
Multimedia Tools and Applications
https://doi.org/10.1007/s11042-019-08302-9

Robotic grasp detection based on image processing
and random forest

Jiahao Zhang1 ·Miao Li2 ·Ying Feng1 ·Chenguang Yang3

Received: 6 March 2019 / Revised: 6 September 2019 / Accepted: 30 September 2019 /

© The Author(s) 2019

Abstract
Real-time grasp detection plays a key role in manipulation, and it is also a complex task,
especially for detecting how to grasp novel objects. This paper proposes a very quick and
accurate approach to detect robotic grasps. The main idea is to perform grasping of novel
objects in a typical RGB-D scene view. Our goal is not to find the best grasp for every object
but to obtain the local optimal grasps in candidate grasp rectangles. There are three main
contributions to our detection work. Firstly, an improved graph segmentation approach is
used to do objects detection and it can separate objects from the background directly and
fast. Secondly, we develop a morphological image processing method to generate candidate
grasp rectangles set which avoids us to search grasp rectangles globally. Finally, we train
a random forest model to predict grasps and achieve an accuracy of 94.26%. The model
is mainly used to score every element in our candidate grasps set and the one gets the
highest score will be converted to the final grasp configuration for robots. For real-world
experiments, we set up our system on a tabletop scene with multiple objects and when
implementing robotic grasps, we control Baxter robot with a different inverse kinematics
strategy rather than the built-in one.

Keywords Real-time grasp detection · Novel objects · Improved graph segmentation
method · Morphological image processing · Random forest · Baxter

1 Introduction

Robotic grasping in an unknown scene involves environmental perception, motion planning,
and some issues about robot control. In this paper, we mainly concentrate on the perception
problem and partially about robot control with robot inverse kinematics. Perception is a
necessary skill for robot grippers to interact with environments. The motivation of visual
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perception in the research of robots is to recognize the correct poses to grasp objects. It is an
easy task for human beings to identify the perfect grasp poses for novel objects. However, a
visual task like grasp detection for unknown objects on a given image is a complex problem
for robots in recent years.

For general use of robots, detecting grasps of unknown objects fast and accurately on a
tabletop scene is indispensable. The main challenges for robotic grasp are:

• How to do object detection: If there are a pile of objects, it is important to figure out
where they are and separate them to find individual grasp configuration for each object.

• How to decide the best grasp configurations: For each object, the best way to grab it
is to find the proper pose, then approach it and close the gripper.

• How to control robot move to our desired pose: When we decide to grasp objects,
the control strategy can ensure the success rate when grasping the same object at the
same configuration.

With the incredible development of machine learning and deep learning methods, they
are widely used in computer vision tasks such as objects classification, objects detection,
and localization [12, 35–37, 39]. Their results show that deep learning can achieve high
accuracy of classification and precision of localization. Inspired by that, recent works try
to solve the grasp detection problem by a convolutional neural network (CNN) [34], deep
residual network (ResNet) [3] and other similar deep neural networks [18, 25]. All their
works utilized a famous human-made dataset - the Cornell Dataset which consists of 885
images (both RGB data and depth map included) with different types of objects and the cor-
responding labeled rectangles, the labeled rectangles have two parts: positive and negative
(Samples in Fig. 1).

For deciding the best grasp configuration, approaches in [13, 26, 28, 29] shows that
machine learning methods like SVM and deep learning methods like CNN have great power
to determine whether it can be graspable.

In this paper, we propose a machine-learning algorithm to decide the best grasp configu-
ration and improve a graph segmentation method to localize objects based on our previous
work [41]. The key advantages of the system are:

Fig. 1 Examples from the Cornell Grasp Dataset. There are many different kinds of objects. For each object
in the bottom, some positive grasp rectangles in the dataset are shown in the bottom
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• We use a graph segmentation algorithm to localize objects rather than deep learning
methods. Compared to deep learning methods, graph segmentation method does not
need to collect large amounts of data, train model and test, which makes our image
pre-processing task simpler. And We also use a background mask to reduce the time on
calculating the boundary between two regions.

• Unlike the sliding window approach which overlooks the area around tabletop objects,
morphological image processing tries to locate the graspable area around the object
itself and uses an iterative method to generate a candidate grasp set. Our results show
that by randomly choose a grasp from the candidate grasp set, we can also achieve a
79.12% grasp success rate. And an important part is that there is no machine learning
methods is employed.

• We train a random forest (RF) model on the Cornell Grasp Dataset and get a high
accuracy around 94.26%. Intending to predict the optimal grasp in our candidate grasp
set rather than searching globally, it runs efficiently with a speed of 28 fps when we
implement grasp detection.

• For Baxter robot, the built-in inverse kinematic (IK) algorithm can crash, when the
object is hard to be reached. We change the strategy with a numerical inverse kinematic
method using the Jacobian matrix of the robot.

Our works focus on implementing robotic grasp detection in real-time and find a good
configuration to grasp objects. And the results of our experiments show that our algorithm
is really fast to detect a good grasp for novel objects.

In the next section, we will introduce recent works about graph segmentation and robotic
grasp. Section 3 introduces our entire system and explains how each part of our system
works in detail. Section 4 is the detailed introduction for our experiments. This section
shows all the results in our grasp pipeline. Comparison results with other state-of-the-art
also listed. Finally, we make our conclusions in Section 5.

2 Related work

The problem of graspable feature detection still needs to be explored. A lot of researchers
try to find a solution to this. Old approaches in [2, 7, 20] wanted to solve the grasping
problem by form-closure or force-closure grasp. While these types of approach can grasp
some objects stably, it overlooked the facts that it was unrealistic to obtain the full model
of objects in the real situation. Until recent years, with the development of RGB-D sen-
sor, researchers can get a high-resolution image, as the work in [33], an active triangulation
sensor was used and with the accurate information, Deepak et al. successfully used graph
segmentation and a supervised localization algorithm to separate the graspable and ungras-
pable regions, it didn’t rely on the shape of objects, and that made their algorithm robust to
grasp objects. To get the full model of objects, there also have lots of great works: 3D grasp
simulation using GraspIt or OpenRAVE had been made by [9–11, 23, 24]. OpenRAVE [6]
is a platform to simulate and analyze geometric information of objects and robotic kinemat-
ics. Through simulation, researchers can save a lot of time from collecting data and be more
convenient to do experiments. Also, it is very helpful for validating the effectivities of dif-
ferent algorithms. In [9–11], they trained the grasp classifier through simulation. They also
further developed a weighting system to make graspable judgments located at every point.
That made their works reliable and easy to generalize to more complex system equipped
with diverse hands. Another example is similar to 3D reconstruction. Huaman [15] and
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Makhal et al. [22], tried to find the geometry representation of every object. They mirrored
the incomplete point cloud obtained from the sensor to approximate the real point cloud of
objects. Apparently, it was not accurate and processed all the point cloud for every object
was time-consuming. Most of the previously introduced methods failed in real time and not
so effective to detect the feasible grasps of novel objects.

With the great power of machine learning in classification, researchers find that novel
objects grasp detection can be classified into two parts, which is graspable or ungraspable.
SVM has been widely used in grasp feature classification [11, 28]. Pas and Platt [28] used
two sensors to generate a two-view registered cloud, and then they used it to generate a
grasp dataset. Their methods are that first, they sampled lots of hand configuration as the
input features, and then they labeled every hand configuration through judging whether this
configuration satisfied antipodal grasp. By their labeled dataset, they can train their classi-
fier to detect graspable features. And deep learning methods are also been applied in grasp
detection as a classifier since [19] implemented a stacked autoencoder (SAE) and ran at
13.5 seconds per frame with an accuracy of 93.7%. SAE is time-consuming when it was
implemented on grasp detection using sliding window approached. Redmon and Angelova
[34] used AlexNet [17] to solve it which ran at 13 frames per second on a GPU. It was a
significant work because it shows the fact that grasp detection is not only a classification
problem but also it is a regression problem. YOLO (You only look once) proposed by Red-
mon et al. [37] can classify objects with high accuracy and localize the recognized objects
with coordinates of the bounding box simultaneously in real time. Inspired by the simul-
taneous implementation, [38] used a residual convolutional neural network to predict the
confidence map and the rectangle for grasps for single objects in an image. But for the
all-purpose utility, a robot should find grasps in object cluttered scenes. A GG-CNN is pro-
posed by [25]. Their work is to use the depth image to predict the grasp quality and grasp
pose of every pixel. Other methods in [40] developed a roi-based detection system which
can grasp objects in a pile of objects scene. All their works [3, 18, 34] made the full use of
convolutional neural network which need no pre-processing and could automatically extract
features. Nevertheless, our works show that image pre-processing is helpful to reduce the
detection time for our trained model. Our use of decision trees is novel and perform better
than most of the current research.

The inverse kinematics is a mapping problem, which converts the end-effector pose
to robot self-configuration [30]. For solving the inverse kinematics problem, there are
three main solutions that are numerical, analytical and approximating. Aristidou et al. [1]
introduced that numerical methods tried to attain qualified solutions through iterations
while analytical methods wanted to find all satisfied solution through a mapping func-
tion. Maciejewski and Klein [21] solved the inverse kinematics of kinematically redundant
manipulator through approximate solutions. They tried to solve it by calculating the map-
ping function between the joint velocities and the end-effector’s velocities. And the mapping
function can be found through the generalized inverse [32].

3 The system of robotic grasp

In this section, we propose a robotic grasp system based on image processing and random
forest. We will introduce this system from four parts. Section 3.1 is the statement of our
grasp detection problem. The architecture of our system is also introduced. Section 3.2 gives
a detail explanation on how we change the metric of graph segmentation relative to previous
approaches. The results of our method are also presented with the comparison of others’



Multimedia Tools and Applications

approaches. And the morphological image processing is also shown. Section 3.3 explains
how we preprocess our data and train our random forest classifier on Cornell Dataset. For
the robot control parts, we also introduce the robot inverse kinematics in Section 3.4.

3.1 Problem statement

By capturing the colored image and corresponding aligned depth data, our final goal is to
find out a stable way to detect grasps of novel objects. According to the methods proposed
by Jiang et al. [16], our representation of robotic grasps is based on five-dimensional rect-
angles. This representation is a simplified version of the seven-dimensional methods [16,
34] and by getting the normal vector of a rectangle’s centroid, we can project the rectangle
into six-dimensional space, so it can be converted to the final pose (including position and
orientation) of a parallel plate gripper (Fig. 2).

As shown in Fig. 3, the rectangle (r) which can be represents by:

r = {x, y, θ, h,w} (1)

where r is the grasp of ground truth (final grasp), (x, y) and θ is the centroid’s coordinate
and orientation of r respectively, and the height and width are shown by (h,w).

By using the representation of a five-dimensional rectangle, we convert the problem of
robotic grasps to detect objects in an image and find the reliable rectangles on the detected
objects. Our grasp detection pipeline is presented in Fig. 2. From it, we can see our improved
graph segmentation is intended to set the object and background apart. This will be helpful
for later implementation. And by processing the image with morphology, we can get a
candidate grasps set which can be represented by:

G = {g1, g2, . . . . . . , gn} (2)

where gi ∈ G represents a robotic grasp rectangle.
Because morphological image processing cannnot distinguish the positives from candi-

date grasps, gi ∈ G can result in either positive or negative grasp. So we train a random
forest classifier on Cornell Dataset, then use this classifier to score every candidate grasp.
We select the rectangle which has the highest score as our final rectangle, using the idea of
conversion, we can determine the final grasp configuration for our robot.

3.2 Image processing

3.2.1 Image segmentation

Image segmentation remains lots of issues in the task of computer vision. Our goal is try-
ing to remove the background of an image taken from a tabletop scene. Some of existing

Fig. 2 The architecture of our proposed system



Multimedia Tools and Applications

Fig. 3 The grasp of ground truth
is represented by a rectangle with
five dimensions. The red line
remarks the final pose of a
gripper plate while the blue line
shows the width that a gripper
should open before executing an
object’s grasp

approaches [8, 33] are powerful to distinguish background from scene. By a graph-based
representation of an image, Daniel et al. are devoted to looking for a boundary between two
different regions. Their idea of segmentation relies on the difference between the intensity
of pixels. Equation (4) represents their calculations:

ω = ∣
∣I (pi) − I

(

pj

)∣
∣ > τ(c) (3)

ω =
√

(rpi
− rpj

)2 + (gpi
− gpj

)2 + (bpi
− bpj

)2 (4)

where I (pi) and I (pj ) represent the pixel intensity of pi and pj respectively, τ(c) is the
function for threshold.

Apparently, the two pixels are regarded as belonging to different regions when ω is
greater than τ(c). However, as mentioned in [33], it is not a reasonable way to segment only
with RGB information. As a extension of this approach, Deepak et al. [33] added depth map
giving the reason that objects exist in 3D space. Their metric is shown in (5).

ω =
∣
∣
∣W

T ∗ F (pi) − F
(

pj

)
∣
∣
∣ > τ(c) (5)

where F (pi) ∈ R4 is equal to I (pi) plus an extra corresponding depth information, W ∈
R4 represents the weight function for each dimension of F .

However, Deepak’s method didn’t separate background total from the tabletop scene so
they need to train an additional supervised classifier to help recognize segments.

In our work, we propose a method that combines depth information with a graph-based
algorithm depicted in [8], which is different from [33] and can separate the whole back-
ground from the tabletop scene. And we also use the segmentation method to help us to
figure out how many objects are contained in our scene, which is important for our mor-
phological image processing. Our improvement is shown in (6). That also means we don’t
have to calculate the difference of intensity for two pixels when the two all belong to the
background. We simplify this metric by using the logical mask(M) times the results from
(3).

ω = (Mi ‖ Mj ) ∗ ∣
∣I (pi) − I

(

pj

)∣
∣ > τ(c) (6)

where Mi is equal to the logical value of ith point from our logical mask(M) in Algorithm 1,
Mi ∈ {0, 1} and 0 stands for background while 1 stands for objects.
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Our approach has the following steps (see Algorithm 1). In Step 1 and Step 2, we subtract
the background depth map from the front depth map and use a threshold to get the logical
mask(M) from the tabletop scene. In Step 3, because of the existing of noise, which is
the pixels that segmented from background image but does not belong to the objects in the
foreground image (See Fig. 4b), we implement a two-dimensional convolutional filter that
is a 5 × 5 all one matrix to smooth the mask map and then use area opening to remove
small components which has less than 100 pixels in the image. From the above procedures,
we can obtain the background mask. Finally, in Step 4, to make the graph-based algorithm
more adapted to the tabletop scene, we update the metric using the following equation (6).
By the metric, we can easily separate objects and figure out the number of them, at the same
time, it avoids time-consuming.

Our results of segmentation is shown in Fig. 4. From the results in Fig. 4b and c, we can
figure out that [8, 33] have no ability to segment the bottom part of the red tape (shown in
the left-down corner of Fig. 4a) from the scene.

3.2.2 Morphological image processing

Through graph segmentation with a depth mask, we have obtained an image which contains
only objects. There have two main strategies to process it: one is to sample image patches
randomly (or sample with sequential importance) like [27]. The other is to implement a
sliding window to search the grasp rectangles globally. Obviously, the twomethods are time-
consuming and the first method is also not so accurate enough. To avoid those problems,
our methods is to do morphological image processing (MIP) on the result of our graph
segmentation, Io, which can get the candidate grasps effectively.
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Fig. 4 The results of different
segmentation approaches: a our
test scene; b results by
implementing the open-source
code in [8]; c represents the
segmentation results we
implemented by following the
procedure in [33]; d is the
corresponding to the results in c;
e and f are the two different
representations for our improved
segmentation algorithm

A strategy based on MIP is illustrated in Algorithm 2. Step 2 and Step 3 are the most
important part of our algorithm. Firstly, from the results of graph segmentation, or by doing
blob detection, we can figure out how many objects exist in Io and separate them into
different parts. In the multiple objects detection scene, the two steps also convert it into the
problem of single object grasp detection. Secondly, for each of them, a divide-and-conquer
algorithm [5] is implemented to calculate the smallest convex polygon that contains the
object. Then, we use a convolutional filter to expand the convex polygon. This step can avoid
the problem of boundary coinciding between the convex polygon and the object. Finally,
we subtract the expand convex polygon from Im that is a binary version of Io. And the
results are our regions of interest (ROI). Intuitively, ROI is also the place that our gripper
should fall to grasp an object. Our ROI results are shown on the top part of Fig. 5, which
are represented by the colorful area. Step 4 and Step 5 connect centers of two different
with a straight line, which represents the width that our robotic gripper should open and it
also shows the width of our candidate rectangle. But for real experiments, the width of our
gripper is a constant. So we don’t need to focus on the height of our grasp rectangle. For
preserving the five-dimensional representation of grasp detection, we set the height of our
rectangle to 0.4 times the width of the candidate rectangle.

With the setting of height and width, we can convert the combination of two different
centers of ROI to candidate rectanglesG. For illustration, we randomly sample the candidate
rectangles for different objects, which is shown on the bottom part of Fig. 5. And from
Fig. 5, we find that morphological processing can help us generate a candidate grasp set.
Intuitively, we can find not every grasp rectangle in this set is positive. So for the stability
of grasping objects, we need to train a classifier to evaluate each grasp rectangle in our
candidate set.
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Fig. 5 Results for morphological image processing. The colorful area is marked as the regions of interest.
And the bottom part samples some candidate rectangles for four types of objects

Interestingly, our real-world experiments show that theMIP algorithm by itself can detect
the object grasp pose and be applied to grasp objects, though our proposed system also
need an additional classifier. In one round of our experiments, we cancel the random forest
classifier, randomly choose one rectangle from our MIP algorithm output G, and then we
assume it is a positive grasp, convert it to grasp pose and do grasping.We can get a surprising
grasp success rate about 79.12% (The experimental details and results are shown in Table 1).
The reason for this success rate is that it is easy to form an antipodal-like grasp by randomly
choose two different areas near objects. And our MIP output G has a high relation to our
final grasp accuracy because the input of our classifier is the candidate grasp set.

Table 1 Results of Baxter grasping in different scene

Experiments Grasp attempts Grasp success rate (%) Average detection

No RF With RF time (s)

Single object scene pen 15 86.7 100 0.02

cable 15 73.3 100 0.033

knife 15 80.0 100 0.032

tape 15 93.3 100 0.045

bottle 15 73.3 93.3 0.031

grip exerciser 15 73.3 93.3 0.047

scissor 15 66.7 86.7 0.05

stapler 15 80.0 93.3 0.05

wire nipper 15 73.3 86.7 0.063

plier 15 66.7 86.7 0.04

Multiple objects scene 5 objects 15 85.3 100 0.129

8 objects 15 82.5 93.8 0.289

8 objects 15 70.8 87.5 0.32
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3.3 Random forest

3.3.1 Data pre-processing

Our method is evaluated on the Cornell Grasping Dataset [16]. Referring to the image pre-
processing approaches from earlier works [19], our process methods are: firstly, we try to
extract all the data inside the labeled rectangles of datasets. The data which consists of RGB
information and the corresponding depth data is a w ∗ h ∗ 4 matrix (W and H describe the
width and height of the rectangle respectively).

After loading the image, we remove all the nan values in the image and replace it with
zero. And then, we do interpolation to inpaint the image. Secondly, by comparing different
color space such as HSV and LAB (See Fig. 6), YUV space which sets the image brightness
(also called intensity) and color components apart can make objects more distinguishable in
the image. For that reason, we convert the RGB space of the image into YUV space. Thirdly,
we calculate the surface normals of every pixel on the depth map and the surface normal
of each pixel is represented by three-dimensional vectors. And we can obtain a w ∗ h ∗ 7
matrix which contains seven-dimensional feature included YUV, depth data and vector of
the surface normal.

However, for each rectangle, w and h is different. For the consistency of input features’
size, it is crucial to scale all grasp rectangles to the same size. According to [19], direct
scaling can cause negative grasp to appear positive. Our approach is shown in (7), we resize
our rectangle by a ratio of ρ. Using the max scale makes the resized rectangle less than
wf ∗ hf , and then we pad the missing part by zero value.

ρ = max

{
w

wf

,
h

hf

}

(7)

where ρ is our scaling factor, wf and hf represent the final size of our grasp rectangle.
Finally, our input features have a size of wf ∗ hf ∗ 7. And in this paper, we set wf =

hf = 24. For general purpose, we do normalization processing by (D − μ)/σ , where D is
the depth data, μ is the mean value and σ indicates the standard deviation.

Fig. 6 The image in different
color space: a RGB
space(original scene); b YUV
space; c HSV space which
describes colors by hue,
saturation, and value; d LAB
space which includes three
components: luminosity and two
other color-related components
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3.3.2 Grasp detection model

Random forest classifier (RF) has shown excellent accuracy in both classification and
regression among current machine learning approaches. And it is very easy to train and set
user-defined parameters.

In our work, we use the random forest to classify our grasp rectangle and Fig. 7 shows
the architecture of our random forest model.

Our input dataset is represented by (8).

T = {(x1, y1), (x2, y2), ..., (xN , yN)} (8)

where xi represents the input features and yi is the bool value (-1 and 1 represent negative
and positive grasp respectively). N is the number of grasp instance. And the dimensional of
our input feature xi called M is equal to wf ∗ hf ∗ 7 = 4032.

The procedures of training random forest classifier are shown as follow:

1. Sample n training examples from these N instances randomly but with replacement.
2. Select m features (m < M) at random out of M. Then a random subset of the features

is specified and m is a constant when we grow up the forest.
3. Create a decision tree using the n training examples with the m selected features. We

set no limit on the depth of each tree and there is no pruning.
4. Repeat Step 1, 2 and 3 for k times, then we get our RF model.

After finishing our training phase, we predict the test set by aggregating the results of all
trees in our RF model. For our grasp classification problem, we can take the majority votes
as our final decision.

During the process of testing, we find k value (the number of trees) is important for the
accuracy of classification. And for the other parameters of our random forest, we set them
as default value in scikit-learn package [31]. We train our RF model for every k value in the
range of (2, 110). From Fig. 8, we can assure that when k is up to some value, the accuracy
always keeps the same level. Finally, we set k = 52 and we can get an accuracy about
94.26%.

Fig. 7 The simplified architecture of our random forest classifier
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Fig. 8 Our training accuracy with different k value

We also take the random forest to compare with other classifiers. Support vector machine
(SVM) which can map the high dimensional data into low dimensional data has an out-
standing performance on classification. For comparison, we use a linear SVM and a radial
based radial basis function kernel SVM to train our data. And both of them we get an accu-
racy of 94.7% on our test set. From the accuracy, we can see that in off-line classification,
SVM perform a little better than random forest. However, for real-world detecting, SVM
is very time-consuming than our random forest classifier, which makes real-time detection
impractical.

3.4 Robot inverse kinematics

A simple way for Baxter robot to grasp an object is to send a goal pose, then the end-
effector can move to the desired configuration, finally, the robot closes its gripper and use
the friction force to grasp the object. To avoid the IK failed problems and for the purpose
of controlling the trajectory of the robot’s end-effector link, we implement a numerical
cartesian IK solution which is described in [21] to calculate the joint velocities.

Denote the velocities of the joint and the end-effector as θ̇ and ẋ respectively. And
J is represented for the robot arm’s Jacobian matrix. The relationship between the joint
velocities and the end-effector velocities is shown in (9).

ẋ = J θ̇ (9)

where ẋ is the differential results of the pose, which is in 3-D space and it is a six-
dimensional vector. The dimension of θ̇ depends on the degree of freedom (DOF) of the
manipulator’s arm.

The arm of our manipulator is kinematically redundant when its DOF is larger than the
end-effector velocities’ dimension. In this situation, J is not defined because the number of
rows and columns of J matrix is not equal. According to the methods in [21], when it comes
to the IK solution of the kinematically redundant arm, there are infinite sets of solution. And
the best approximate solution for (9) is shown in (10).

θ̇ = J †ẋ + (I − J †J )z (10)
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where J † is the pseudo-inverse. And (11) gives the relationship between J † and J . I is
an identity matrix, and the rank of I is equal to the number of DOF (n). z is an arbitrary
n-dimensional vector.

J † = J T (JJ T )−1 (11)

For our real control, we give the moving velocities towards our desired goal by (12).
vmax is the six-dimensional limitation velocities for robot motion. And through several time
periods, we can achieve reaching the desired goal.

ẋ = min

{
(xd − xc)

rate
, vmax

}

(12)

where xd is the desired goal pose, xc is the current pose, vmax represents the maximum
moving velocities in 3-D space. The value of rate shows the time period that we recalculate
our current pose xc.

4 Experimental results

We performed two steps of robotic grasp experiments. The first one is to implement grasp
detection to test the predicted accuracy of our model and acquire the average detection time
for objects. Another step is to using the robot to grasp novel objects in the real world.

Equipment preperation For the purpose of evaluating the performance of our methods,
we performed robotic grasping experiments using the Baxter Research robot in the real
scene. Baxter is a two-armed robot, and each arm has seven degrees of freedom which is
kinematically redundant. It is equipped with an antipodal gripper, which has only one DOF.
In our experiments, we only used the right arm of Baxter. Microsoft Kinect Sensor V2 was
used as our RGB-D data-acquired device, which gave a 1920 × 1080 RGB image and a
512 × 424 depth image.

Due to the inconsistency of coordinate space of RGB and depth, we need to calibrate the
camera and get the intrinsic parameters, then we used it to unify the cooridinate frame of
RGB and depth by mapping the depth data to the RGB cooridinate frame. Finally, the size
of our depth image was the same as RGB data, which was 1920× 1080. We put our Kinect
V2 sensor in front of our robot about 1.2 meters and placed the table between the Baxter
robot and Kinect. And we used Matlab 2014B with a computer which had a memory of
16GB and an Intel (R) Core (TM) i5-6400 CPU to implement our algorithm.

Experimental preparation For objects in our scene, we collected some mechanic equip-
ment, official tools, and daily supplies. Their shapes varied from cuboid, cylinder, fork,
triangle and other complex shapes. And because of the size limitation of our Baxter’s grip-
per, our objects are not too large. The number of objects is about 40 and all these objects did
not exist in the Cornell Grasp Dataset and they were novel for our algorithm. Some typical
objects were shown in Fig. 9.

Before placing objects in our tabletop scene, we took a RGB and an aligned depth map as
our background data. This trick was used to get a depth mask that is an input for improved
graph segmentation. Due to there are lots of missing data in the left and right border of the
depth map, we placed objects in the center-view field of Kinect sensor. And also because of
the limitation of Baxter’s reachability, the objects should be placed into the workspace of it.
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Fig. 9 Typical objects in our experiments

4.1 Grasp detection

A typical single grasp detection pipeline was performed as follow. For each object in our
collection, we placed it on the table randomly. Then, we took a RGB image and an aligned
depth map as our input, and our algorithm generated a five-dimensional grasp rectangle.
And as mentioned before, our rectangle was not always the best grasp for objects, it was an
optimal grasp in our candidate grasp set resulted from MIP algorithm.

Overall, we tested our methods by an extensive series of experiments. We performed
single object grasp for 40 different objects and also three groups of multiple objects (Some
of them was illustrated in Fig. 10). For each trial, we implemented 15 attempts to try to
grasp. For placing the object, the object’s position and orientation were different. When

Fig. 10 Examples from our experiment collections. There are different type of objects
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Table 2 The comparsion results
of different algorithms Algorithm Accuracy (%) Speed (fps)

Two-step learning [16] 89.6 0.02

SAE [19] 93.7 0.07

CNN [34] 88.0 3.31

2 × ResNet-50[18] 89.2 16.03

ZF-net[14] 93.2 −
Ours 94.26 28

detecting objects on the table, we computed our detection time for each trial. The result of
average detection time is shown in Table 1. And the detection results are shown in Fig. 10.

Comparisons in accuracy and average detection time had been made between different
algorithms such as CNN, ResNet. The results of comparison are shown in Table 2. All
their model were trained on the Cornell Grasping DataSet. From that we can see, our MIP
methods reduced the time for RF classifier and distinguished it from other time-consuming
machine learning approaches like [16] and [19], and the combination of our grasp segmen-
tation and MIP eliminate the useless data in RGB and depth map which made it perform
better than other end-to-end deep learning detection approach like [14, 18, 34].

4.2 Robotic grasp in real world

Because of the difference between the camera space and the robot space, we need to do eye
to hand calibration before grasping. And we use the dual quaternions methods described
in [4] to calculate T R

C , which is the transformation matrix of the camera to the robot. As
it was described in Section 3.4, because of the IK crash problem, we replace the built-
in IK algorithm in Baxter robot as our IK methods. This can make Baxter do trajectory
planning without failing only if the objects were placed in the workspace of the Baxter
robot.

For real-world experiments, two different approaches (No RF and With RF) were per-
formed. We set 15 rounds of robotic grasp to clear the table for each group with each
approach. Our grasp success rate is shown in Table 1. By calculating the average, the grasp
success rate of No RF and With RF is 79.12% and 93.1%. And a typical clear table scene is
illustrated in Fig. 11.

Fig. 11 A table clearing sence.
Eight different objects in our
experiments
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The results showed that the success rate of grasping (See in Table 1) is not always equal
to our algorithm detection accuracy (94.26%). The first reason for failing grasps is that
we always tried to grasp objects with an antipodal parallel-style gripper. Limitation of this
gripper is that it tries to grasp objects relying on friction force and when grasping handle-
featured objects such as bottle and pen, it was easy to slip away. Another reason is that
our algorithm was not trying to find the best grasps for objects. That was easy to fail when
our candidate grasps set didn’t contain a good grasp relative to global search methods. Our
algorithm can be very useful when detecting odd-feature objects such as grip exerciser, wire
nipper, and other mechanical tools. And for real-world grasp, when converting the grasp
rectangle to final grasp pose, the accuracy of the hand-eye calibration results T R

C is also
related to the grasp success rate.

An interesting result in our experiments was that when we tried to grasp objects without
RF, we could achieve a mean accuracy of 79.12%. As was described in Section 3.2.2, our
random selection of grasp can be either a positive grasp or negative grasp. In our MIP
algorithm, every rectangle contained two different candidate parts, when it was converted
to grasp, it is kind of like antipodal grasp which apply force at two points and the forced
direction of the two points are opposite and co-linear. The difference between our grasp
and antipodal grasp is that we neglected whether the normals at the two different points are
co-liner. In our case, it was impossible to check which element in our candidate grasp set
satisfied antipodal grasp for the reason that we only used one RGBD sensor, we can just get
the normals when points were in the front-side of the RGBD sensor.

5 Conclusions

We presented a novel robotic grasp pipeline to clear the table in a RGB-D view, which
relied on graph segmentation, morphological image processing and machine learning (ran-
dom forest). Compared to previous approaches, our graph segmentation can completely
distinguish the objects from the background, our image pre-processing methods (including
graph segmentation and MIP) which are used to generate a candidate grasp set can reduce
the detection time for our classifier. And our pipeline without RF also can be used to detect
grasp though there is no principle to judge whether it is a positive grasp. Our RF model is
evaluated on the famous Cornell Dataset and we made a comparison with the state-of-the-art
deep learning methods, our results show that our whole approach can have a better perfor-
mance than many of them for the reason that image pre-processing can help us avoid detect
grasps on background while deep learning methods take the whole RGB and depth map as
input. When robot grasping objects, it is important to get the best IK solution so we can
grasp objects more robust. We implement a different IK method rather than the Baxter built-
in algorithm. This method also reduces the time for the trajectory plan and robot motion. We
also perform two-stage grasp detection experiments. One is to detect the grasp pose for our
self-collected objects and the other does real-world grasping using Baxter robot. For real-
world grasp, we achieve a grasp success rate about 93.1% while grasp success rate without
RF is about 79.12%. Our comparison experiments show the effectiveness of our random
forest classifier.

However, there is also a lot need to be improved. One of our future works is trying to
focus on grasp objects using the multi-finger hand rather than the two-finger hand. For
our five-dimensional rectangle representation, it can be extremely difficult to be adaptable
to the hand with five fingers. In our experiments, for the reason that we didn’t consider
objects’ center of gravity when the Baxter robot tried to grasp, some objects were easy to
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slip away. Next, when using morphological image algorithm to generate a candidate grasp
set, it is not always containing the best global grasp rectangle. In our system, the final grasp
configuration is only the optimal grasp in the candidate grasp set. Another extension work
may try to adjust the rectangle in the candidate grasp rectangle set so it can always hold the
best grasp in global grasp.
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