE International Symposium on Circuits
and Systems, pp 781–784. IEEE.

Delbruck T (2008) Frame-free dynamic digital vision. Proceedings of
the International Symposium on Secure-Life Electronics, Ad-
vanced Electronics for Quality Life and Society, 6–7 March, pp
21–26.

Dombeck DA, Khabbaz AN, Collman F, Adelman TL, Tank DW (2007)
Imaging large-scale neural activity with cellular resolution in
awake, mobile mice. Neuron 56:43–57.

Dominiak SE, Nashaat MA, Sehara K, Oraby H, Larkum ME, Sachdev
RNS (2019) Whisking signals motor preparation and the behavioral
state of mice. bioRxiv 568030.

Evarts EV (1966) Pyramidal tract activity associated with a condi-
tioned hand movement in the monkey. J Neurophysiol 29:1011–
1027.

Evarts EV (1968) Relation of pyramidal tract activity to force exerted
during voluntary movement. J Neurophysiol 31:14–27.

Everding L, Conradt J (2018) Low-latency line tracking using event-
based dynamic vision sensors. Front Neurorobot 12:4.

Forys B, Xiao D, Gupta P, Boyd JD, Murphy TH (2018) Real-time
markerless video tracking of body parts in mice using deep neural
networks. bioRxiv 482349.

Grompone von Gioi R, Jakubowicz J, Morel J-M, Randall G (2012)
LSD: a line segment detector. Image Process Line 2:35–55.

Guo JZ, Graves AR, Guo WW, Zheng J, Lee A, Rodríguez-González
J, Li N, Macklin JJ, Phillips JW, Mensh BD, Branson K, Hantman
AW (2015) Cortex commands the performance of skilled move-
ment. Elife 4:e10774.

Harvey CD, Collman F, Dombeck DA, Tank DW (2009) Intracellular
dynamics of hippocampal place cells during virtual navigation.
Nature 461:941–946.

Hölscher C, Schnee A, Dahmen H, Setia L, Mallot HA (2005) Rats are
able to navigate in virtual environments. J Exp Biol 208:561–569.

Huet LA, Schroeder CL, Hartmann MJZ (2015) Tactile signals trans-
mitted by the vibrissa during active whisking behavior. J Neuro-
physiol 113:3511–3518.

Hunter JD (2007) Matplotlib: a 2D graphics environment. Comput Sci
Eng 9:90–95.

Jarret MO, Andrews BJ, Paul JP (1976) A television/computer sys-
tem for the analysis of human locomotion. Proceedings of the IERE
Conference on Applications of Electronics in Medicine.

Jones E, Oliphant T, Peterson P, Al E (2001) SciPy: open source
scientific tools for Python. Available from http://www.scipy.org.

Kain J, Stokes C, Gaudry Q, Song X, Foley J, Wilson R, de Bivort B
(2013) Leg-tracking and automated behavioural classification in
Drosophila. Nat Commun 4:1910.

Keller GB, Bonhoeffer T, Hübener M (2012) Sensorimotor mismatch
signals in primary visual cortex of the behaving mouse. Neuron
74:809–815.

Lagorce X, Meyer C, Ieng S-H, Filliat D, Benosman R (2015) Asyn-
chronous event-based multikernel algorithm for high-speed visual
features tracking. IEEE Trans Neural Networks Learn Syst 26:
1710–1720.

Leblond H, L’Esperance M, Orsal D, Rossignol S (2003) Treadmill
locomotion in the intact and spinal mouse. J Neurosci 23:11411–
11419.

Lichtsteiner P, Posch C, Delbruck T (2008) A 128 � 128 120 dB 15
�s latency asynchronous temporal contrast vision sensor. IEEE J
Solid-State Circuits 43:566–576.

Marey EJ (1883) La station physiologique de Paris. La Nature 11:
275–279.

Mathis A, Mamidanna P, Cury KM, Abe T, Murthy VN, Mathis MW,
Bethge M (2018) DeepLabCut: markerless pose estimation of
user-defined body parts with deep learning. Nat Neurosci 21:
1281–1289.

McKinney W (2010) Data structures for statistical computing in Py-
thon. In: Proceedings of the 9th Python Science Conference, van
der Walt, S. and Millman, J. (eds.), pp. 51–56.

Michael N, Mellinger D, Lindsey Q, Kumar V (2010) The GRASP
multiple micro-UAV testbed. IEEE Robot Autom Mag 17:56–65.

Mueggler E, Bartolozzi C, Scaramuzza D (2017) Fast event-based
corner detection. 2017 Proceedings of the British Machine Vision
Conference. British Machine Vision Association.

Muro-de-la-Herran A, Garcia-Zapirain B, Mendez-Zorrilla A (2014)
Gait analysis methods: an overview of wearable and non-wearable
systems, highlighting clinical applications. Sensors (Basel) 14:
3362–3394.

Musall S, Kaufman MT, Gluf S, Churchland AK (2018) Movement-
related activity dominates cortex during sensory-guided decision
making. bioRxiv 308288.

Nashaat MA, Oraby H, Peña LB, Dominiak S, Larkum ME, Sachdev
RNS (2017) Pixying behavior: a versatile real-time and post hoc
automated optical tracking method for freely moving and head
fixed animals. eNeuro 4. ENEURO.0245-16.2017.

O’Connor DH, Clack NG, Huber D, Komiyama T, Myers EW, Svo-
boda K (2010) Vibrissa-based object localization in head-fixed
mice. J Neurosci 30:1947–1967.

Methods/New Tools 17 of 18

November/December 2019, 6(6) ENEURO.0147-19.2019 eNeuro.org

http://www.scipy.org


O’Connor DH, Hires SA, Guo ZV, Li N, Yu J, Sun QQ, Huber D,
Svoboda K (2013) Neural coding during active somatosensation
revealed using illusory touch. Nat Neurosci 16:958–965.

Perez F, Granger BE (2007) IPython: a system for interactive scien-
tific computing. Comput Sci Eng 9:21–29.

Rigosa J, Lucantonio A, Noselli G, Fassihi A, Zorzin E, Manzino F,
Pulecchi F, Diamond ME (2017) Dye-enhanced visualization of rat
whiskers for behavioral studies. Elife 6.

Roy S, Bryant JL, Cao Y, Heck DH (2011) High-precision, three-
dimensional tracking of mouse whisker movements with optical
motion capture technology. Front Behav Neurosci 5:27.

Sabatini AM (2011) Estimating three-dimensional orientation of hu-
man body parts by inertial/magnetic sensing. Sensors 11:1489–
1525.

Sachdev RN, Sellien H, Ebner F (2001) Temporal organization of
multi-whisker contact in rats. Somatosens Mot Res 18:91–100.

Sofroniew NJ, Cohen JD, Lee AK, Svoboda K (2014) Natural whisker-
guided behavior by head-fixed mice in tactile virtual reality. J
Neurosci 34:9537–9550.

Štih V, Petrucco L, Kist AM, Portugues R (2019) Stytra: an open-
source, integrated system for stimulation, tracking and closed-
loop behavioral experiments. PLoS Comput Biol 15:e1006699.

Stringer C, Pachitariu M, Steinmetz N, Reddy CB, Carandini M,
Harris KD (2019) Spontaneous behaviors drive multidimensional,
brainwide activity. Science 364:255.

Stüttgen MC, Schwarz C (2010) Integration of vibrotactile signals for
whisker-related perception in rats is governed by short time con-
stants: comparison of neurometric and psychometric detection
performance. J Neurosci 30:2060–2069.

van der Walt S, Colbert SC, Varoquaux G (2011) The NumPy array: a
structure for efficient numerical computation. Comput Sci Eng
13:22–30.

van Rossum G (1995) Python tutorial. Amsterdam: CWI.
Vasco V, Glover A, Bartolozzi C (2016) Fast event-based Harris

corner detection exploiting the advantages of event-driven cam-
eras. 2016 IEEE/RSJ International Conference on Intelligent Ro-
bots and Systems (IROS), pp 4144–4149. IEEE.

Voigts J, Harnett MT (2018) An animal-actuated rotational head-
fixation system for 2-photon imaging during 2-d navigation.
bioRxiv 262543.

Winter DA, Greenlaw RK, Hobson DA (1972) Television-computer
analysis of kinematics of human gait. Comput Biomed Res
5:498–504.

Methods/New Tools 18 of 18

November/December 2019, 6(6) ENEURO.0147-19.2019 eNeuro.org


	Fast, Flexible Closed-Loop Feedback: Tracking Movement in “Real-Millisecond-Time”< ...
	Introduction
	Materials and Methods
	FastEvent system for tracking whiskers
	The DVS camera
	Data representation on the DVS camera
	User interface software
	Virtual target-based position evaluation
	Generating feedback
	Hardware for detecting the timing of the triggered output
	Set-up specifications

	Experiments using a plucked whisker
	Preparation
	Data acquisition
	Analysis

	LED-based experiments for estimating the trigger latency
	Animal preparation
	Animals
	Surgery
	Whisker painting

	System profiling experiments
	Sensory feedback experiments
	Hardware

	Analytical procedures
	Experimental design and statistical analysis
	Software
	Alignment of DVS and high-speed camera data
	Behavioral events
	Timestamp-based estimation of trigger latency
	Analysis of whisker dynamics
	Code availability


	Results
	Implementation of neuromorphic camera-based real-time tracking
	Generating feedback in real time
	Mice can associate the real–time feedback with whisker positions

	Discussion
	Comparison to existing real-time approaches
	Algorithmic considerations


	References

