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A stream processing framework based on linked
data for information collaborating of regional

energy networks

Abstract—Coordinating of energy networks to form a city-level
multi-dimensional integrated energy system becomes a new trend
in Energy Internet. Stream processing is the key technology in
the information collaborating. However, the information flows are
hard to represent and construct for heterogeneous multi-source
data. Meanwhile, data incompleteness and fixed processing in
streams decrease the precision and flexibility of stream process-
ing. To solve these problems, we propose a stream processing
framework based on linked data for information collaboration
among multiple energy networks. The framework provides a
universal data representation for stream derived from linked
data to model heterogeneous data, leverages semantics based
information fusion and division to ensure the data completeness,
and establishes exchanging channels and processing windows
with variable granularity to achieve dynamic stream processing.
A real-world case study is implemented to demonstrate the
adaptability, feasibility and flexibility of the proposed framework.

Index Terms—Linked Data, web semantics, data fusion, stream
processing, Internet of Things.

I. INTRODUCTION

City-level multi-dimensional energy network with deep in-
tegration of multiple energy forms is the key application in
Energy Internet [1] to achieve multi-energy complementarity
and demand response. Energy Internet is a typical case of
Internet of Things(IoT) [2] where stream processing [3] plays
an important role. Stream processing, which supports online
data collection, computing and transmission, provides a con-
tinuous and efficient mechanism for system monitoring and
management. In large cities, there are several isolated regional
energy networks located in distributed space. To achieve a
higher-level energy optimal utilization, development in energy
hub [4] brings new potential in energy flow exchanging. And
advancements in stream processing present the possibility of
information sharing. However, to adopt stream processing in
information collaborating among multiple energy networks,
the main challenges lies in three aspects.

(1) Heterogeneous data from different energy networks are
hard to dispose of in stream format. Each utility component
in a network has its information model. These models are
different in formats (such as key-values, files, SQL tables
or rows, etc.) and semantics (such as ’incoming water’ and
’inlet water’), so as the generated information flows such
as water temperatures, pipe pressures, monitoring videos,
etc. The heterogeneity in multi-source data makes the data
collection more complex to unify them for interoperability in
further processing. Therefore, a unified data description model
becomes the first concern in stream processing for energy
network information collaborating.

(2) Data incompleteness affects the accuracy of stream
processing under volatile application scenes. Towards appli-
cations in a time slot, all the related data need to be prepared
for reasonable analysis. For example, load, storage and pipe
networks together influence the running of energy sources. A
lack of data in each part leads to the wrong running command.
But these data are collected from hundreds of thousands
of machines with various updating frequencies, ie. spatially
discrete and temporally inconsistent. It is hard to find all the
data of the same type and machine of the same utility to avoid
information loss. Therefore, it is necessary to discover the
semantics and relations of data and automatically link related
data to the analysis model.

(3) High volatility of energy IoT data requires variable gran-
ularity of stream processing in rapidly changing environments.
Status of energy systems changes fast making online analy-
sis inevitable. However, data are sent and used in different
frequencies in different scenarios. Taking the energy source
running control scenario as an example, the analysis time slot
can be long when the energy load is small, but should be short
when the load is near the existing supply ability. When several
features collaborate, the adjustment of processing tempo is
more complicated. Therefore, the dynamic adjustment to the
granularity of stream processing is important.

To fulfill information flow directed deep integration of
multiple energy and collaboration of multiple networks, we
propose a stream processing framework based linked data [5]
for unified data representation, automatic relation discovery,
flexible exchanging control and versatile data processing. In
this work, a universal data representation for IoT systems is
designed as the foundation of interoperable digital twins for
IoT systems. A dynamic information exchanging mechanism
is proposed, which consists of semantic fusion directed ex-
changing contracts and channels, and provides a flexible way
to connect adequate data towards applications. A data-driven
time window adjustment approach is proposed to achieve the
variable granularity of stream processing. Finally, a real-world
case study is conducted on three regional energy networks
demonstrate the adaptability, feasibility and flexibility of the
proposed framework.

The rest of the paper is organized as follows. Section II
introduces the related work in the field. Section III gives the
complete landscape of the technology framework. Section IV
presents the detailed process and methods. In Section V, a
case study is shown and a discussion of the comparison with
related work is illustrated. Finally, Section VI concludes the
paper and the future directions of the work.
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II. RELATED WORK

For the real-time processing of Energy Internet, there are
two main solutions to solve the latency challenge, the batch
processing and the stream processing [3]. Considering the
high volatility of data in Energy Internet, stream processing
becomes the better choice. Flink [6] and Storm [7] are
helpful tools as mature solutions. Dautov et al. [8] implement
IoT/CPSS to process real-time data in distributed IoT systems.
Puschmann et al. [9] applying stream clustering to IoT data
stream for data fusion. However, how to self-organize and
transmit data in complicated application scenes with variable
granularity is still open.

To uniformly access the diverse data, many researchers
have been working on different approaches. Semantic Sensor
Network (SSN) ontology [10] is one of the widely-used
ontology in the IoT domain. Graph of Things [11] is also a
complete practice of combining stream processing, semantics
and IoT. Chun et al. [12] design an IoT-DS which supports
metadata updating, semantic description and discovery of ob-
jects in IoT. However, the domain-specific nature and complex
rules in ontologies limit the ability of semantic extension,
which lowers the adaptability of the approach. Then, applying
Linked Data [5] as IoT data representation become an effective
solution for large-scale data integration [13] for its scalability.

Addressing the data incompleteness issue, discovering se-
mantic links [14] to improve is a mainstream direction. Milis
et al. [15] propose SEMIoTICS to semantically model the
components based on ontologies, and online compose and
configure the control loops. Shi et al. [16] propose that exploit-
ing linked open data to enrich the semantic information for
better data fusion and knowledge discovery helps manage the
information network. To intelligently manage the data commu-
nication, Bello et al. [17] conclude some intelligent device-
to-device communication mechanism in IoT. The semantic
relation assistant processing for information comprehensive
communication still needs to be grounded.

The above researches respectively provide strong insights
into the challenges of data acquisition, fusion, transmission
and processing in complex IoT systems. Leveraging semantic
data for unified data access is widely accepted in nowadays
IoT systems. The ontology is one of important technology in
semantic processing but is hard to extend. Linked data thus
becomes a better choice. Although it is useful for data fusion
and knowledge discovery, merely research has focused on ap-
plying it for information transmission. For stream processing,
applying it to dynamically changed IoT systems is still an open
issue. Therefore, a comprehensive data processing approach
considering the scalability, flexibility and feasibility for IoT
systems still remains to be revealed.

III. THE FRAMEWORK

To achieve the uniform data representation, dynamic infor-
mation communication and real-time processing for multiple
energy networks, a layered technology framework is illustrated
in Fig. 1. It takes the metadata of subsystems as the input and
goes through the four phases to achieve collaborative control
of the whole system.

Fig. 1. The technology framework of the proposed approach.

a) Phase I: Linked data based universal data represen-
tation: This phase designs a set of linked data concepts as
the universal representation and transforms the metadata of
subsystems to linked data accordingly. Standard RESTful APIs
are generated for uniformly access through the web as a digital
twin for the physical system.

b) Phase II: Semantics based information Fusion: In this
phase, metadata in linked data are aligned with the assistance
of domain ontology. New potential links and related external
data are discovered with the help of Linked Open Data. A
global metadata graph is established.

c) Phase III: Transmission contract and channel man-
agement: Information transmission contracts are generated
according to discovered relations among metadata. And cor-
responding information exchanging channels are established.
When changes occur in metadata or data transmission, the
channels are on-demand established, dormant or destructed
and the network dynamically evolves.

d) Phase IV: Dynamic stream processing: According to
the application models defined in linked data, the correspond-
ing input data are linked and listened in channels. A sliding
window is adjusted for each model according to linked data.
When the width is settled, the models are dynamically updated
to run real-time processing.

IV. THE APPROACH

An Integrated energy system is complicated containing vari-
ous energy network subsystems. The information collaboration
between them is difficult because they are black boxes to each
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Fig. 2. The roadmap of the proposed approach. Starting with metadata uploading, a global metadata graph is built in the bus using semantic technicals.
Information transmission contracts are generated according to semantic links and indexed in corresponding tables. On-demand information exchanging channels
are managed according to the table. And stream processing is implemented at the end of channels.

other with separate data storage, control logic and functions.
Fig. 2 illustrates the roadmap of the proposed approach to
solve the issue. First, metadata in universal data representation
is uploaded to a shared bus. Then, data merging is done to
align multi-source data on the basis of domain ontologies
and LOD. And new potential relations are discovered for
transmission contract construction. Transmission channels are
managed under the direction of contracts. Stream processing is
implemented at the channels and adjustment of time windows
is done with data monitoring.

A. Linked data based universal data representation
Considering the features of energy IoT data, a universal data

representation is designed. First, concerning the heterogeneity
in data schemas and structures, linked data is utilized to adopt
an arbitrary number of attributes and relational links. A typical
linked data tuple ⟨s, p, o⟩ model is applied, where s and o
refer to the subject and object instances, and p refers to the
predicate that records the relation from s to o. From the utility
aspect, data can be divided into online ones that record the
running status of a system and offline ones record the static
information. Also, according to the source of data, internal
data generated by the system and external data accessed from
the Internet or other systems are also different. Therefore, a
linked data based metadata model is designed as shown in
Fig. 3, four basic and two utility concepts are defined for
uniformly model metadata. And a part of instances in an EI
system is shown as an example.

Device defines the equipment in IoT from the edges to
the centres, including stations, terminals, sensors, etc.. Each
device has three basic kinds of predicates: hasInFlow, ha-
sOutFlow and hasProperty. The former two link to Flows
the device leverages and generates respectively. hasProperty
links the static attributes, such as size, position, working
temperature, etc.. A Property can be a numerical, string,

Fig. 3. Basic entities and relations in the metamodel as linked data with
metadata instances of close relations in energy systems. The above part
contains the 4 stages and the typical data correspondingly. The bottom part
shows the predefined 6 concepts and interrelations.

or any complex structure. As shown in Fig. 3, a cooling
machine Cooler owns tuple data ⟨Cooler, isA,Device⟩,
⟨Cooler, hasOutF low,Chilled water outlet flow⟩, etc..

Flows are transaction data [18] record status of
devices. They take generatedBy and destinationTo to
refer the devices to generate and receive the flow data.
hasProperty contains the attributes of a data flow. In
Fig. 3, Chilled water outlet flow has typical
tuples like ⟨Chilled water outlet flow, isA, F low⟩ and
⟨Chilled water outlet flow, hasProperty, Temperature⟩
For each numeric property, a unit is applied. For example,
⟨Temperature, hasUnit, F ⟩Units can help us quickly
recognize the category of the data and align data from
different sources.

Environment is a special kind of flow not recorded by the
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devices in the system but introduced from outsides such as the
Internet. It has strong influences on the running of systems.
For example, the daily temperature is not recorded in an
energy system but is an influencing factor in the prediction
of consumed thermal volume, which makes it an environment
entity. It has no generatedBy and destinationTo predicates.

Models are the logically defined analysis models that neither
have a corresponding physical entity nor a flow generated by
any physical entities. The models carry out services, analysis
and prediction models to regulate the running of the physical
system. The predicate output connects the generated decision
data flows and destination devices. Similarly, input refers to
the data used in the analysis model. hasProperty here is for
the fixed parameters applied in the model, and ownedBy links
to the subsystems where the model runs. In Fig. 3, Cold
energy scheduling model is used to control the cold
energy balance in the system, and involves all the flows as
input and indirectly linked with the others in the whole energy
lifecycle to get a more precious result.

According to the updating frequencies of data, we define
models and devices as offline data for the data are fixed since
design time and are rarely exchanged during runtime. While
data flows and environments are online because they arise and
grow along with system running.

Layered namespaces are applied to demonstrate the be-
longing of data and also compose a part of the resource’s
unique identifier. By applying the linked data metamodel, data
instances can be stored in a graph database and accessed by
RESTful APIs with unique resource identifies (URI).

B. Semantics based information fusion

To find the related data and construct flexible channels, we
need to fuse the data according to the semantics. We first
match the same entities by similarity calculation, including the
textual and the structural parts, as shown in Algorithm.1. The
textual similarity Simlex utilizes the full name of the entity by
separating the layered namespace into fragments and applying
Jaccard similarity on the fragment sets as in Line 3. However,
the fragments of both entities are not strictly the same but
also with lexical similarities. To that end, the union set is
generated according to Line 2 in Algorithm.1 on the basis of
the lexical similarity of fragments. The lexical one is the cosine
similarity of word embeddings [19] e(v) of two elements. As
for the structural similarity, we calculate the Jaccard similarity
of their object sets in Line 5, where Obj(v) denotes the set of
all vertices that is the object of subject v in a tuple among the
metadata. Similarly, the objects themselves have similarities,
so the textual similarities of objects are used to calculate union
in Line 4. And the combined similarity sums up the textual
and the structural similarity with two weights in Line 6. When
the similarity exceeds a threshold, we consider the two data
entities are the same.

Based on the vertices matching algorithm, the sameAs
relations are found. Then, we introduce the domain ontology to
find potential relations among them. We match the entities in
metadata with the ones in domain ontology using Algorithm.1
and when the combined similarity exceeds the threshold, we

Algorithm 1 Vertices matching algorithm
Input: two vertexes v1, v2
Output: Combined similarity Simcom

1: function CALCULATESIMILARITY(v1, v2)
2: uniontxt ← Union(Frag(v1), F rag(v2),′ lex′, θlex)
3: Simtxt =

|Uniontxt|
|Frag(v1)|+|Frag(v2)|−|Uniontxt|

4: unionstrct ← Union(Obj(v1), Obj(v2),′ txt′, θtxt)
5: Simstrct =

|Unionstrct|
|Obj(v1)|+|Obj(v2)|−|Unionstrct|

6: Simcom = αSimtxt + βSimestrct
7: return Simcom

8: end function
9: function UNION(Set1, Set2, type, θ)

10: for n ∈ Set1 do
11: for m ∈ Set2 do
12: Simlist.append(n,m, Sim$type$(n,m))
13: end for
14: end for
15: Descending order Simlist
16: while Simlist not null do
17: if Simlist[0] > θ then
18: Union(Set1, Set2).apend(Simlist[0])
19: Remove elements with n and m from Simlist
20: end if
21: end while
22: return Union(Set1, Set2)
23: end function

add the standardName predicate for the vertex to align the
concepts. Further, the direct relations and the entity in the
domain ontology are added to metadata and recorded as the
initial accordance of data transmission contracts.

When the found link connects two instances of Property, it
is meaningless towards transmission because the transmission
of the single attribute lacks useful identifier information such
as a primary key or a timestamp. To solve the problem,
we upcast the link to add necessary assistant information to
make the transmission meaningful. To do so, we first decide
whether the link is useful by the concept of IEF(Inverse Entity
Frequency). It shows the frequency of the term as the attribute
of entities in the whole metadata base.

ieft = log
|E|

|{s : (?s, ?p, t) ∈ Edge}| (1)

where |E| denotes the total number of entities that do not have
a corresponding edge vertex in the metadata base, s denotes
the entities that own the attribute t. The ief measures the
importance of a property, when ief exceeds a threshold θ,
we believe that the attribute has significance and the link is
moved to the subject of the attribute, which is called upcast.
Otherwise, the link is ignored, which is called rollback. A
motivation example is timestamp which owns by most of
the data but is meaningless to transmit alone. By using IEF,
these kinds of useless links can be omitted.

Besides the direct relations discovered from data merging,
there are also potential relations with external elements that
have an influence on existing data. To further enrich the
semantic information and find more potential relations, LOD
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is utilized. Similar to discovering links from the domain
ontology, the sameAs relation is first built linking to LOD
entities. Then, a step length is set to find whether there is
another coordinate reachable within the step length. If so,
a relation potentialRelatedTo will be built between the
corresponding entities. For the directly connected entities in
LOD but not in the local metadata, it will be added in the
metadata. And a data finding task is registered and broadcast to
administrators to find open data of that entity from the Internet.
Once the data are found and accessible, an Environment
entity is added.

C. Transmission contract and channel management
As the data scale grows large in IoT systems, the automated

data exchanging is important. To dynamically configure the
data exchanging channels, the transmission contract is pro-
posed. It contains the metadata matching result between two
components of different subsystems, aiming to notify the two
components which data they can access and how to transform
and utilize from the other side. A transmission contract is
denoted as

contract =⟨name, type, commonAttr,

relatedAttr, sAttr, oAttr⟩
(2)

where
name := (p, s, o),

commonAttr := {(name, s.attr, o.attr)},
relatedAttr := {(p, s.attr, o.attr)},
sAttr := {s.attr}\(commonAttr ∪ relatedAttr),

oAttr := {o.attr}\(commonAttr ∪ relatedAttr)

(3)

in which type denotes the category of the contract,
commonAttr denotes the set of same attribute pairs between
two entities, relatedAttr is for other linked attributes, sAttr
is for attributes only in the entity s and so as oAttr. The p
in name denotes the predicate of the link, s and o are the
subject and object entities. The name in commonAttr is the
standard entity name in domain ontology. The attributes of a
entity are the direct object nodes linked to the specific entity.

According to the data types of the subject and the object
of the link, the transmission contracts are divided into three
categories as illustrated in Table I. The entity transmission
contract is for offline data entities. Since the updating and
transmitting of offline data are pulsed, the connection is built
on demand without keeping a dedicated channel. On the
contrary, online data are generated consequently and require
high efficiency and stability in reading and writing. Therefore,
for online data entities, the long transmission contracts are
used to build a persistent connection. Analogously, the one-
way long transmission contract is used for the connection
between online and offline data. The data flows from online
data to the offline data are persistent and the reverse ones are
immediate. Three indexing tables are maintained in the bus to
store the three kinds of transmission contract entries.

Exchanging channel establishment. A transmission con-
tract is sent to both sides with the IP address of the other
side. Two tables are maintained at each subsystem to direct

TABLE I
THREE TYPES OF TRANSMISSION CONTRACTS

Type Subject Object Connection

Entity transmission contract Offline Offline Immediate

Long transmission contract Online Online Persistent

One-way long Online Offline Persistent(Forward)
transmission contract Offline Online Persistent(Reverse)

the establish and run of the channels. One is for persistent
connections, and the other is for immediate connections. For
the persistent connection, a private channel, ie. an independent
process with a dedicated queue is built on both sides for
data transmission listening and handling. In the pull mode,
the requester refers to the contract to locate the data. The
listener in the sender side checks the IP address according to
the transmission contract and send data. On the requester side,
the listener utilizes a dedicated queue to receive the data. In
the push mode, the sender checks the contract table to find
the destinations of the data and aligns data accordingly before
sending. The receiver listener checks the data and IP and
stores the data in the specific queue. A pair of processes that
handle the same contract compose a channel. Each persistent
connection utilizes a private channel. The fixed bandwidth is
assigned to the channel to make sure the steady transmission
of the persistent connection. For the immediate connections,
the listener process and queue are shared. In such a channel,
data from different sources compete for the resources and the
bandwidth, which is called a public channel.

Exchanging channel destruction. When the metadata
change, transmission contracts can be expired. The corre-
sponding system nodes will be informed, and the contract
tables will be updated. If a (one-way) long entity transmission
contract is expired, the established data exchanging channel
will be released to save the computing resources for others.

Exchanging channel dormancy. In some cases, the meta-
data does not change, but the data channels are still rarely
used because (1) the two nodes connected has not yet realized
they need that data or (2) the data are intermittently used.
Under these circumstances, a channel dormancy mechanism is
applied. When the listener finds no data request for a lasting
time while the common channel has a pending request, the
private channel will be dormant to release the computing
resources and lower the fixed bandwidth for the other running
channels. And when data request comes again in the private
channel, the channel will be awakened. In this way, we keep
a priority of the data transmitted in the private channel and
also a better performance of the whole system.

By applying the above data transmission strategy, the meta-
data modification of a single node can be dynamically accepted
by all related nodes, namely, the extensibility is guaranteed.
Moreover, the unrelated nodes are still black boxes to others,
which keeps the reliability and safety of the system.

D. Dynamic stream processing
Analysis models are bound to subsystems by system users.

Fig. 4 shows the process of running real-time analysis with
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stream processing. A sliding window receives the input data
defined by the model from corresponding exchanging chan-
nels. Then, data preprocessing is performed in the sliding
windows of time t, and the model utilizes the data in t
to calculate and analyze the real-time result. Obtaining the
results, the models generate real-time output flows. The new
output flows are then sent to the destination subsystems via
the specific private channels according to contracts. Finally,
the output flows are received by destination subsystems and
new models are real-timely performed.

Fig. 4. The mechanism of real-time analysis with stream processing.

When applying the models, to improve the efficiency and
performance of the models, we divide them into two kinds:
timing-related model and timing-unrelated model. For the
timing-related models, the data transmission via the network
can lead to data disorder. Therefore, we reorder the received
data in the sliding windows. A cache is applied for each time-
related flow in the sliding window. While for the timing-
unrated model, a single time window is enough for data
preprocessing. Besides the reordering of the data, there are
other data preprocessing to be done in the sliding windows,
such us standardizing of units. By introducing open data, the
conversion relations among units are added to the linked data,
and the automatic data unit alignment is performed in the
sliding window. Considering the width of time windows is
decided by the usage of the models but the manual setting for
every model is costly for a large amount of the models in a
system. An automated window width adjustment mechanism
is provided by derivative prediction. When the result has an
acute change, the width of the window is shortened. By setting
the time window, the models are applied to small bundles of
data and results is attained in a short time. According to the
transmission contracts, the results are accurately transmitted
with high priority to fulfill the real-time control.

V. CASE STUDY AND DISCUSSION

In this section, we use an integrated energy system with
3 regional smart energy networks as a case to show the
application of the framework and discuss the approach with the
state of the arts to illustrate the characteristics of the proposed
framework.

A. Case Study in City-wide Integrated Energy System
1) Case Description: The integrated energy system is com-

posed of 3 regional smart energy networks and an energy
hub for energy exchange. The 3 energy networks located in

different districts in city S. These regional subsystems were
deployed on private clouds as independent EI systems. Each
manages the whole energy lifecycle of a region, ie. energy sup-
ply source, transmission network, load and storage. The energy
is multidimensional including cold energy, thermal energy and
electricity. To achieve the city-wide energy optimal utilization,
the energy hub joins to transform 3 types of energy among the
3 subsystems. From the information aspect, there are hundreds
of devices and data flows in each subsystem as shown in
Table. II. And there are some analysis models deployed in each
subsystem for different application purpose. For the detailed
design of analysis models are not the focus of this paper, a
simplified application model is used to demonstrate the usage
of the framework. An implementation of the framework of the
case system is shown in Fig. 5.

TABLE II
THE RESOURCE AMOUNT OF THE INTEGRATED ENERGY SYSTEM

Flows Devices Models Total

Subsystem 1 398 397 37 832

Subsystem 2 274 163 24 461

Subsystem 3 288 176 23 487

Total 960 736 84 1780

Fig. 5. An implementation of the information collaborating platform based
on the proposed framework.

2) Application Scenarios: To better demonstrate the appli-
cation of the methodology, we illustrate scenarios of two kinds
of energy collaborating as shown in Fig. 6. The cloud platform
is the entry of open data from the Internet including weather,
locations and economics. For normal energy collaborating,
it sends the open data to 3 subsystems according to the
external link table. An energy load prediction model runs in
each subsystem, leveraging the open data with internal data
to predicate its energy load and supply ability in next hour.
The predicted results are sent to the cloud platform according
to the entity transmission tables to run the global scheduling
model. The model gets data from the 3 subsystems in a sliding
window, and analyze if energy exchanging is needed. If so,
energy transmission rules are sent to the hub for execution. The
other example is an emergency-triggered energy exchanging
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process. When some energy source devices encounter errors
inducing the energy supply interruption in some area, the
subsystem sends the error information to the energy hub
informing the lack in energy supply. The platform receives
and runs the error responding model to request left supply
abilities and distances from other subsystems. A new schedule
is made to transform energy from the normal subsystems to
the affected area.

Fig. 6. The system composition and example information flow of the
integrated energy system based on the proposed framework.

To achieve the above processes, the subsystems are firstly
registered on the platform. Fig. 8 shows a part of registered
metadata of a regional energy network subsystem. A semantic
network is incrementally built by information fusion. And the
transmission contract is generated.

Fig. 7. A piece of metadata in universal data representation of a ’Cooler’ in
an energy station in a subsystem and an instance for exchanging contract.

Secondly, a model is defined on the platform by formulating
the model as codes. A simplified energy scheduling model
with only internal energy load and storage can be expressed
as in Fig. 8 where the web pages of the cloud platform
are shown including define models, fuse information, adjust
sliding windows and finally run models.

To run the model, an adjustment on the sliding window is
done. Leveraging the historical data running on the model,
we get the results in Fig.9 showing the data trend predicting
error rates in different predicting methods. The method 1-6
sum derivative and the last data. The method 7-9 calculate
the mean of the data in a window as the predicted data. The

Fig. 8. The screen shots of cloud platform for information collaborating.

method 10-15 sum the difference and the mean. Except for
the methods with descending results, the best results are at
window width 2 and 3. In this way, the proper window width
of 2 is applied in this model. After all these configurations,
the model can run to give control to the whole system.

Fig. 9. The window width choice for stream processing in the case. The
window width of 2-3 is the best choice with the lowest average error.

B. Discussion
We compare our approach with three existing data com-

munication and processing solutions in IoT systems from the
aspect of methodology and performance as shown in Table III.

LEDM [20] refers to the Linked Enterprise Data Model and
its use in IoT system. The data model is derived from linked
data, and data alignment is conducted according to domain
ontology for heterogeneous data management. A stream-based
ETL process is applied in data management. IoT-ECS [21] is
a real-time data analytics and event detection for IoT based
communication system. It focuses on efficient and dynamic ad-
hoc stream data communication, leveraging existing ontologies
for data representation and stream processing for data fusion
and semantic analysis. SEMIoTICS [15] is a supervisor to
build semantic models for IoT components. It utilizes SSN
ontology as the semantic annotations for IoT data and applies
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semantic reasoning to configure the components according to
feedback data.

TABLE III
COMPARISON WITH RELATED WORK

Feature LEDM
[20]

IoT-ECS
[21]

SEMIoTICS
[15]

Our frame-
work

Data
repre-
sentation

Linked
Enter-
prise
Data
Model

Combination
of existing
ontologies

Combination
of existing
ontologies

Universal
Data Rep-
resentation
and REST

Information
fusion

Domain
ontology
aided

Domain on-
tology aided

Reasoning
based

Domain on-
tology and
LOD aided

Data
trans-
mission

Not men-
tioned

Dynamic
direction
selection

Semantic
directed,
automatic
and
dynamic

Semantics
directed,
automatic
and
dynamic

Stream
Process-
ing

Supported For linked
data
reasoning
and query

Not
mentioned

Supported

AdaptabilityDomain-
limited
data
fusion

Domain-
limited data
representa-
tion

Domain-
limited data
representa-
tion

LOD aided
data fusion

Feasibility Limited Weak Fair Good

Flexibility Weak,
fixed

Fair,
dynamic
runtime
update

Good,
automatic
runtime
update

Good,
automatic
runtime
update

From the perspective of functionalities, linked data and
ontologies are the main choices for data representation. In
the information fusion part, LEDM and IoT-ECS take domain
ontologies as reference and SEMIoTICS is based on reasoning.
Our framework introduces linked open data except for domain
ontologies making the fusion less domain specific. In Data
transmission part, LEDM does not consider the communica-
tion issue. IoT-ECS dynamically manage transmission via di-
rection selection at every moment data generated. SEMIoTICS
and our framework leverage automatically generated semantic
network to direct and dynamically update on changes. For
the stream processing aspect, except for SEMIoTICS, the
other three all implement stream processing to support the real-
time analysis. However, IoT-ECS only support stream semantic
reasoning and query. And SEMIoTICS only applies stream
processing in configuration but not in run time. LEDM and our
framework implement real-time control of the whole system
based on stream processing.

As for the performance measures, the adaptability is the
universalness and expandability of the system. IoT-ECS and
SEMIoTICS depend on existing domain ontologies for data
representation decreasing the versatility. LEDM and our ap-
proach use domain-specific data fusion approaches, which also
harms versatility. However, LOD utilization weakens domain
dependence.

The feasibility measures how systems work in a practical
environment. The lack of real-time control and the dependency

on domain ontology weaken the feasibility of IoT-ECS. LEDM
ignores data communication in the system, which makes it
hard to be applied to complex systems. SEMIoTICS uses
semantic data fusion to direct the data transmission and system
configuration, but the lack of stream processing in system run
and the domain ontology-based data representation limit the
scalability. While our approach comprehensively considers the
information in full physical lifecycle and real-time processing,
which is most feasible among the four solutions.

The flexibility is the ability to face internal and external
changes [22]. LEDM is not acquainted with any new connec-
tions and thus hard to extend. IoT-ECS dynamically adapts the
changes, however, it cannot inform data receivers about the
changes in real-time, which is weaker than SEMIoTICS and
our approach where data transmission is dynamically changed
on the basis of data semantics.

VI. CONCLUSION

In this paper, a stream processing framework based on
linked data is proposed for information collaborating of mul-
tiple regional energy networks. The framework first defines a
universal data representation based on linked data, which pro-
vides a unified way to describe heterogeneous data in IoT with
semantic information. Then domain ontologies and Linked
Open Data are introduced to build a rich semantic model of
the metadata to link related data. By applying semantics-based
data fusion, information transmission contracts are discovered
automatically and dynamically. Accordingly, flexible informa-
tion exchanging channels are established for different types
of data. Stream processing is applied for online data analysis,
making information collaborating become real-time resulting,
efficient and understandable. The adaptability, flexibility and
feasibility are demonstrated by the case study in a city-level
multi-dimensional energy integration system.

In the future, we will take fog computing into the frame-
work to build a layer model for data fusion to improve the
performance of transmission contract discovery. Also, we will
work on the approach of automatically finding external data
to make the framework better utilize the open data to provide
stronger Internet insights for processing.
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