
S. I . : ENGINEERING APPLICATIONS OF NEURAL NETWORKS 2018

Tracking changes in user activity from unlabelled smart home sensor
data using unsupervised learning methods

Prankit Gupta1 • Richard McClatchey1 • Praminda Caleb-Solly1

Received: 22 January 2019 / Accepted: 10 January 2020
� The Author(s) 2020

Abstract
This paper investigates the utility of unsupervised machine learning and data visualisation for tracking changes in user

activity over time. This is done through analysing unlabelled data generated from passive and ambient smart home sensors,

such as motion sensors, which are considered less intrusive than video cameras or wearables. The challenge in using

unlabelled passive and ambient sensors data for activity recognition is to find practical methods that can provide mean-

ingful information to support timely interventions based on changing user needs, without the overhead of having to label

the data over long periods of time. The paper addresses this challenge to discover patterns in unlabelled sensor data using

kernel density estimation (KDE) for pre-processing the data, together with t-distributed stochastic neighbour embedding

and uniform manifold approximation and projection for visualising changes. The methodology is developed and tested on

the Aruba CASAS smart home dataset and focusses on discovering and tracking changes in kitchen-based activities. The

traditional approach of using sliding windows to segment the data requires a priori knowledge of the temporal charac-

teristics of activities being identified. In this paper, we show how an adaptive approach for segmentation, KDE, is a

suitable alternative for identifying temporal clusters of sensor events from unlabelled data that can represent an activity.

The ability to visualise different recurring patterns of activity and changes to these over time is illustrated by mapping the

data for separate days of the week. The paper then demonstrates how this can be used to track patterns over longer time-

frames which could be used to help highlight differences in the user’s day-to-day behaviour. By presenting the data in a

format that can be visually reviewed for temporal changes in activity over varying periods of time from unlabelled sensor

data, opens up the opportunity for carers to then initiate further enquiry if variations to previous patterns are noted. This is

seen as an accessible first step to enable carers to initiate informed discussions with the service user to understand what

may be causing these changes and suggest appropriate interventions if the change is found to be detrimental to their well-

being.
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1 Introduction

With a growing shortage of carers and an ageing popula-

tion, there is an urgent need to explore how smart sensing

technologies could be utilised to support and maintain a

high quality of agile and responsive care. Accordingly,

researchers have been developing ambient assisted living

(AAL) technology which utilises data from a range of

smart home (SH) sensors to support people with long-term

conditions to live independently [1]. The kitchen is usually

the centre of user activity, particularly for those who are

still managing to live independently. Additionally, most

frequently occurring household injuries for vulnerable

people occur in the kitchen, which can lead to loss of

confidence in performing kitchen activities over time and

moving to a nursing home [2, 3]. As such, tracking activ-

ities in the kitchen over time can provide the requisite

baseline data for identifying early indicators of changes

which might require interventions. Early intervention can
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prevent, and pre-empt, more serious issues from happening

in the future.

A large area of AAL research is focussed on performing

human activity recognition (HAR) from SH sensor data.

This includes detecting activities offline, after they are

finished, as well as detecting activities in real time as they

occur. Real-time HAR is essential for interventions such as

assistive prompts, while offline HAR is useful for tracking

changes in user behaviour over time, detecting abnormal

behaviour, as well as performing wellness evaluations.

The SH sensors used for HAR can be broadly cate-

gorised into wireless sensor networks (WSNs), body sensor

networks (BSNs) and video-based solutions. WSNs com-

prise sensors that are integrated into the environment of the

user such as passive infrared (PIR) motion sensors, mag-

netic contact sensors, and temperature sensors. Generally, a

large number of WSNs are required to be present in order

to perform HAR [4]. BSNs comprise sensors which can be

present on the user, such as wearables which can provide

accelerometer and GPS data along with the users’ physi-

ological information. Although the data provided by BSNs

can be crucial for performing HAR, end-users can often

forget to wear the sensors or charge them, or consider them

intrusive. Video-based solutions provide the most context

on the user and can range from RGB-D data to thermal

imaging; however, they are generally considered an inva-

sion of privacy by end-users [5, 6]. As cost-effective WSNs

are becoming more commonly available as consumer

products and are considered more acceptable than video-

based solutions, exploring and developing their utility as

part of an effective AAL technology solution to support

users for living independently is a crucial next step.

There is a variety of existing research into HAR which

has utilised supervised learning techniques using WSNs,

BSNs, as well as video-based solutions with promising

results. The problem with supervised learning is that it

requires large amounts of user-annotated or labelled sensor

data for training. This is often difficult to obtain for each

individual user the system needs to be deployed for, and

the subsequent trained classifier is also unable to adapt to

changes in user behaviour without re-training with more

labelled data. A common approach when collecting data

for training classifiers requires the user to self-report or log

activities through a diary, which is then used to annotate

the data [7]. This introduces issues related to the reliability

of the labels, as the user may forget to label every activity

he/she performs or may not provide sufficient detail

describing the activity [7]. This is evident in many user-

annotated public smart home datasets where a simple

‘‘meal preparation’’ label is provided that can encompass a

range of different types of cooking activities. Lastly, self-

reporting of activities can be a tiring and tedious task,

particularly when required to be conducted over many

weeks or months and may not be possible for end-users

with cognitive impairments. As such, researchers in this

field are also investigating the use of unsupervised learning

techniques, with a view to eliminating the need for label-

ling SH data. However, most of the existing research

studies that have shown promising results used context-rich

information obtained from BSNs and video-based solu-

tions, and not WSNs. Researchers such as Fiorini et al. [8]

used unsupervised learning with WSNs; however, in this

case the authors were looking for an overall user ‘‘busy-

ness’’ metric rather than individual user activity patterns.

This paper presents a novel approach for analysing

unlabelled smart home sensor data, focussed on discover-

ing patterns in user activity by analysing each of the days

of the week separately over three 12-week periods. The

approach presented in this paper is developed and tested on

a total of 203 days of data from the kitchen-based sensors

in the Aruba CASAS dataset [9]. By disregarding any

labels present in the dataset for the visualisation, we seek to

identify and understand sub-patterns that might exist with a

view to interpreting user activity over time. The scope of

this paper is to be able to inform the process of inquiry by

the care provider for early intervention if variations to

previous patterns are noted. This is seen as an accessible

first step to enable carers to initiate informed discussions

with the service user to understand what may be causing

these changes and suggest appropriate interventions if the

change is detrimental to their well-being.

The rest of the paper is structured as follows, Sect. 2

reviews existing HAR and data mining techniques in more

detail; Sect. 3 provides a description of the Aruba CASAS

dataset as used in the study; Sect. 4 describes the

methodology, the data pre-processing and feature selection,

and data visualisation techniques for discovering user

activity patterns; Sect. 5 presents the results and discus-

sion; and finally Sect. 6 summarises the conclusions and

discusses future work.

2 Background and prior work

This section reviews HAR techniques in more detail, while

also reviewing data mining techniques which have been

used for applications other than HAR, utilising unsuper-

vised learning.

In order to perform HAR, periods of sensor data events

that may represent activities must be extracted first. Tra-

ditional approaches for this include the use of sliding time

and sensor windows as used by Yala et al., Cook and

Krishnan [7, 8]. These sliding windows are generally used

for training supervised learning systems when activity

labels are present, as the sliding windows can be chosen

based on the activity labels present in the data, and
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windows containing noise can be removed manually.

However, due to this, they are not as well suited for

unlabelled data as it would be difficult to identify windows

that contain noise. The lengths of these windows are also

often fixed which makes the activity recognition system

highly sensitive to variance in the distribution of sensor

events throughout the day. Therefore, it is important to

investigate alternative approaches for extracting periods of

sensor data events of variable lengths.

An alternative approach is presented by Soulas et al. [6]

for discovering ‘‘episodes’’ of user activities along with

their periodicity and variability. The authors use an episode

length of 30 min which essentially acts as a time window

for extracting sensor data which may belong to an episode.

However, this is left as a parameter to be set by the user

depending on their daily habits. Along with this, Soulas

et al. also define five additional parameters which need to

be set by the user and the user’s physician in order for the

algorithm to work. The authors acknowledge that setting

unsuitable parameters can lead to missing interesting

information and other automated candidate episode gen-

eration techniques need to be investigated. Nevertheless,

the paper highlights the need for HAR algorithms that do

not require priori knowledge on the user. They also provide

an analysis into the variability and repeatability of user

behaviour present in the public SH datasets; however, their

approach for this requires considerable hand-tuning of the

learning methods.

In the work presented by Gupta and Caleb-Solly [10],

sensor data was analysed by room only, and treated as 1D

time series data per room, only comprising of sensor event

timestamps. An alternative approach to sliding windows in

this case would be to find and extract periods of high-

density present in the sensor data which could potentially

represent activities. As the sensor data can be treated as 1D

time series, kernel density estimation (KDE), as first pro-

posed by Rosenblatt, can be a powerful tool for extracting

periods of sensor events which can potentially represent an

activity [11]. KDE is a nonparametric method for esti-

mating the probability density function of a random vari-

able, and as such can be used to detect time periods of

high-density present in 1D data. This overcomes the issue

of deciding the size of sliding windows and has the added

benefit of identifying only high periods of sensor activity

and disregarding the rest as noise. KDE has two parame-

ters—kernel function and the bandwidth. The kernel

function must be chosen based on the properties of the

data, while the bandwidth can be selected using Silver-

man’s rule [12]. As these parameters can be derived sta-

tistically, KDE can be a potential alternative to traditional

fixed-size sliding windows for extracting sensor data.

Once periods of sensor data are extracted, the next step

is visualising the data. In recent years, new visualisation

techniques have been introduced which have superseded

existing techniques such as Self-Organising Maps (SOM’s)

and principal component analysis (PCA) in certain appli-

cations. These visualisation techniques include t-dis-

tributed stochastic neighbour embedding (t-SNE) [13] and

uniform manifold approximation and projection (UMAP)

[14], both of which are nonlinear dimensionality reduction

techniques. T-SNE has often been the primary choice for

researchers for visualising high-dimensional data in 2D and

is noted for preserving the local structure of the data.

UMAP on the other hand is a much newer technique and is

capable of preserving both local and global structure of the

data [15]. These techniques are particularly relevant when

dealing with unlabelled data, as they can help to discover

whether there are any meaningful features and potential

clusters present. However, it must be noted that even

though both t-SNE and UMAP are both useful choices for

visualisation, clustering based on their output is generally

not recommended, as density information is often lost

during the process [16]. A useful technique is also pre-

sented by Fiorini et al. [8], where radar graphs were con-

structed from motion sensor data which can be used to

facilitate a quick visual review of the sensor data. This

technique can be used in conjunction with other visuali-

sation techniques such as UMAP, to gain further insight

into the sensor data.

To summarise, in this section the potential benefits of

KDEs to replace sliding windows for extracting sensor data

and the use of t-SNE/UMAP for visualising unlabelled data

are highlighted.

The next section provides a description of the Aruba

CASAS smart home dataset, which will be used for

developing, as well as testing the unsupervised learning

methodology presented in this paper.

3 Selection and description of the public
smart home dataset

This section provides details of the selection process for the

smart home dataset, and activities which were selected for

use in this study. For this research, we focussed on the

Washington State University’s Centre for Advanced

Studies in Adaptive Systems (CASAS) [9] dataset collec-

tion. This collection comprises a range of labelled, partly

labelled, or unlabelled activity data, collected over varying

time periods. The activities in these datasets are scripted or

unscripted. The work presented in this paper is focussed on

unscripted ‘‘daily life’’ datasets. Additionally, datasets

which use BSNs or video cameras were not considered as

the focus in this research is on utilising less intrusive

WSNs, such as PIR motion sensors. Five public datasets

met these criteria.
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A further search was conducted for these five CASAS

datasets on IEEE1 with keywords ((((Smarthome) OR

smart-home) AND ‘nameofdataset’) AND CASAS). This

revealed the Aruba dataset as the most frequently used

dataset with 31 search results, and Milan as the second

most frequently used with 15 search results. Based on this,

both Milan and Aruba were shortlisted. The Aruba dataset

has a total of 220 days of continuous data, while the Milan

dataset has a total of 72 days of data. However, Milan is

missing 11 days of data, while the Aruba dataset has

continuous data with no missing days. The missing days

could affect the performance of the HAR algorithm as it is

crucial to analyse consecutive days in order to pick up

repeating activity patterns. The Aruba dataset was therefore

selected for developing and testing the unsupervised

learning techniques presented in this paper.

The Aruba dataset consists of data from a total of thirty-

nine sensors, out of which thirty-four are PIR sensors and

five are temperature sensors. In this paper, only the PIR

sensor data, which represent the occupant’s physical

movement in the vicinity of the sensor, is analysed.

Therefore, after excluding temperature sensor data over the

period of 220 days, a total of 1,602,980 sensor events are

present out of which 849,579 sensor events (& 53%) are

not annotated with any activity labels in the dataset. Pre-

vious studies have often discarded these unlabelled sensor

events when performing HAR as activities detected using

the unlabelled data cannot be verified [17].

There are a total of 11 activity labels present in the

Aruba dataset (Fig. 1). The primary kitchen activity labels

are ‘‘Meal_Preparation’’ and ‘‘Wash_Dishes. There are a

total of 1606 instances of the ‘‘Meal_Preparation’’ activity

and only 65 instances of the ‘‘Wash_Dishes’’ activity. In

previous studies, this imbalance has caused classifiers to

misclassify the ‘‘Wash_Dishes’’ as ‘‘Meal_Preparation’’

activity [10].

As this study is focused on kitchen activities, only

kitchen sensor data was analysed, which includes

‘‘Meal_Preparation’’ and ‘‘Wash_Dishes’’ activity labels.

These event data represented by these two labels was fur-

ther analysed to verify which sensors were associated with

these labels in the Aruba dataset. Both ‘‘Meal_Preparation’’

and ‘‘Wash_Dishes’’ labels were primarily based on only

kitchen sensors (five PIR sensors) being triggered over the

entirety of the dataset; all other sensors in the house were

associated with less than 5% of both the activity labels.

This supports the approach previously presented by Gupta

and Caleb-Solly [10], in which only kitchen sensor data

was analysed when performing HAR for kitchen activities,

considerably reducing the noise and amount of the data

required to be processed. It should be noted that no

unlabelled sensor data was removed by hand, as it was left

to the unsupervised machine learning techniques to identify

noise. As stated previously, this is different to previous

studies by other researchers using this dataset, who

removed all unlabelled data from the analysis as the

activity represented by that data could not be verified [17].

The approach of retaining unlabelled data better reflects a

real-world scenario, where a dataset is likely to contain

unlabelled instances.

4 Methodology

This section outlines the methodology followed in this

paper which includes extracting temporal clusters using

kernel density estimation from sensor data, feature selec-

tion, and the use of data visualisation techniques.

All the algorithms were written in Python using various

machine learning libraries which are referenced throughout

the paper.

4.1 Extracting temporal clusters of sensor events
using KDE

Over the past decade, as research into AAL and SHs has

grown, various new concepts and terminology have been

introduced to the field. In this paper, some of these existing

concepts have been further developed, such as that of a

temporal cluster. This study presents a method for

extracting periods of high-density present in the temporal

sensor data, which have been defined as temporal clusters

(Fig. 2). Therefore, a temporal cluster (TCi) is a set of

Fig. 1 Total instances of activity labels in the Aruba dataset

1 https://ieeexplore.ieee.org/.
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sensor events occurring close together {s1, s2, s3, … sn}

that could potentially represent an activity.

In this study, temporal clusters are used with a view to

identify activity patterns which might not have been rep-

resented by the user labels, but might still represent specific

user activities or behaviour.

For developing this temporal cluster extraction approach

using KDE, the Aruba dataset was divided into a training

and test set. Days 10 to 42 were used as the training set and

days 53 to 81 were used as the test set.

KDE requires the selection of a kernel and the kernel’s

bandwidth. After analysing the training set, the Epanech-

nikov kernel [18] was empirically selected for the algo-

rithm. The Silverman’s rule [12] for automatically

selecting the bandwidth was also empirically adjusted to:

bw ¼ 0:07r̂n�1=5

where r̂ is the standard deviation of the sample, n is the

sample size and bw is the bandwidth. The KDE temporal

cluster extraction technique is illustrated in Fig. 3. This

figure shows an example of KDE temporal cluster extrac-

tion process for the morning hours of 8 am to 10 am for a

selected day from the Aruba dataset. For the experiment,

KDE was used to generate a density curve for the whole

day which was then used to extract temporal clusters as

shown. Following this, all the sensor events included

within the mid-height of the peaks were extracted as a

single temporal cluster (Fig. 3d). The mid-height of the

peaks were calculated as 50% of the height of the peak

relative to whichever comes first—the last local minima

before a local maxima higher than the current peak, or the

global minima. This ensures that a peak which is higher

than other peaks that follow it, extracts a larger temporal

cluster as is the case for peak 2 in Fig. 3d. Mid-heights that

contained less than two sensor events or lasted less than

60 s were discarded as noise. This 60 s threshold value for

noise along with the mid-height of the peak was selected

after analysing the training data with different values and

peak heights until all the ‘‘Meal_Preparation’’ activities

could be identified.

A feature of using KDE is that it can also discover

temporal clusters which may represent interleaved and

overlapping activities. An example of this can be seen in

Fig. 3d where temporal cluster from peak 3 overlaps a

larger temporal cluster from peak 2. The stats module from

the SciPy2 was used to perform KDE in Python [19].

4.2 Feature selection

The next step was to select features from the temporal

clusters extracted as described in the previous section. Th-

ese features are listed in Table 1.

This feature set consists of eight features, the first three

being—duration (length) of the temporal cluster, the vari-

ance in each temporal cluster based on timestamps of the

sensor events, and start time of the temporal cluster. The

start time was corrected to the hour closest to the first

timestamp of the temporal cluster. The last five features

were total number of events from each sensor separately in

the Kitchen. All features were normalised between 0 and 1.

4.3 Visualisation using UMAP

In order to visualise the behavioural changes by day-of-the-

week, UMAP was performed to generate data points in a

two-dimensional space from the eight-dimensional feature

sets of the temporal clusters. It was hypothesised that using

a day-of-the-week level of granularity might help to better

track changes in the longer term, because as shown in

Fiorini et al. [8], there can be marked differences between

weekday and weekend routines.

A 12-week (3 month) period was considered which

ensured that there were enough data points for identifying

repeating patterns for each day of the week. Four such

periods of 12 weeks were then compared to verify whether

the activity patterns persist and whether any slight changes

were apparent. This means analysing four sets of 12

Mondays, 12 Tuesdays, and so on. The first three of these

periods were overlapping and moving forward by 1 week

at a time as follows—weeks 2 to 14, 3 to 15, and 4 to 16.

This was done with a view to analyse small shifts in the

user’s daily routine. The last period did not overlap with

the first three periods and consisted of weeks 17 to 29. This

was done to determine whether, if at all, user behaviour

may have changed after a longer non-overlapping time

period.

Fig. 2 a Sensor segmentation using KDE to extract temporal clusters

(TCi), b fixed time windows (ti), and c sliding sensor windows with a

length of 10 sensor events and sliding forward by 5 sensor events (si)

2 https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.

gaussian_kde.html.
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Figure 4a shows an example of Mondays for weeks 4 to

16 for UMAP. The parameter ‘‘n_neighbours’’ was set to

15 and ‘‘min_dist’’ was set to 0.1 empirically.

T-SNE (Fig. 4b) was also performed for comparison

using the same data set to verify that the UMAP plot does

not contain spurious artefacts. The perplexity parameter of

t-SNE was determined empirically and set to 25.

Fig. 3 Three temporal clusters extracted from the density curve

generated using KDE for a single morning, overlaid with a histogram

of sensor event timestamps

Table 1 Features selected from each temporal cluster

No. Feature

1 Duration of temporal cluster

2 Variance of temporal cluster

3 Start time of temporal cluster (hour)

4 Total sensor events for kitchen sensor 1

5 Total sensor events for kitchen sensor 2

6 Total sensor events for kitchen sensor 3

7 Total sensor events for kitchen sensor 4

8 Total sensor events for kitchen sensor 5

Fig. 4 a Top—UMAP, b Bottom—t-SNE (both projections are for

weeks 4 to 16)
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It can be seen in Fig. 4 that the plots created by UMAP

and t-SNE are visually similar. T-SNE plots also appeared

to have a less visually discernible morphology as can be

seen in Fig. 4b, which makes them harder to interpret for

the sensor data. It must also be noted that t-SNE is very

sensitive to the perplexity parameter and as such makes it

difficult to obtain consistent and reliable results [16]. For

these reasons, UMAP was favoured for visualising the

patterns of activities clusters.

5 Results and discussion

This section presents the results of the KDE for extracting

temporal clusters, as well as the UMAP visualisations.

5.1 KDE: extracting temporal clusters

This section presents the results of using KDE temporal

cluster extraction, as performed on the Aruba test dataset

for each day individually. This technique was tested on a

consecutive 28-day period. Using the KDE temporal clus-

ter extraction technique, a total of 454 temporal clusters

were extracted for this period (Table 2). These temporal

clusters included 100% of the labelled activities present,

within an error of ? or - 5 min as compared to the

timestamps of the activities in the dataset. 211 additional

temporal clusters (46% of the total) were also discovered,

which were not associated with an activity label.

Researchers in the past have either labelled the unla-

belled periods of sensor activity as an additional ‘‘Other’’

activity or have removed them completely [17]. In such

studies, the accuracy of the activity recognition system is

significantly impacted due to the presence of noise in the

unlabelled sliding windows being classified. In the study

presented in this paper, temporal clusters that contained

unlabelled data were not removed but were included in the

analysis as they could potentially represent activities that

are not labelled, yet are of significance in representing the

user’s behaviour. Periods of low sensor activity in the

Kitchen, which can be viewed as noise and not pertaining

to any important activity information, were automatically

removed by this technique as the density was too low to

generate a temporal cluster (as explained in Sect. 4.1).

The next subsection presents the results of UMAP.

5.2 UMAP visualisation

This section presents the results of UMAP visualisation.

Figure 5 shows UMAP plots generated for each day of the

week, for four 12-week periods (Period 1 (P1): weeks 2 to

14, Period 2 (P2): 3 to 15, Period 3 (P3): 4 to 16 and Period

4 (P4): weeks 17 to 29).

Each data point in the plot represents a temporal cluster

which was extracted through KDE. As UMAP is primarily

used for visualisation and clustering is generally not rec-

ommended [16], the analysis included for this approach is

therefore based only on what is visually discernible.

As can be seen from Fig. 5, the UMAP plot for each day

of the week has a slight triangular morphology (most evi-

dent in Tuesdays). However, each day of the week still has

a distinct visual morphology that persists for at least the

first three overlapping 12-week periods. Additionally, it

can be observed that plots for Period 4 (weeks 17 to 29) in

Fig. 5 are visually different compared to the plots for the

preceding three periods, with the exception of Fridays.

While we can’t conclusively determine the cause of this

difference, noting of the presence of similarities and dif-

ferences by the carer could be used as a mechanism to

prompt further investigation through a discussion with the

service user. For Mondays, Fig. 6 shows the UMAP

changing over time from week 2 to 29. Each plot comprises

data from a 12-week period, with a step-size of 3 weeks.

There is a gradual, but visually discernible shift in the

UMAP pattern over time.

When comparing the number of temporal clusters

between the individual days of the weeks over all the four

time periods, it can be seen in Fig. 7 that the number of

temporal clusters is lower on Wednesdays and Thursdays.

As the number of temporal clusters is indicative of the

overall level of activity, this information could provide

useful insight for the carer as to user’s different activity

levels over the weeks.

Furthermore, in Fig. 7 a trend of a reduced number of

temporal clusters for Period 4 can be noted when compared

to the previous periods 1, 2 and 3. This is particularly

evident for Tuesdays and Fridays.

5.2.1 Radar graph comparison

In Fig. 5, it can be seen that in addition to the overall

UMAP cluster morphology, the level of dispersion of the

points is also different for different days of the week. For

example, when comparing Mondays to Thursdays in

Fig. 5, a difference in the dispersion of points between

Mondays and Thursday is visually discernible, i.e., the

UMAP for Mondays has areas of varying density of points,

while the UMAP for Thursdays is comprised of more

Table 2 KDE results for the test period: days 53 to 81 (total 28 days)

Labelled activities in the test period 243

Temporal clusters extracted (labelled) 243

Temporal clusters extracted (unlabelled) 211

Total temporal clusters extracted 454
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Fig. 5 UMAP visualisations for each weekday for three overlapping 12-week periods, and one separate 12-week period. Total TC’s—total

number of temporal clusters
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uniformly distributed points. This could be partially

explained by the lower number of temporal clusters present

on Thursdays as shown in Fig. 7; however, Thursday for

P4 has more temporal clusters than P3, but the data points

in the former are still more dispersed, with a less distinct

morphology. To gain further insight into these differences,

radar graphs were generated for Mondays and Thursdays to

identify the total number of temporal clusters at different

times of day (ToD), similar to the approach presented by

Fiorini et al. [8].

The radar graphs presented in Figs. 8 and 9 also show

the standard deviation for each ToD over the 12-weeks.

The activity, as represented by the number of temporal

clusters at different times of day, in the radar graphs for P1,

P2, and P3 are more similar to each other, while the radar

graph for P4 shows different activity levels at different

times of day for both Mondays and Thursdays. This cor-

relates with the differences in the dispersion pattern of

points in the UMAPs from Fig. 5.

When comparing Mondays to Thursdays in Figs. 8 and

9, Mondays indicate a more regular routine than Thurs-

days. This is also corroborated from the lower standard

deviation for the majority of the ToD clusters for Mondays

when compared to Thursdays. This relates to why the

UMAP for Thursdays is more spread out and less distinct

when compared to Mondays.

For both Mondays and Thursdays, the standard devia-

tion for P4 is the highest (reaching a maximum of 2.21 and

2.13, respectively). The radar graphs show a more varying

pattern of activity for different times of the day during P4

than during the previous periods P1, P2 and P3. The

UMAPs for Thursday also indicate differences between the

first three periods and P4. It should also be noted that as

can be seen on the P4 radar graph for Thursdays, there are

two ToD’s with a standard deviation higher than 2, which

could explain why the UMAP for Thursdays in P4 is much

less distinct in terms of morphology and distribution.

This analysis goes some way in explaining how the

UMAPs in Fig. 5 encapsulate information about the reg-

ularity of a user’s routine, as when the user has a more

fixed and repeatable routine, the corresponding UMAPs

show a more distinct morphology and dense dispersion

pattern of points. It must, however, be noted that the

UMAP encodes more information from the temporal

clusters than the one parameter shown in the radar graphs,

as the UMAPs are generated using the full feature set as

presented in Sect. 4.2. Therefore, while the radar graphs

show the total number of temporal clusters for each ToD,

the morphology and dispersion density of points in the

UMAP plots encapsulate much more information than just

the temporal clusters. Visualising the activity data through

UMAP is put forward as a visualisation technique which

could enable carers to identify changes over time. It is

envisaged that if a visually discernible change was noted,

the next step would be for the carer to examine the

specific activity data in more depth and initiate informed

discussions with the service user to understand what may

be causing these changes and suggest appropriate inter-

ventions if the change is detrimental to their well-being.

For further objective analysis of the data, pattern recog-

nition and blob analysis to automatically detect changes

in the user’s routine based on the changes in the mor-

phology and density patterns of the UMAP plots could be

carried out. This would allow the system to then auto-

matically flag changes in the user’s routines as well as

notify the user and their carer.

Fig. 6 UMAP for Mondays for 12 week periods moving forward by

3 weeks at a time, from week 2 to 29

Fig. 7 Graph comparing the number of temporal clusters between the

four time periods (P1, P2, P3 and P4)
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6 Conclusions and future work

This paper illustrates how unsupervised learning tech-

niques can be used to discover activity patterns in unla-

belled data from WSNs such as PIR sensors. A key

advantage of this methodology is that it does not require

hand tuning of parameters for the unsupervised learning

methods. KDE is used for automatically extracting periods

of dense sensor activity, as opposed to using of traditional

fixed length sliding time and sensor windows. The benefit

of using KDE is that the parameters can be statistically

derived from the data and the method is not reliant on a

fixed time window set by the user.

As carers are already overworked and have limited time

for each user, it is crucial that the time they spend with the

service user is utilised efficiently. The work presented in

this paper revealed through UMAP and KDE, that indi-

vidual week-day data, considered over long periods, could

contain unique features that can be used to infer user

activity levels and track any changes over the long term.

The information discovered through UMAP visualisations

could be further utilised as part of a structured process or

assessment protocol which helps to identify anomalies or

changes in user activity. This could then be used for sup-

porting carer–patient interactions, or even tracking the

effectiveness of interventions and medication on the user’s

health condition as indicated by their activity or changes to

routines over time.

As one of the noted limitation of this study is that it is

based on a single user’s data, it would be important to test

the methodology presented on a larger number of users,

acknowledging that the method of relying on motion

Fig. 8 Mondays: Radar graph for each 12 week period showing the total number of temporal clusters at different times of day. SD = standard

deviation in total number of temporal clusters for that time of day. P1, P2, P3 and P4 refer to the four time periods included in the analysis
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sensors might not be able to track an individual’s activity in

a multiple occupancy scenarios, unless additional sensing

is used to track an individual occupant as well.

This paper presented a novel approach to generate

actionable information and insights on changing user

activity over time from unlabelled data in an unsupervised

manner. Future work will involve developing a real-time

implementation using the KDE temporal cluster extraction

technique, as well as testing on other datasets, and trialling

UMAP and radar graph visualisations based in the real-

world with carers and their service users. The use of pattern

recognition and blob analysis will also be investigated to

automatically detect and flag changes in the UMAP plots

over time in order to generate notifications to the user as

well as their carers. The underlying aim of this work is to

develop a system that can support the user, as well as their

carers, by providing actionable information based on

learning their activities and routines and tracking any

changes to these, without the need for labelling large

amounts of data or the use of intrusive devices such as

microphones and cameras.
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Fig. 9 Thursdays: Radar graph for each 12 week period showing the total number of temporal clusters at different times of day. SD = standard
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