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Abstract

The challenging problem of time synchronization in wireless sensor networks is considered in this paper, where a new

distributed protocol is proposed for both local and multi-hop synchronization. The receiver-to-receiver paradigm is used, which has

the advantage of reducing the time-critical-path and thus improving the accuracy compared to common sender-to-receiver protocols.

The protocol is fully distributed and does not rely on any fixed reference. The role of the reference is divided amongst all nodes,

while timestamp exchange is integrated with synchronization signals (beacons). This enables fast acquisition of timestamps that

are used as samples to estimate relative synchronization parameters. An appropriate model is used to derive maximum likelihood

estimators (MLE) and the Cramer-Rao lower bounds (CRLB) for both the offset-only, and the joint offset/skew estimation. The

model permits to directly estimating relative parameters without using or referring to a reference’ clock. The proposed protocol is

extended to multi-hop environment, where local synchronization is performed proactively and the resulted estimates are transferred

to the intermediate/end-point nodes on-demand, i.e. as soon as a multi-hop communication that needs synchronization is initiated.

On-demand synchronization is targeted for multi-hop synchronization instead of the always-on global synchronization model,

which avoids periodic and continuous propagation of synchronization signals beyond a single-hop. Extension of local MLE

estimators is proposed to derive relative multi-hop estimators. The protocol is compared by simulation to some state-of-the-art

protocols, and results show much faster convergence of the proposed protocol. The difference has been on the order of more than

twice compared to CS-MNS, more than ten times compared to RBS, and more than twenty times compared to TPSN. Results also

show scalability of the proposed protocol concerning the multi-hop synchronization. The error does not exceed few microseconds

for as much as 10 hops in R4Syn, while in CS-MNS, and TPSN, it reaches few tens of microseconds. Implementation and tests

of the protocol on real sensor motes confirm microsecond level precision even in multi-hop scenarios, and high stability (long

lifetime) of the skew/offset model.
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I. INTRODUCTION

Time synchronization has always been one of the fundamental problems in distributed systems. The lack of a common

clock and a shared memory makes message-exchange-based algorithms the only way to ensure synchronization. However,

delays of exchanged messages are not constant, which raises the need of appropriate and accurate estimators. The problem

is more complex in wireless networks, where communication may be prone to high delay variability. In wireless sensor

networks (WSN), node limitations (computation, memory, energy) add more constraints to the problem, while fine-grained

synchronization remains essential for many applications and protocols in such networks; e.g., data fusion/aggregation, TDMA

scheduling, duty- cycle coordination, realtime monitoring/actuation, etc. Several synchronization protocols for WSN have been

proposed in the literature; they can be classified in different ways [1], e.g. single-hop vs. multi-hop, clock correction vs. relative

synchronization, sender-to-receiver vs. receiver-to-receiver, etc. We consider in this paper relative on-demand synchronization,

instead of the global always-on synchronization where nodes are continuously kept tuned to a reference clock (wall-clock

model). The latter requires high overhead and periodic propagation of synchronization messages through the network [2]. This

is in addition to the problem of the single-point of failure (reference).

The receiver-to-receiver approach applied to WSN by the Reference Broadcast Synchronization (RBS) protocol [3] exploits

the broadcast property of the wireless communication medium; The broadcast medium allows receivers located within listening

distance from the same sender to receive a broadcast message at approximately the same time, with little variability due to

the reception timestamping at the receivers. RBS uses a sequence of synchronization messages (beacons) from a fixed sender

(reference), which allows its neighboring nodes receiving the beacons to estimate relative synchronization parameters that are

used for time conversion. Detailed description of RBS will be given in the next section. It is important here to mention that

RBS exploits the concept of time-critical path, which is defined as the path of a message that contributes to non-deterministic

errors in a protocol [2].

With any sender-to-receiver protocol, the time involved in sending a message from a sender to a receiver is the result of

the following four factors that can vary non-deterministically: i) Send time, which is the time spent by the sender for message

construction along with the time spent to transmit the message from the sender’s host to the network interface. ii) Access

time; the time spent for medium access at the MAC layer. iii) Propagation time, as the time for the message to reach the

receiver once it has left the sender’s radio. iv) Receive time, which is the time spent by the receiver to process the message.

RBS removes the send time and the access time from the critical path [1, P. 294], which represent the two largest sources of

non-determinism. This provides a high degree of synchronization accuracy. Still, timestamping may witness some variability

due to the reception delays at the receivers. Appropriate estimators are then essential. RBS can also be extended to multi-hop

networks by simply applying a series of conversion through the active route. The major drawback of RBS is the need of/

dependency on a fixed reference. This centralization of the reference might be inappropriate for some self-organized WSN

applications. RBS also requires important steps (time) to acquire samples, as each timestamping must be separately exchanged

between synchronizing nodes. To tackle these issues, a new synchronization protocol for WSN is proposed in this paper. The
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protocol takes advantage of the receiver-to-receiver approach, while being totally decentralized. It distributes the role of the

reference amongst all nodes and integrates beaconing and timestamp exchange in a single step. Local synchronization between

direct neighbors is performed proactively, but the multi-hop extension operates on-demand according to the application need.

This is motivated by the gradient property considering that the local synchronization (between neighboring nodes) to be more

important than global one for most applications [4].

Models that are appropriate to relative receiver-to-receiver synchronization are defined. These models permit to derive max-

imum likelihood estimators (MLE) and the corresponding Cramer-Rao lower bounds (CRLB). The estimators are numerically

analyzed and compared with the appropriate CRLB, and the protocol is compared with existing solutions by simulation. It is

also implemented on real sensor motes and empirically evaluated in single-hop, as well as multi-hop scenarios.

The rest of the paper is organized as follows. The next section introduces background concepts and the network model.

The solution description is provided in Section III, and the simulation study in Section IV. Implementation of the protocol on

sensor motes and empirical results are described in Section V. Section VI summarizes the related work, and finally, Section

VII draws conclusions.

II. BACKGROUND AND NETWORK MODEL

Like any computing device, a sensor mote is equipped with a hardware oscillator that is used to implement the internal

clock. Let C(t) denotes the value of the internal clock at time t. The oscillator frequency determines the rate at which the

clock runs. The rate of an ideal clock, ∂C/∂t, would equal 1. However, such a clock is not available in practice, and all clocks

are subject to clock drift; i.e. oscillator frequency will vary unpredictably due to various physical effects. Despite clock drifting

over time, its value can be approximated using appropriate estimators. Two types of models can be used for the estimation; the

offset-only vs. joint offset/skew model. The former has the advantage of deriving simple and easy-to-implement estimators but

does not ensure long-term estimation, and thus beacons need to be exchanged at a high frequencies to assure good precision.

The second model provides long-term estimators and allow for low frequency beaconing once the estimators converge, which

is power-efficient. Nonetheless, calculation complexity of the estimators is relatively high compared to the first model. Both

models are considered in this paper.

A. Offset-only Model

For some node in the network, say ni, the local clock can be approximated by [3]:

Ci(t) = t+ θi, (1)

where θi is the absolute offset of node i’s clock 1.

Relative equation relating two nodes’ clocks, Ci and Cj , can be given by:

1absolute offset denotes the offset to realtime
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Cj(t) = Ci(t) + θni→nj
, (2)

where θni→nj represents the relative offset relating time at node, ni, to the corresponding one at node, nj .

The purpose of any relative synchronization protocol is to efficiently and accurately estimate these parameters that varies over

time. Relative synchronization enables nodes to run their local clocks independently and use the estimated values to convert

time whenever needed. This is conceptually different from clock update protocols, which define distributed mechanisms for

nodes to update their clocks and converge to common values. This update generally involve jump/freeze of the clock value,

which may affect correctness of local events’ timestamping. Relative synchronization does not suffer from such a problem.

Further, conversion to a reference (global) time is still possible with relative synchronization, provided that one of the nodes

executing the protocol uses/provides such a time. RBS uses relative synchronization and implements the receiver-to-receiver

synchronization. A sequence of synchronization messages (beacons) are periodically transmitted from a given and fixed sender–

termed reference– and intercepted by all synchronizing nodes. The nodes timestamp the arrival-time of each beacon using their

local clocks, then every pair of nodes exchange the recorded timestamps to construct samples. That is, if the ith beacon is

timestamped, ui, by node, n1, and vi, by node, n2, then the pair (ui, vi) forms a sample. These samples are used to estimate

the relative offset and skew between nodes n1 and n2.

As mentioned in Section I, RBS reduces the time-critical path compared to the send-to-receiver protocols by only considering

the instants at which a message reaches different receivers. This eliminates the send-time and access-time, and it provides a

high degree of synchronization accuracy [3], [1]. For this reason, the proposed protocol uses the RBS receiver-to-receiver

concept. The protocol also allows for multi-hop relative synchronization extension, where no synchronization signals are

exchanged beyond a single-hop, contrary to tree-based single reference protocols (e.g. FTSP [5]). Intermediate routers can

perform conversion in a hop-by-hop process using local estimate, as it will be illustrated later. However, RBS supposes the

existence of a fixed reference, which may be inappropriate for self-organized WSN. High latency is needed for nodes to acquire

samples due to the exchange of timestamps in separate steps. Moreover, the reference is left unsynchronized. All these issues

are tackled in this paper that proposes a fully-distributed solution, where all nodes have the same role and get synchronized

faster.

Let, dui, dvi, denote the reception delays for the ith samples, respectively ui and vi, i ∈ {1, ...,K}, where K is the number

of samples. Each of dui (respectively dvi) is composed of a fixed portion, say fdui (respectively fdvi), and a variable portion,

say Xui (respectively Xvi). The fixed portions are assumed to be equal and the variable portions to be Gaussian distributed

random variables (rv) with the same parameters, i.e., Xvi, Xui ∼ N (µ, σ2
0). Note that Gaussian distribution for the delays–

when packet transmission involve no queueing delay– has been empirically justified in [3]. It follows that dui−dvi = Xui−Xvi.

Let us denote Xui −Xvi by Xi; Application of E.q. 2 yields, ui = vi + θ +Xi. Therefore,

Xi = ui − vi − θ, (3)
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where θ denotes the relative offset. Xi is the difference between two Gaussian rv with the same parameters. It is thus a

zero mean Gaussian rv; i.e. Xi ∼ N (0, σ2), where σ2 = 2σ2
0 .

B. Joint Offset/Skew Model

The local clock of node, ni, can be approximated by [2],

Ci(t) = αit+ βi, (4)

where αi(t) is the absolute skew, and βi(t) is the absolute offset of node i’s clock. Relative equation relating two nodes’

clocks, Ci and Cj , is given by,

Cj(t) = αni→njCi(t) + βni→nj , (5)

where αni→nj and βni→nj represents the relative offset and skew, respectively, relating time at node, ni, to the corresponding

one at node, nj .

Application of E.q. 5, and by removing indices of α and β for simplification, we get, ui = αvi + β +Xi. Therefore,

Xi = ui − αvi − β, (6)

III. PROPOSED SOLUTION

A. Assumptions

The following assumptions are supposed:

• The network topology may be arbitrary, with the only requirement that the network density is high enough to make sure

there is at least one common neighbor for every couple of neighboring nodes.

• Nodes are neighbor-aware, i.e., every node is supposed to have a list of current neighbors that it can communicate with.

This can be achieved using some neighbor discovery/management protocol, such as [6].

• Relative synchronization is used, where every node has its own clock that runs independently from the others. The

synchronization is achieved by estimating parameters reflecting relative deviation with respect to one other, and no local-

clock update is needed.

• For multi-hop synchronization, on-demand synchronization is considered instead of the global always-on model. That is,

the aim is not to keep all the nodes tuned to a common global time (wall-clock model), but to provide reactive mechanisms

allowing nodes to mutually synchronize whenever needed (on-demand).

• A synchronous MAC protocol is used where nodes have common active periods; This is to facilitate broadcasting, which

is problematic in duty-cycled MAC protocols. However, it is not important which paradigms the MAC protocol uses

(contention, FDMA, TDMA, etc.), and the proposed protocol works with any of them.
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• Timestamping may be performed at any layer. The proposed protocol and estimators are not limited to a particular

timestamping layer. But low-layer timestamping implementation trivially provides higher accuracy compared to high-layer

tiemstamping.

B. Single-hop Synchronization

1) Description: Contrary to RBS, no anchor (reference) or super node is needed; all nodes are sensor motes that cooperatively

get synchronized. The solution is proposed at a high level of abstraction, independently of the underlying protocols. This enables

its implementation with any protocol stack, but there is ample room for optimization in real implementation through the use of

particular protocols and cross-layer design, such as by using/integrating MAC protocol’s messages/cycles. Despite continuous

beacon broadcasting (as it will be shown in the following), duty cycling is enabled. The nodes just need to send beacons

during active periods. The RBS reference role is equally divided amongst all participating nodes, while beacons and timestamp

exchange are merged in the same packets/steps.

The proposed protocol runs in cycles, where nodes sequentially broadcast enhanced beacons, i.e. beacons carrying timestamps.

IDs can be used to determine the order of the sequence. By knowing the IDs of its neighbors through the underlying neighbor

discovery protocol, every node sends its beacon upon getting the one from its predecessor. If a node does not report its

beacon during a predefined timeout, then the next one can implicitly use its slot. This ensures fault-tolerance, where the

protocol continues performing correctly despite node failure. A beacon carries timestamps that report local reception times of

previous beacons. For a neighborhood of N nodes, every beacon would carry N − 1 timestamps. Without loss of generality,

the beacon/timestamp exchange process for N = 4, and one cycle, is illustrated with the example of Fig. 1. Bi,j denotes the

jth beacon (beacon transmitted at the jth cycle) of node, ni, and tki,j refers to the reception timestamp at node, nk, of node

ni’s jth beacon. Every beacon piggybacks the previous 3 timestamps. For instance, B1,j includes t12,j−1, t
1
3,j−1, t

1
4,j−1, while

B4,j includes t41,j , t
4
2,j , t

4
3,j . These timestamps are then used by every node as samples to estimate relative synchronization

parameters. Note that timestamp piggybacking into the beacons is not represented in the figure, but for each beacon, the

reception timestamps at neighboring nodes are illustrated.

In what follows, synchronization between two arbitrary nodes, say, n1 and n2, is described, i.e., n2’s estimation of

synchronization parameters with regard to n1. The same process is to be applied for each pair of communicating nodes.

Let ui and vi, i ∈ {1, ...,K}, denote the ith beacon reception timestamp of nodes, n1 and n2, respectively, and, dui, dvi the

corresponding reception delays. Only beacons received by both nodes are used to construct samples, (ui, vi). The protocol

tolerates beacon loss that is common due to the lossy wireless channels. A beacon loss at some node engenders a miss of

one sample, which will be substituted by the next bacon received by the two sides. Refer to the previous example (Fig. 1)

and assume– to simplify the description– all packets are received. The samples are, t13,1 = u1, t14,1 = u2,..., t13,j = u2j−1,

t14,j = u2j , and t23,1 = v1, t24,1 = v2,..., t23,j = v2j−1, t24,j = v2j . Note that only timestamps of beacons received by the two

synchronizing nodes from common neighbors are used to form tuples (ui, vi), where timestamps of beacons not received from
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n1

n3

n4

B1,j

B2,j

B3,j

B4,j

t3,j t4,j

t2,j t4,jt3,j

t1,j t2,j t4,j

t1,j t2,j t3,j

jth Cycle

1 11

22 2
t3,j

3 3 3

444

Fig. 1. Example of beacon broadcast during one cycle

both nodes are not used e.g., B2,j and B1,j
2.

2) Estimators: In the offset-only model, the maximum likelihood estimator (MLE) is trivially the same as that of [3], which

is given by:

θ̂mle =

K∑
i=1

(ui − vi)

K
(7)

Few has been done for the joint offset/skew estimation in the receiver-to-receiver synchronization. The model of [7] is the

only one that considers MLE, but it completely deviates from the receiver-to-receiver concepts as it will be detailed in Section

VI. In the following, the MLE in the joint offset/skew model is derived.

Using E.q. 6, the likelihood function gathering K samples, L(α, β|X1, ...XK), is given by,

L(α, β|X1, ...XK) =

K∏
i=1

1√
2πσ2

e
−1

2σ2 (Xi)
2

= (
1√
2πσ2

)Ke

−1

2σ2

K∑
i=1

(ui − αvi − β)2

. (8)

Since

α̂mle, β̂mle = argmax(lnL(α, β|X1, ...XK)), (9)

α̂mle, β̂mle may be obtained by vanishing the partial derivatives of the likelihood function’s logarithm. That is, by resolving

the system of equations,

∂ lnL(α,β|X1,...XK)
∂α = 0, and ∂ lnL(α,β|X1,...XK)

∂β = 0.

The resulted estimators are:

2these beacons are actually used to form samples between other couples, i.e. (n1, n3) (n1, n4), (n3, n4), and (n2, n3), (n2, n4), (n3, n4) respectively
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α̂mle =

K∑
i=1

ui

K∑
i=1

vi −K
K∑
i=1

viui

(

K∑
i=1

vi)

2

−K

K∑
i=1

v2i

, (10)

β̂mle =
1
K (

K∑
i=1

ui − α̂mle

K∑
i=1

vi)

=
1

K
(

K∑
i=1

ui −

K∑
i=1

ui

K∑
i=1

vi −K
K∑
i=1

viui

(

K∑
i=1

vi)

2

−K

K∑
i=1

v2i

K∑
i=1

vi). (11)

Therefore, node n2 uses samples (ui, vi), and applies Eq. (10) (resp. Eq. (11)) to calculate MLE for the relative skew,

α, (respectively offset, β), or it applies Eq. (7) to calculate the relative offset (if the offset-only model is used). This

is without the need to estimate the unknown delays. That is, all the delay parameters used in the model are unknown;

µ, σ,Xui, Xvi, dui, dvi, fui, fvi, and there is no need to estimate them. Only samples (ui, vi) are empirically observed and

used for the estimation (by node n2), while the other parameters are vanished through the standard MLE method.

3) Lower-Bounds and Analysis: The CRLB (Cramer-Rao lower-bound) represents the theoretical lower-bound for any

unbiased estimator. In other words, it is the lower-bound for the variance of any unbiased estimator. In this section, the

CRLB is derived for both the offset-only and the joint offset/skew models.

Offset-only model: The CRLB is given by [8, p. 327].

V ar(θ̂) ≥ 1

I(Θ)
, (12)

where I(θ) is the Fisher information defined as:

I(Θ) = E[(
∂ lnL(x, θ)

∂θ
)2] = −E[(

∂2 lnL(x, θ)
∂θ2

)] (13)

and L(x, θ) denotes the likelihood function with K observations of x, i.e., L(θ|X1, ...XK). It is given by,

L(θ|X1, ...XK) =
K∏
i=1

1√
2πσ2

e
−1

2σ2 (Xi)
2

= (
1√
2πσ2

)Ke

−1

2σ2

K∑
i=1

(ui − vi − θ)2

. (14)

After calculating second derivative of the logarithm of the previous expression, the following has be obtained.

V ar(θ̂) ≥ σ2

K
, (15)
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Fig. 2. MSE of θ estimation vs. number of beacons

Joint offset/skew model: The CRLB can be derived from the inverse of the 2× 2 Fisher information vector, say I−1, using

the property, V ar(α̂) ≥ (I−1)1,1, V ar(β̂) ≥ (I−1)2,2. I is defined as [8, p. 343].

I =

 −∂2 lnL(α, β|Xi)

∂α2
−∂2 lnL(α, β|Xi)

∂α∂β

−∂2 lnL(α, β|Xi)

∂β∂α
−∂2 lnL(α, β|Xi)

∂β2

 . (16)

I−1 can thus be given by,

I−1 = 1
∂2 lnL(α,β|Xi)

∂α2
∂2 lnL(α,β|Xi)

∂β2 −(
∂2 lnL(α,β|Xi)

∂α∂β )2 −∂2 lnL(α,β|Xi)
∂β2

∂2 lnL(α,β|Xi)
∂α∂β

∂2 lnL(α,β|Xi)
∂β∂α −∂2 lnL(α,β|Xi)

∂α2

 . (17)

After calculating partial derivatives, the following bounds are obtained,

V ar(α̂) ≥ (I−1)1,1 =
Kσ2

K
K∑
i=1

v2i − (
K∑
i=1

vi)
2

, (18)

V ar(β̂) ≥ (I−1)2,2 =

σ2
K∑
i=1

v2i

K
K∑
i=1

v2i − (
K∑
i=1

vi)
2

(19)

A numerical analysis has been carried out to analyze the estimators and compare their mean square errors (MSE) with their

respective theoretical lower-bound (CRLB). µ and sigma has been fixed to 10−3sec, while the relative skew and offset have

been randomly sleeted in each run. The aim here is limited to analyzing the estimators in generic settings. Protocol simulation

and comparison with some state-of-the-art protocols in a network simulation is given later.

Fig. 2 shows simulation results for the offset-only model, while plots of Fig. 3 show the results in the joint offset/skew
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Fig. 3. MSE of α and β estimation vs. number of beacons

model. Each point of these plots is the average of 104 measurements. Even with 99% confidence interval, the error bars are

completely invisible. The figures illustrate how the proposed estimators’ MSE decrease and quickly converge of the parameters

to their respective CRLB as the number of beacons (K) increases.

4) Complexity and Discussion: By gathering beaconing and timestamp exchange, sample acquisition is performed faster

compared to RBS-based protocols, where timing information exchange between receivers are performed in different steps

posterior to beacon broadcast. No such steps are needed for the proposed protocol. In one cycle, the proposed protocol causes

transmissions of n beacons (one per node) and provides n− 2 samples for every pair of nodes, which makes n(n−1)
2 (n− 2)

in total. RBS provides one sample for each pair of nodes in a cycle, with n+ 1 transmissions (one beacon and n packets for

timestamp exchange) if timestamps are exchanged using broadcast communications. This totally results in n(n−1)
2 per cycle. In

other words, the proposed protocol needs O(n) transmissions (or one cycle) to provide O(n3) samples, whereas RBS would

need O(n2) transmissions to provide the same number of samples, i.e. n− 2 cycles.

The previous analysis supposes broadcast mode exchange for both protocols (a trivial optimization of RBS). If unicast

exchange is used like proposed in the original paper, O(n2) transmission is needed in every cycle to exchange timestamps

instead of O(n), [1], which results in O(n3) transmissions to provide the O(n3) samples. Fast acquisition of samples ensures

convergence of the estimators as demonstrated in Fig 3. This will be investigated in deep later via a comparative simulation

study. In addition to the low complexity for samples acquisition, the protocol allows to synchronize all the nodes, whereas

RBS does not synchronize the reference.

C. Multi-hop Extension

First, an extension of the model and the estimators is given for a multi-hop route, then the protocol extension is described.

Consider node, n1, synchronization to another remote node, nh, and assume the established route is (n1, n2, n3, ..., nh). MLEs

of local synchronization parameters on each hop (ni, ni+1)– where i ∈ {1, ..., h − 1}– are to be calculated as described in

Section III-B. They will be used in the following multi-hop extension.
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1) Multi-hop Models: The multi-hop models for both the offset-only and skew/offset models are given in the following.

Offset-only Model: Let, tni , denotes the time reading of node ni’s clock at instant, t, and, θni→nj , denotes the relative

offset relating time at node, ni, to the corresponding one at node, nj . That is, tnj = tni + θni→nj . Time readings of nodes on

the route can hence be related by: tni+1 = tni + θni→ni+1 , i ∈ {1, ..., h− 1}.

By successive substitutions of tni expressions in tni+1 equations (i ∈ {2, ..., h}), the following has be obtained,

tnh
= tn1 +

h−1∑
i=1

θ̂ni→ni+1 . Consequently,

θ̂ =

h∑
i=2

θ̂ni , (20)

where for simplifying notations, each θ̂ni→ni+1 in the considered route is denoted by θ̂ni+1 . It represents the local estimator

that is calculated as described in Section III-B.

Joint Offset/Skew Model: Let αni→nj (respectively βni→nj ) denotes the relative skew (respectively offset) relating time

at node, ni, to the corresponding one at node, nj . That is, tnj = αni→nj tni + βni→nj . Time readings of nodes on the route

can thus be related by: tni+1 = αni→ni+1tni + βni+1→ni , i ∈ {1, ..., h− 1}

By successive substitutions of tni expressions in tni+1 equations (i ∈ {2, ..., h}), the following has be obtained,

tnh
= (

h−1∏
i=1

αni→ni+1)tnh
+

h−1∑
i=2

[(

i∏
j=2

αnj−1→nj )βni→ni+1 ] + βn1→n2 . Consequently,

αn1→nh
=

h−1∏
i=1

αni→ni+1
, (21)

βn1→nh
=

h−1∑
i=2

[(

i∏
j=2

αnj−1→nj )βni→ni+1 ] + βn1→n2 . (22)

For the sake of simplification on the considered route {n1, n2, n3, ..., nh}, αni→ni+1 (i ∈ {1, .., h − 1}) is denoted in the

following by αi+1 (the initial term α1 is set by definition to 1), βni→ni+1 is denoted by βi+1, αn1→nh
by α, and βn1→nh

by

β. Applying these notations to Eq. (21) and Eq. (22), α and β estimators can be written as,

α̂ =
h∏

i=2

α̂i, (23)

β̂ =

h−1∑
i=1

[(

i∏
j=1

α̂j)β̂i+1], (24)
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where, α̂i, β̂i, on each hop, represent local MLE estimators that are calculated as described in Section III-B.

2) Protocol: Every node runs the local synchronization protocol with all its neighbors, as described in the previous section.

This process will be executed continuously, which allows each node to permanently have local pairwise estimates for every

neighboring node. The set of neighbors of a node may be defined either as all the nodes within the node’s vicinity, or a subset

of such nodes selected by the neighbor discovery protocol when a topology control mechanism is used. This set defines the

nodes with which the appropriate node communicates, and all possible links that may include the node in potential routes. As

soon as a node initiates a multi-hop communication that needs synchronization between the end-points, intermediate routers

may forward local relative synchronization parameters (the single-hop estimators resulted from the local protocol execution)

to the communicating nodes that are used to calculate multi-hop relative parameters. Therefore, the multi-hop synchronization

is performed only on-demand.

Figure 4 represents a network topology for an illustrative example of the multi-hop extension. Giving that nodes run the

local synchronization continuously, every node will have local estimates at any time. For instance, node, n1, maintains relative

synchronization parameters (offset when the offset-only model is used, and both offset and skew when the joint skew/offset

model is used) to nodes, n2, n3, n4, node, n2, maintains parameters to nodes, n1, n4, n7, where node, n6, maintains relative

parameters to nodes, n4, n5, n7, n8. To estimate parameters (local synchronization) between nodes, n1, and n2, for example,

reception timestamps of beacons from node n4 (the only common neighbor) are used, whereas beacons from nodes, n5 and n7,

are used to synchronize nodes, n4, n6. If the route connecting nodes, n1, n8, resulted from the route discovery procedure is

(n1, n4, n6, n8), then node, n1, provides relative parameters relating its clock to the one of node, n4, i.e. θn1→n4 (respectively

αn1→n4 , βn1→n4 for the joint model). Node, n4, provides parameters relating its clock to the one of node, n6, i.e. θn4→n6

(resp. αn4→n6 , βn4→n6 for the joint model), and finally the latter provides parameters relating its clock to that of node, n8,

say θn6→n8 (resp. αn6→n8 , βn6→n8 for the joint model). All parameters are forwarded to node, n8, by piggybacking to the

first packet of the session, allowing node, n8, to calculate the end-to-end offset (resp. skew and offset) using Eq. (20) (resp.

Eq. (23) and Eq. (24)), which enables it converting time at node, n1, to its own. The packets following the one carrying

the synchronization parameters may follow any arbitrary route without affecting the obtained estimators, and they are not

constrained by the route followed by that packet. The resulted estimator(s), however, must have an expiration period, during

which they can be used by node, n8, for conversion (if needed). Upon expiration, node, n1 launches an update by including

synchronization parameter(s) in the first packet following the expatriation time (if any). For this purpose, node, n1, just needs

to trigger a local timer. The expiration period depends upon many factors such as the required precision, the estimation model,

etc. The experiments confirm that the joint skew/offset model allows for high precision during a much longer period than the

offset-only model, as it will be demonstrated in Section V.

IV. SIMULATION AND COMPARISON

In this section, the proposed protocol– termed in what follows R4Syn, for receiver-to-receiver referenceless synchronization

– is compared by simulation with RBS [3], TPSN [9], CS-MNS [10]. On the one hand RBS and TPSN represent, respectively,

12
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a receiver-to-receiver and a sender-to-receiver protocol, and they both use relative synchronization similarly to R4Syn. On the

other hand CS-MNS uses mutual synchronization through virtual clock update, where the aim is to allow virtual clocks at all

nodes to mutually converge, instead of estimating relative skews/offsets. The goal of this part is to compare the concepts of

the protocols and particularly investigate the multi-hop extension. To make the comparison fair, RBS has been implemented

with estimators proposed in this paper, and TPSN with the estimators proposed in [11] that use the joint skew/offset model

and are appropriate to sender-to-receiver protocols. CS-MNS as described in the original paper considers skew update in its

model, through the called correction factor that is mutually updated.

First, the protocols are compared in single-hop environment, where all the nodes are within the vicinity of each other.

Neighborhood has been statically fixed at every node without any topology control. The number of nodes has been varied

to measure the performance metrics. For simplification, the propagation model has been simulated with no packet loss. Each

point of the following plots is the average of 200 measurements, where in each run the delays (jitters) have been randomly set

to values in the interval ]0ms, 10ms], which represents a typical range of values for delays in WSN when timestamping at a

higher layer. The clock skews have been picked up from the interval [1.001, 1.002] for each node. The high layer timestamping

has been simulated to investigate the impact of fast sample acquisition. Note that no significant difference with respect to

the precision would be noted between the protocols when timestamping at the MAC layer, notably for the offset-only model,

where the sample size will have no significant impact. The results presented in the following have been obtained with 99%

confidence interval 3. Fig 5 shows the obtained number of samples, in one cycle, vs. the number of nodes. The cycle has been

fixed to 10sec for all protocols. It is clear that the proposed protocol acquires more samples as the number of nodes rises,

and that its growth is much more important than the other protocols. This confirms the analysis of Section III-B4 reporting

that R4syn enables in one cycle to acquire (n− 2) samples for every pair of nodes, which makes O(n3) in total. Like RBS,

TPSN allows to get a single sample for every pair of nodes, which makes O(n2) in total. CS-MNS allows to get samples in

a faster rate compared to RBS and TPSN, as every beacon transmitted by a node will carry one timestamp that can be used

by all its neighborhood for updating the correction factor [10]. This results in n ∗ (n− 1) samples in a cycle, which is twice

compared to RBS and TPSN, but the difference with R4syn is more important where the number of samples is proportional

to the number of pairs of nodes for every beacon.

The impact of the fast sample acquisition on the synchronization precision is investigated in the following. Fig. 6 represents the

3note that the error bars could not be made visible in all plots, as they are at a tiny scale compared to the y axis scale
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absolute synchronization error vs. time. The real skew and offsets are randomly selected for all nodes, and synchronization error

between two randomly selected nodes has been measured after nodes estimate relative skew/offset by running the appropriate

protocol, or after updating virtual time in case of CS-MNS. Note that the same values are selected for all the protocols. Two

different scales have been used for the x axis; The smaller scale on the left side (from 0 to 500sec) clarifies the difference

between RBS and R4syn, whereas the relaxed scale on the remaining period permits to investigate the convergence of the

protocols’ precision on a long period. All the protocols converge towards almost the same precision, about 5µsec, with a slightly

larger value for CS-MNS (about 7µsec). However, there is a clear difference for the convergence time. R4syn converges in

less than 200sec, where CS-MNS needs about 500µsec (more than twice higher than R4syn), and RBS needs about 2000sec

(10 times higher than R4syn). TPSN needs the largest period, more than 4000sec (more than 20 times higher than R4syn). It

has been noted that after 4500sec, all the protocols stabilize around 5µsec (or around 7µsec for CS-MNC), and no significant

variance would be shown. The fast convergence of the proposed protocol is basically due to the fast acquisition of samples,

as explained previously. The minor additional error for CS-MNS can be argued by the fact that it does not consider the delay

jitter and its distribution in the model, contrary to the other protocols.

To measure the precision in multi-hop environment and investigate the proposed multi-hop extension, the network presented

in Fig. 7 has been simulated. It consists of 33 nodes ranged in a greed-like-topology, with a 10-hop diameter. The simulation

started by a warm-up step that consists in running local synchronization in every neighborhood for a long period. This is to

assure local parameter estimators convergence for all the protocols. The synchronization error has been then measured between

node n0, and nodes n1, n2, ..., n10, respectively, which represents a series from one to ten hops. The results shown in Fig.

8 clearly demonstrate that the proposed protocol outperforms the other ones. R4Syn synchronization error did not exceed

5.6µsec, even for 10 hops synchronization. RBS also provides good precision, and its error is below 7µsec for 10 hops.

However, the gap between the previous protocols and the sender-to-receiver ones (TPSN and CS-MNS) is important. The error

of the TPSN exceeds 10µsec upon 3 hops, and it reaches 20µsec for 10 hops, while that of CS-MNS is even higher and it

exceeds 30µsec for 10 hops. Note the use of two different scales for the y axis; the use of the higher scale would not show

any difference/variance between/for RBS and R4Syn, where the other scale would not allow to plot TPSN and CS-MNS that
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have relatively much higher values. This difference is basically due to the use of completely different paradigms. The receiver-

to-receive extends better to multi-hop environment, where the error precision considerably amplifies in multi-hop environment

with the sender-to-receiver synchronization. Further, the mutual clock update of CS-MNS demonstrates the worst performance

in the multi-hop scenario. The results also show clear improvement of R4syn over RBS in multi-hop environment, as the gap

rises with the increase of hop number. Finally, note that the protocols do not use multi-hop signaling, so it is insignificant to

measure the other metrics in multi-hop environment.
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V. IMPLEMENTATION ON SENSOR MOTES AND TESTS

To investigate its accuracy and effectiveness and confirm the simulation results, the proposed solution has been implemented

on real senor motes. MICAz mote4 has been used, along with TinyOS as the underlying operating system [12]. The used mote

has an IEEE 802.15.4 radio (CC2420), which is a ZigBee compliant RF transceiver that operates in the Industrial Scientific and

Medical (ISM) band, at 2.4 to 2.4834 GHz. MICAz has low power consumption and uses two AA batteries. Its micro-controller

is an 8-bit, 8 MHz ATmega128L, with a 4 KB RAM and 128 KB of external flash memory. The mote integrates two clocks; i)

an internal clock with a high granularity, but also with a drift at the order of few tens PPM (up to 100PPM) [13], and ii) a more

stable external crystal clock but with 32khz frequency, i.e. enabling a tick (granularity) of about 32µsec. Although being more

stable, the later does not allow for a microsecond level precision. Given that the aim is to confirm the high precision of the

proposed solution, the former clock has been used in the experiment. It is straight forward to use the current implementation

with the other clock, if a lower precision satisfies the application requirements (e.g. a precision at the order of milliseconds

or tens of microseconds). An Arduino has been used for measuring the synchronization error. This microcontroller is an 8-bit,

16Mhz ATmega328P, with 2 KB RAM, and 32 KB flash memory5.

The major problem we faced was the implementation of the estimators proposed in Eq. (10) and Eq. (11). Theses formulas

include multiplications of very large numbers (clock values), which causes memory overflow after few seconds due to sensors’

limitation on memory and arithmetic unit, together with TinyOS that does not support float numbers beyond 64 bits. This

prevents getting large samples, and thus achieving microsecond level precision would not be possible. To tackle this, the

formulas have been rewritten. It can be noticed that both the numerator and denominator of Eq. (10) are the difference of two

large terms, but the final differences are small numbers that do not cause any computation problem for division. The problem is

caused by the calculation of the large intermediate terms. For the numerator, the first term can be seen as the sum of products

(uivj), consisting of k2 elementary terms overall, and the second is the sum of products ujvj that repeats K times, resulting

in k2 elementary terms as well. Therefore, instead of calculating the two large terms separately then subtracting them, it is

more practical to subtracting from each elementary term of the first term, uivj , an elementary term of the second one, ujvj .

The same principle is applied to the denominator, which yields the following expression,

α̂mle =

K∑
i=1

K∑
j=1

(uivj − ujvj)

K∑
i=1

K∑
j=1

(vivj − v2j )

, (25)

The difference of large products are then transformed into the sum of differences of small products, which does not cause

any problem for the implementation. β estimator is then calculated by replacing the resulted estimator of α in Eq. 11.

4http://www.memsic.com/userfiles/files/DataSheets/WSN/micaz datasheet-t.pdf
5http://arduino.cc/en/Main/ArduinoBoardUno
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A. Preliminary Experiment

In the first preliminary tests, three nodes running the protocol have been used, two of them have been plugged to an Arduino

through available pins for precision measurement (Fig. 9). The size of the binary code of this three nodes implementation was

(for every node) 17600 bytes in ROM and 984 bytes in RAM for the offset-only model, 28470 bytes in ROM and 1434 bytes

in RAM for the skew/offset model. This includes code for protocol signaling, estimator calculations, the operating system

kernel and libraries, and control operations for measurement, all uploaded as a single file.

Fig. 9. Preliminary experiment setup
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Fig. 10. Instant synchronization precision

The Arduino has been programmed to transmit a signal to both motes at regular intervals. This is after few seconds of

warm-up phase, allowing estimators to converge at both nodes. The interrupt handler for the appropriate pin on each node

has been programmed as follows. The first mote picks its clock up, and the second one picks its clock up and converts the

obtained value to the other’s clock (estimate the other node’s clock at the same moments the latter picks it up). This conversion

is performed using the estimators resulted from the execution of the protocol. Every node then writes the obtained value into

a laptop through the serial connection to construct a log file.

The experiment has been conducted using both offset-only and joint skew/offset models. Fig. 10 shows the precision for the

offset-only model. As it can be seen, the error ranges from 1µsec to 7µsec, with most values between 3µsec and 5µsec; the
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Fig. 11. Stability of synchronization precision

average is 3.50. These results confirm fine-grained precision at the level of few microseconds as claimed in the simulation study.

Similar result has been obtained for the joint model, with the same range and average of 3.24µsec. The fast and immediate

microsecond level obtained in the experiment results, compared to those of simulation, is due to the low-layer timestamping

through the CC2420ReceiveP TinyOS module, whereas high layer timestamping was investigated in the simulation. Note that

these experimental results are obtained when measurements are launched as soon as the estimators are calculated (with a

variability of few microseconds). However, it is obvious that in practice, estimators should generally be used for some period

before updating them. The longest the period is, the more stable and efficient the protocol is considered. This enables reducing

the frequency of signaling and thus the overhead (in terms of number of packets), while keeping the high precision. To

investigate this issue, the same experiment has been repeated, but protocol execution has been stopped after a warm-up period

(for estimates acquisition), and measurers have been taken from that moment. Fig. 11 depicts the synchronization error vs.

time for both models. As predicted, the offset-only model– which does not consider clock drifts– causes fast degradation of the

precision. For instance, the error exceeds 500µsec after 1min, 1msec after 2min, and 6msec after 10min. On the other hand,

the skew/offset model assures more stability through predicting the drift. Its precision remains at the order of few microseconds

(less than 10µsec) during more than 200sec, and it does not exceed 330µsec during the whole 15min experiment duration. We

conclude that the joint model is more effective for general WSN applications. The offset model has the simplicity advantage,

and it may be useful when implemented with more stable clocks (such as the external crystal clock), provided that only low

precision is required (e.g; at the order of millisecond).

B. Multi-hop Experiment

The following describes an extensive experiment performed with seven nodes, {n1, ..., n7}. All nodes are in the vicinity

(broadcast domain) of each other. However, a controlled (logical) topology is used for communication; a linear topology

where node, n1, is only neighbor to node, n2, node, n2, to node, n3, etc. For node, n1, to communicate with node, n4,

for instance, it must use the unique route (n1, n2, n3, n4), instead of direct communication. Therefore, full-power is used to

exchange beacons between all nodes, but the predefined topology is used for data communication. This is to enforce multi-hop

communications. Synchronization follows the same route followed by the first packet, as described previously. In other words,
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local synchronization is executed between the seven nodes, but nodes are programmed to use multi-hop synchronization for

time conversion. For example, node, n1, uses parameters of nodes, n2, n3, to estimate relative skew/offset to node, n4, instead

of using local (direct) estimation. This is, obviously, for the purpose of evaluating the multi-hop protocol/estimators.

Mote 6 Mote 5

Mote 4

Mote 3

Mote 2

Mote 1

Mote 7

  communication  topology :

Fig. 12. Multi-hop experiment setup (e.g. for 6 hops)

Synchronization between node, n1, and nodes, n2, n3,..., n7, respectively for, 1-hop, 2-hop,..., 6-hop are investigated. Similar

setting as presented in Fig. 9 is used, where the two synchronizing nodes are plugged to Arduino (node n1, and node, ni,

i ∈ {2, ..., 7}, respectively). Fig. 12 illustrates the setting for 6-hop synchronization measurement, i.e. between nodes, n1,

and, n7. The memory footprint of this seven-node implementation was 17600 bytes in ROM and 1046 bytes in RAM for the

offset-only model, 28470 bytes in ROM and 1945 bytes in RAM for the skew/offset model. Fig. 13, through Fig. 18 represent

results from 1-hop to 6-hop, respectively, and table I summarizes the results.

Fig. 13 confirms the results obtained with the three-node experiment, as the same precision order has been obtained, although

the number of nodes has doubled. The synchronization error was between 1µsec and 6µsec with 2.45µsec on average. Similar

results are obtained for the skew/offset model– which are not presented to avoid a redundant and overwhelming presentation–

and the synchronization error was between 0µsec and 5µsec, with 2.59µsec on average. Fig. 14 to Fig. 18 illustrate the

behavior of the proposed multi-hop synchronization. They demonstrate that the increase in both synchronization error with

the number of hops is smooth, and such is the flip of this error. The average value ranges from 3.65µsec for two hops to

19.93µsec for six hops. The highest value has been below 40µsec. Further, most of the values are below the average value, i.e.,

more than 50% of values are below the average value for all numbers hops. We should point out here the difference in values

obtained in comparison with the simulation results. Although both simulation and testbed experiment demonstrated precision

at the microsecond level, real experiment results are higher. This is because ideal models have been used in the simulation

(propagation with no packet loss, similar delays in all links, etc.), where the experimentation with real motes reflects results

in more realistic conditions.
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Fig. 13. Synchronization error in seven nodes scenario, one hop
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Fig. 14. Synchronization error in seven nodes scenario, two hops

VI. RELATED WORK

Sivrikaya and Yener [2] published a good introductive survey on time synchronization in wireless sensor networks (WSN),

while Sundararaman et al. [1] provide more taxonomy and descriptions. Many solutions have been proposed after the publication

of these two papers. Simeone et al. [14] and Lenzen et al. review some recent solutions, while Wu et al. [15] present an

interesting analysis of the estimation methods used for time synchronization. Still, an up to date comprehensive review on time

synchronization protocols in wireless sensor networks is missing, given the massive work in recent years.

Most of the protocols proposed thus far use sender-to-receiver synchronization, where the synchronizing nodes exchange

messages and use sending and receiving events to record timestamps. Some solutions allow nodes to run their clocks indepen-

dently and define mechanisms to calculate (estimate) relative skews and/or offsets, i.e. relative synchronization. Noh et al. [11]

consider local (one-hop) relative synchronization and provide general offset/skew MLE estimators for sender/receiver protocols,

where only the first and last observations of timing message exchanges are used. The approach was generalized in [16]. A

similar mathematical approach is used in this paper, but the model, and consequently all the derived estimators and bounds, are

completely different. The model of [11] does not apply to the proposed solution, as the latter is receiver-to-receiver-based. RAT

[17] is another local sender/receiver synchronization protocol. It has been integrated with B-MAC to incrementally improve

its performance. Since the authors’ aim was to reduce the preamble period at the MAC layer, the protocol provides a weak
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Fig. 15. Synchronization error in seven nodes scenario, three hops
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Fig. 16. Synchronization error in seven nodes scenario, four hops

synchronization, where linear regression was used to calculate relative skews/offsets. The Elapsed Time on Arrival (ETA) is

another relative synchronization based algorithm [18]. This has been used in two implementations; The Routing Integrated

Time Synchronization (RITS), which is a reactive time synchronization protocol that can serve in correlating multiple event

detections at one or more locations, and the Rapid Time Synchronization (RATS) as a proactive protocol that utilizes RITS to

achieve network-wide synchronization. Useful API is also provided for application use.

Another category of solutions consists in defining distributed mechanisms that allow nodes to update their clocks and converge

to common values, i.e. continuously performing clock updates. This is conceptually different from relative synchronization

(relative offset/skew estimation). In [19], [4], and [20] the authors propose solutions that deal both with single and multi-

hop synchronization. These solutions have the gradient property and focus on local synchronization, where high precision

is provided for neighboring nodes (their clock values converge closely), but the precision decreases with the distance. The

solution proposed in this paper uses this property in the sense that more importance is given to local synchronization that is

performed continually, but the performance evaluation results for multi-hop synchronization reflect high precision. Solutions

based on distributed consensus techniques are very similar to gradient ones. AverageTimeSynch [21] and DCTS [22] protocols

are examples of such solutions. The later has been analyzed in [23] for a Gaussian-delay environment. Sadler [24] considers

the uses of an external accurate clock whose values may be occasionally observed through broadcast signal reception (such as
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Fig. 17. Synchronization error in seven nodes scenario, five hops
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Fig. 18. Synchronization error in seven nodes scenario, six hops

GPS receivers). He provides estimators to synchronize the sensor mote’s clock to such an accurate clock. A common feature

of all these solutions is that nodes continuously update their clocks with respect to each other. This update generally involves

jump/freeze of the clock value, which may affect correctness of local events’ timestamping.

Contrary to gradient solutions, other ones focus on global synchronization and attempt to improve the multi-hop precision.

[25] proposes a global synchronization protocol based on spanning tree. [26] provides probabilistic lower bounds for multi-hop

synchronization. Secondis [13] defines strategies to disseminate synchronization messages from the root to the whole network.

CS-MNS by Rentel et al. [10] define a mutual synchronization multi-hop solution that applies to both MANET (mobile ad hoc

networks) and WSN. Time update of virtual clocks is used, where a correction factor of the skew is mutually updated upon

beacon exchange using the sender-to-receiver paradigm. The protocol has been implemented on TelosB/MICAz motes [27],

where the external low resolution clock have been used permitting only a weak resolution (32µsec/tick). The protocol proposed

in [28] deals with multi-hop synchronization by clustering the networks. The protocol starts by synchronizing cluster-heads to

the base station, then cluster-heads synchronize regular nodes. In [29], a centralized approach to estimate clock relative offset

is proposed, where topology constraints are considered. The basic idea is that in a cycle, the sum of all relative offsets must

be null. The authors formulated the problem with graph theory and the mean square method, as a constrained optimization
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TABLE I
ERROR PRECISION IN µsec

1-hop 2-hop 3-hop 4-hop 5-hop 6-hop
Average 2.45 3.65 3.74 12.58 14.84 19.93

Worst case 6 12 16 19 29 39
Best case 1 0 0 8 3 2

Below average 60.3% 50.8% 54.3% 57.9% 63.2% 51.3%

problem. FTSP [5], TPSN [9], solutions of [30], [31], and [32] are other examples of other multi-hop-centric synchronization

protocols.

As described previously, RBS [3] uses a completely different approach, namely the receiver-to-receiver synchronization,

which has the advantage of reducing the time-critical path [1, P. 294]. However, the major drawback of RBS is the need of

a fixed reference, which might be inappropriate for some self-organized wireless sensor network (WSN) applications. The

work in [7] is the only one that considers joint skew/offset maximum likelihood estimation (MLE) for RBS. The model used

herein is different from the one of Sari et al. In the latter, synchronization is proportional to a single reference, while there

is no such a common reference with the proposed solution’s model. Further, [7] considers exponentially distributed delays,

while the proposed one considers Gaussian distributed delays. Exponential model is more appropriate when delays include

queueing time, which is typical when the sending delay is affecting the time critical path. However, it has been realized that

the reception delays tend to follow Gaussian distributions [3]. Therefore, Gaussian distribution is more suitable for receiver-to-

receiver protocols. More importantly, the model of [7] does not synchronize receivers directly but through synchronization to

the reference clock, which completely deviates from the RBS concept. Note that the concept of a reference in RBS is to use

a common source for signal broadcast, but not a common source of time. Although relative parameters can be determined by

synchronizing the receivers to the reference, this way of synchronization causes cumulative errors on the estimators. Moreover,

eliminating the sender uncertainty from the critical path is at the core of RBS, while this uncertainty is not eliminated by

relating the transmitter’s (reference’s) time to the receiver’s time in the model6. The model in this paper is different, it allows

to directly estimating relative parameters without using or referring to the reference clock. This faithfully reflects the RBS

concept.

The authors in [33] apply artificial intelligence (AI) techniques to an RBS-like solution. The applicability of such AI method

to resource constrained sensors is questionable. PBS [34] is a hybrid solution between sender-to-receiver and receiver-to-

receiver approaches, which uses overhearing of the sender/receiver message exchange. The basic sender-to-receiver approach

is used to synchronize two super nodes, while all the other nodes within the range of both nodes overhear messages and

synchronize to the super nodes. The solution reduces the overheard of RBS, but it is also centralized. In [35], the authors tried

to make the solution more distributed by proposing round-robin timing exchange protocol (RRTE), where one reference is fixed

and the other changes in a round robin way. Still, one fixed reference is needed. Some solutions are applications-driven and

attempt to couple synchronization with application services. For instance, Glossy [36] exploits IEEE 802.15.4 interferences,

6Refer to Eq. (1) and Eq. (2) in [7, p. 1], vx,λx , vy,λy would be the noise (variable delay) due to both transmission and reception. This adds transmission
delays to the time critical path
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to couple synchronization with network flooding. In [37], a solution that couples localization to synchronization is proposed.

Liu et al. [38] consider synchronization for mobile underwater networks, where the precision is at the order of hundreds of

msec and even the sec level due to the high latency of the acoustic communications. Some other hardware solutions propose

synchronization techniques to be implemented at the physical layer such as [39]. This may provide high precision but would

require additional hardware modules at the sensor motes. The solution proposed in this paper does not need any such modules,

and it is simply implementable at the software level.

VII. CONCLUSION

Time synchronization has always been a challenging problem in distributed systems. This problem is more complex in

wireless networks, where communication may be prone to high delay variability. In wireless sensor networks (WSN), node

limitations (computation, memory, energy) add more constraints to the problem. The problem has been dealt with in this work,

and a new distributed referenceless protocol has been proposed for single-hop synchronization, and then extended to multi-hop

synchronization. The proposed protocol is receiver-to-receiver based, but it is fully distributed and does not rely on any fixed

reference. The role of the reference is distributed amongst all nodes, while timestamps are piggybacked to synchronization

signals (beacons). This enables to perform beaconing and timestamp exchange in a single step, and it provides fast acquisition

of timestamps that are used as samples to estimate relative synchronization parameters. The proposed relative synchronization

protocol has been extended to multi-hop environment, where local synchronization is performed proactively, and the resulted

parameters are transferred to the intermediate/end-point nodes as soon as a multi-hop communication that needs synchronization

is initiated. The multi-hop extension is on-demand, as no signals are periodically transferred on multi-hop links.

The maximum likelihood estimators (MLE) and the Cramer-Rao lower bounds (CRLB) has been proposed for both the

offset-only and the joint offset/skew estimation. Contrary to existing MLE models for receiver-to-receiver synchronization, the

model used in this paper directly relates the synchronization parameters of the receivers without using the sender’s clock, which

accurately reflects the receiver-to-receiver principle. The proposed estimators have been numerically analyzed and compared

to the CRLB, as the theoretical optimum. Results show convergence of the proposed estimators’ precision to their respective

CRLB with the increase of the number of signals. The protocol has been compared by simulation to some state-of-the-art

sender-to-receiver (TPSN, CS-MNS), and receiver-to-receiver (RBS) protocols. Results show much faster convergence of the

proposed protocol, in the order of more than twice compared to CS-MNS, more than ten times compared to RBS, and more

than twenty times compared to TPSN. Obtained results also show that the proposed protocol outperforms all the protocols in

with respect to the synchronization precision, both in single-hop and multi-hop synchronization. In addition to the simulation

evaluation, the proposed protocol has been implemented and tested on real sensor motes both in one-hop and multi-hop

scenarios. The results were very satisfactory and confirm microsecond precision of both offset-only and skew/offset models,

and the synchronization error has not exceeded 6µsec for 1-hop scenario and 39µsec for 6-hop scenario, in the worst cases.

On average, it was between 2.45µsec for 1-hop and 19.93µsec for 6-hop, and most values were always below the average

value. The skew/offset model– which captures clock drifts– demonstrated more stability, where the estimators have much longer
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lifetime and remain effective in keeping the microsecond-level precision for several minutes.
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