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Abstract

Robot learning from demonstration (LfD) enables the robots to be fast pro-

grammed, which involves the teaching phase, the learning phase and the re-

production phase. This paper proposes a novel LfD framework considering the

performance of the methods used in these phases. An adaptive admittance

controller is developed to take into account the unknown human dynamics so

that the human tutor can smoothly move the robot around in the teaching

phase. The task model in this controller is formulated by the Gaussian mixture

regression to extract the human motion characteristics. In the learning and

reproduction phases, the dynamic movement primitive is employed to model a

robotic motion that is generalizable. A neural-network-based controller is de-

signed for the robot to track the trajectories generated from the motion model,

and a radial basis function neural network is used to compensate for the effect

caused by the dynamic environments. The experiments have been performed

using a Baxter robot and the results have confirmed the validity of the proposed

methods.
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1. Introduction

Robot learning from demonstration (LfD) has recently drawn much attention

due to its high efficiency in robot programming[1]. Robots can learn variable

skills from human tutor to complete tasks in complex industrial environment[2].

Compared to conventional programming methods using a teaching pendant,5

LfD is an easier and more intuitive way for people who are unfamiliar with

programming. Besides, human characteristics involved in the demonstrations

are available for robots to furtuer improve the flexibility and compliance of

motions.

The applicability of LfD frameworks can be assessed according to the criteria10

defined in [3], which includes learning fatigue, adaptability, generality, accuracy

and so on. It is difficult to satisfy all the criteria simultaneously. Thus, we can

focus on one of the criteria in each phase of LfD.

The entire process of LfD includes the teaching phase, the learning phase and

the reproduction phase. In the teaching phase, the human tutor demonstrates15

how to perform a task and the motion of the robot or human will be recorded.

The criterion that needs to be satisfied in this phase is learning fatigue. In

order to reduce learning fatigue, demonstrating should occur in an intuitive and

easy way [3]. There are many methods to accomplish demonstration, such as

directly guiding the robot or using visual devices to capture and transmit the20

human motion. In this paper, the teaching phase is accomplished by directly

moving the end-effector of the robot beacuse it is more quicker and less loss

of motion information. The learning phase is usually ignored in traditional

industrial environment and the motion is directly used for reproduction. This

will cause massive repetition of demonstrations when the tasks are similar, for25

example, pick-and-place tasks with different place targets. If a demonstration

can be generalized to adapt to similar situations, the teaching process will be

more efficient. Thus, the learning phase that models generalizable motion is

necessary. The reproduction phase involves the trajectory tracking; thus, the
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tracking accuracy of the robot dynamics controller should be guaranteed.30

Admittance control has been widely used in human-robot interaction, which

can generate robot motions based on the human force[4, 5, 6]. Thus, in this

paper we use the admittance control to achieve the human-guided teaching.

The admittance control exploits the end-effector position controller to track the

output of an admittance model. Most studies on admittance control have not35

considered the human factor, which is an important part of this control loop.

The interaction force between robot and human can be used to recognize the hu-

man intent, and to further improve the interaction safety and user experience[7].

In [8], the human force was employed to compute the desired movement trajec-

tory of the human, which is used in the performance index of the admittance40

model. In [9], the unknown human dynamics was considered in the control loop.

The human transfer function and the admittance model were formulated as a

Wiener filter, and a task model was used to estimate the human intent. The

Kalman filter estimate law was used to tune the parameters of the admittance

model. Howerer, the task model in this work is assumed as a certain linear45

system, which is unreasonable beacuse the estimated human motions should be

different for each individual due to different motion habits. Thus, a task model

that involves the human characteristics need to be developed.

Gaussian mixture regression (GMR) is an effective algorithm to encode the

human characteristics based on the human demonstrations[10, 11]. In [12], the50

human motion was analyzed using Gaussian mixture model and a new motion

that involves the human motion distribution was generated using GMR. This al-

gorithm shows great feasibility to develop a task model that involves the human

characteristics.

In the learning phase of LfD, the robotic motion caused by the human guiding55

will be modelling. Dynamic system (DS) has been widely used to achieve the

generalization of the motion model[12, 13, 14]. Dynamic movement primitive

(DMP) is a powerful method to model generalizable motion based on DS[15, 16,

17]. It exploits a spring-damper system to guarantee the stability of the model,

and uses a nonlinear function to motivate the model to generate motion that60
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keeps the characteristics of origin motion. It can be used to effectively model

a series of primitive templates that are decomposed from a demonstration[18].

In [19], the DMP was used to model striking motion in robot table tennis. The

learned model was used to generate motions that has different targets to hit

the ball. To achieve trajectory joining and insertion effectively, a method called65

linearly decayed DMP+ extended the origin DMP by using truncated kernels

and removing the problem of vanishing exponential time decay[20]. In this

paper, the DMP is also integrated in our framework to improve the efficiency

of LfD. Through adjusting the goal parameter of the DMP, we can generate a

group of similar motions so that unnecessary repetition of demonstrations can70

be reduced.

The generated motion is finally used in reproduction, the accuracy of which

depends on the performance of trajectory tracking controller. The controller

design methods can be classified into the model-based methods and the model-

free methods. The model-based method has better tracking accuracy because75

the robot dynamics is considered. Howerer, the accurate robot model is difficult

to obtain. The function approximation methods such as neural network (NN)

have been used to solve this problem[21, 22]. In [23], the backpropagation

(BP) NN was employed to approximate the unknown model of the vibration

suppression device, which achieved better control result. Compared to BPNN,80

the radial basis function (RBF) NN has a faster learning procedure and is more

suitable for controller design. In this paper, we use the RBF NN to approximate

the robot dynamics so that the robot can complete the reproducted motion

accurately without the knowledge of the robot manipulator dynamics.

The contributions of this paper are as follows:85

1) An adaptive admittance controller is developed to takes into account the

unknown human dynamics. The task model in this controller is formulated

by the GMR to extract the human motion characteristics.

2) A complete LfD framework that considers the teaching phase, the learning

phase and the reproduction phase is developed, as shown in Fig. 1. In the90
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Figure 1: Overview of the proposed framework.

learning phase, the adaptive admittance controller described in 1) is em-

ployed so that the human tutor can smoothly guide the robot to accomplish

the demonstration. In the learning phase, the DMP is used to model the

robotic motion. The learned model can generalize the motion to adapt to

different situations. In the reproduction phase, the RBF-NN-based trajec-95

tory track controller is developed to achieve accurate motion reproduction.

This paper is organized as follows. In section II, the methodology including

the adaptive admittance control, the DMP and the NN-based controller will be

inroducted. The experimental study is then presented in section III, Section IV

finally concludes this paper.100
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2. Methodology

2.1. Adaptive Admittance Control with Demonstration-based Task Model

In this section, an adaptive task-specific admittance controller is developed.

This adapts the parameters of the prescribed robot admittance model so that

the robot system assists the human to achieve task-specific objectives. The task105

information is modelled by GMR so that the controller can adapt to the human

tutor characteristics. After designing, the adaptive admittance controller will

be used in the teaching phase for human tutor to demonstrate.

The prescribed admittance model is defined as follows:

Mmẍm +Dmẋm +Kmxm = fh (1)

where Mm is a prescribed mass matrix, Dm is a prescribed damping matrix,

Km is a prescribed spring constant matrix, and fh is the human input force.110

The function of this admittance model is to generate the desired robot response

xm(t), which serves as the human demonstration later.

The human-robot adaptive admittance control system with task model is

shown in Fig. 2(a). The system input xtg is the target of a point-to-point

motion. In the teaching phase, we focus on the point-to-point motions beacuse115

they are very common type of motions in many tasks, and a more complex

motion can be segmented into multiple point-to-point motions. Given a target

xtg, the human tutor will apply force on the end-effector of the robot and

move it around. The intent of the human is to complete a motion that gets

to this target. Using the admittance model, the desired robot response xm(t)120

from human input force is generated and then the robot tracks this generated

trajectory to implement synchronous motion. In this process, it is expected that

the interaction force between human and robot is relatively small so that the

human can smoothly move the robot, which creates a better user experience.

To achieve this objective, the parameters of the admittance model need to be125

tuned to adapt to the human tutor characteristics.

There are two factors need to be considered. First, we can estimate the

human intent when a target is given. If the human motion is estimated, the
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robot can be directly commanded to track this motion. However, the estimation

relies on the interaction force and thus the admittance model is still necessary.130

Therefore, the second factor we should considered is the output of the admit-

tance model. We need to adapt the parameters of the admittance model to

minimize the error ε(t) between the desired human motion xd(t) and the actual

output of the model.

The task model in Fig. 2(b) is employed to estimate the human motion.135

In [9], the task model is implemented as a linear system, and an exponential

function is used to describe the human motion. However, this hypothesis is un-

reasonable beacuse the initial acceleration is not equal to zero for an exponential

type trajectory. Beside, the estimated human motions should be different for

each individual due to different motion habits. In this paper, the task model is140

developed using the GMR algorithm so that the human characteristics can be

encoded properly. After the task model is learned, the recursive least square

(RLS) algorithm [24] is used to adapt the parameters of the admittance model.

2.1.1. Demonstration-based task model

To develop the task model using GMR, human motion information is neces-145

sary for learning. To collect the motion data, the human tutor need to demon-

strate the point-to-point motions with a fixed target, and then the recorded

demonstration data is used for learning.

Assume that the demonstration data is represented as a datasetOb = {o1, ..., ot, ..., onp
}

with ot = [o1t, o2t] ∈ R2, where o1t ∈ t, o2t ∈ xD(t), xD(t) is the recorded po-

sitions set of the demonstration, and np is the number of the data ot. The

distribution of Ob is first modeled by the GMM with finite Gaussian distribu-

tions, the probability density of which is:

p(Ob|Θ) =

np∏
t=1

p(ot|Θ) =

np∏
t=1

(
ng∑
i=1

βip(ot|θi)

)
(2)

where Θ = (β1, ..., βng
, θ1, ..., θng

), βi ∈ R is the mixing weight with
∑ng

i=1 βi =

1, ng is the number of the Gaussian distributions, and θi = (ρi, κi) is the
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(a)

(b)

Figure 2: (a) Human-Robot Adaptive Admittance Control System. (b) Demonstration-base

Task Model.

parameter of the i-th Gaussian distribution:

p(ot|θi) =
exp

(
−0.5(ot−ρi)Tκ−1

i (ot−ρi)
)

2π
√
|κi|

(3)

where ρi ∈ R2 is the mean and κi ∈ R2×2 is the covariance matrix:

ρi =

ρ1i

ρ2i

 , κi =

 κ1i κ12i

κ12i κ2i

 (4)

The maximum likelihood estimation is employed to estimate the parameters

of the GMM. the objective of which is to find Θ̂ that maximizes the log-likelihood

function log(L(Θ|Ob)) = log(p(Ob|Θ)):

Θ̂ = arg max
Θ

log(L(Θ|Ob)) (5)

This problem can be solved by using the expectation-maximization (EM) algorithm[25].
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Then the GMR is utilized to retrieve the task model output xd(t), which is de-

fined as[26]:

x(t) =

ng∑
i=1

αi(t)ηi(t) (6)

with

αi(t) =
βiG(t|ρ1i, κ1i)∑ng

i=1 βiG(t|ρ1i, κ1i)
(7)

ηi(t) = ρ2i +
κ12i

κ1i
(t− ρ1i) (8)

where G(t|ρ1i, κ1i) denotes the Gaussian function with the mean ρ1i and the

variance κ1i.150

2.1.2. Parameter adaptation of admittance model

The parameters of the admittance model can be adapted based on the task

model output xd(t) and the human input force fh(t) by using the RLS algorithm.

Firstly the admittance model should be discretized. Define xm(k) as the

value of xm at time step k, and Ts as the sampling period. The velocity and

the acceleration of xm(t) are defined as:

ẋm(k) =
xm(k)− xm(k − 1)

Ts
(9)

ẍm(k) =
xm(k)− 2xm(k − 1) + xm(k − 2)

T 2
s

(10)

In this paper, the spring constant matrix Km is assume as zero because the

spring term will pull the motion back to the origin when the human input force

is equal to zero. Then the discrete form of the admittance model (1) is:

h0xm(k) + h1xm(k − 1) + h2xm(k − 2) = fh (11)

where

h0 =
Mm

T 2
s

+
Dm

Ts
(12)

h1 = −(
2Mm

Ts
+
Dm

Ts
) (13)

h2 =
Mm

T 2
s

(14)
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To employ the RLS algorithm, the model (11) is rewritten as:

xm(k) = H(k)TZ(k) (15)

where H = [−h−1
0 h1,−h−1

0 h2, h
−1
0 ]T , and Z(k) = [xm(k − 1), xm(k − 2), fh]T .

Define Ĥ(k) is the estimate of H. The RLS algorithm is used to minimize the

error between the admittance model output and the task model output, which

is defined as:

J =
∑
k

||Ĥ(k)TZ(k)− xd(k)||2 (16)

The estimate update equations of RLS is:155

R(k) = I + ZT (k)P (k − 1)Z(k) (17)

K(k) = P (k − 1)Z(k)R(k)−1 (18)

Ṗ (k) = −K(k)ZT (k)P (k − 1) (19)

˙̂
H(k) = K(k)[xd(k)− Ĥ(k − 1)TZ(k)] (20)

where R(k) is an auxiliary variable, I is an identity matrix, K(k) is the gain,

Ĥ(k) is the estimated admittance model parameter matrix. The algorithm is

initialized by setting Ĥ(0) = 0 and a threshold for the error is set to ensure the

convergence of the algorithm.

2.2. Generalizable Motion Modeling Using DMP160

In the learning phase, the demonstration data in Cartesian space is used for

motion modeling. The DMP model for Cartesian space motion is defined as

follows:

τsv̇ = D1(xg − x)−D2v −D1(xg − x0)s+D1f(s)

τsẋ = v
(21)

where x ∈ R denotes the position variable in Cartesian space, x0 is the start

position, xg is the targer, v ∈ R is the velocity, v̇ ∈ R is the acceleration,

D1, D2 ≥ 0 are the positive constants to be designed, τs > 0 is the temporal-

scaling factor, and s ∈ R is defined as the state of the following DS called the
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canonical system:

τsṡ = −αss (22)

where αs > 0 is the decay rate. Usually, the variable s is initialized as s0 = 1.

f(s) is a continuous nonlinear function defined as follows:

f(s) =

ns∑
i=1

ωiφi(s)s (23)

with

φi(s) =
exp

[
−(s− ai)2/(2bi)

]∑n
i=1 exp [−(s− ai)2/(2bi)]

(24)

where φi(s) is the normalized Gaussian function, ai ∈ R is the mean and bi ∈ R

is the variance, n is the number of the Gaussian components. ωi ∈ R is the

weight of the i-th Gaussian function.

The main part of the DMP model is a spring-damper system, which is per-

turbed by a nonlinear force as follows:

Fv = −D1(xg − x0)s+D1f(s) (25)

where (xg − x0) serves as the spatial-scaling factor. According to (22), variable

s in time domain is a exponential function, thus, s will converge to zero when165

s0 > 0. Obviously, f(s) and Fv will converge to zero, and variable x will

converge to the goal xg. The goal of the motion can be modulated by setting

the value of xg. Additionally, the duration of the motion is determined by the

time-scaling factor τs. Therefore, we can generalize the motion in space and in

time.170

The model parameters ωi are learned using the locally weighted regression

(LWR)[27], which minimizes the following error:

min
∑

(ftg − f(s))2 (26)

with

ftg =
τsv̇ −D1(xg − x) +D2v

xg − x
(27)

which can be computed based on a demonstrated trajectory.
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2.3. Neural-based Controller for Motion Reproduction

Using the learned DMP model, the generalized motion in Cartesian space

can be reproducted by adjusting τs and xg. The motion trajectory is then

transformed into an n-dimensional trajectory qd ∈ Rn in joint space using the175

inverse kinematics, and a neural-network-based controller is designed to track

this trajectory. The RBF NN is utilized to estimate the dynamics uncertainties

such as unknown nonlinearities and varying payloads.

2.3.1. RBF NN

RBF NN is an effective tool to approximate any continuous function h :180

Rn → R as follows:

h(x) = WTS(x) + ε(x) (28)

where x ∈ Rn denotes the input vector, W = [ω1, ω2, ..., ωN ]T ∈ RN represents

the ideal NN weight vector and N is the number of NN nodes. The approxi-

mation error ε(x) is bounded. S(x) = [s1(x), s2(x), ..., sN (x)]T is a nonlinear

vector function, where si(x) is defined as a radial basis function:185

si(x) = exp [− (x− ci)T (x− ci)
χ2
i

], i = 1, 2, ..., N (29)

where ci = [ci1, ci2, ..., cin]T ∈ Rn denotes the centers of the Gaussian function

and χ2
i is the variance. The ideal weight vector W is defined as follows:

W = arg min
Ŵ∈RN

{
sup

∣∣∣h(x)− ŴTS(x)
∣∣∣} (30)

which minimizes the approximation error.

2.3.2. Controller Design

The dynamics of an n-link manipulator is described as follows[28]:

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ (31)

where M(q) represents the inertia matrix, C(q, q̇) denotes the Coriolis matrix,190

G(q) is the gravity terms, and τ is the control torque.
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Define the tracking error as eq = q − qd, the velocity error as v = q̇d − Λeq,

where Λ = diag(λ1, λ2, ..., λn), and the auxiliary variable es = ėq + Λeq. The

error dynamics can be written as:

M(q)ės + C(q, q̇)es +G(q) +M(q)v̇ + C(q, q̇)v = τ (32)

Design the control torque as:

τ = Ĝ+ M̂v̇ + Ĉv −Kes (33)

where Ĝ(q), M̂(q) and Ĉ(q, q̇) are the estimates of G(q), M(q) and C(q, q̇),

respectively. Then the error dynamics is written as:

M(q)ės + C(q, q̇)es +Kes

= −(M − Ṁ)v̇ − (C − Ĉ)v − (G− Ĝ)
(34)

The RBF NN is then use to approximate the unknown robot dynamics:

M(q) = WT
MSM (q)

C(q, q̇) = WT
C SC(q, q̇)

G(q) = WT
GSG(q)

(35)

where WM , WC and WG are the weight matrices; SM (q), SC(q, q̇) and SG(q)

are the basis function matrices. Then the estimates of M(q), C(q, q̇) and G(q)

is written as:

M̂(q) = ŴT
MSM (q)

Ĉ(q, q̇) = ŴT
C SC(q, q̇)

Ĝ(q) = ŴT
GSG(q)

(36)

where ŴM , ŴC and ŴG are the estimates of WM , WC and WG, respectively.

Then the error dynamics is written as:

Mės + Ces +Kes = −W̃T
MSM v̇ − W̃T

C SCv − W̃T
GSG (37)

where W̃T
M = WT

M − ŴT
M , W̃T

C = WT
C − ŴT

C , and W̃T
G = WT

G − ŴT
G .
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Choose the Lyapunov function as:

V =
1

2
eTs Mes +

1

2
tr(W̃T

MΓMW̃M )

1

2
tr(W̃T

C ΓCW̃C + W̃T
GΓGW̃G)

(38)

where ΓM , ΓC and ΓG are positive definite matrices. And the derivative of V

is

V̇ =− eTs Kes

− tr[W̃T
M (SM v̇e

T
s + ΓM

˙̂
WM )]

− tr[W̃T
C (SCve

T
s + ΓC

˙̂
WC)]

− tr[W̃T
G (SGe

T
s + ΓG

˙̂
WG)]

(39)

By designing the NN weight update law as follows:

˙̂
WM = −Γ−1

M SM v̇e
T
s

˙̂
WC = −Γ−1

C SCve
T
s

˙̂
WG = −Γ−1

G SGe
T
s

(40)

, we have:

V̇ = −eTs Kes ≤ 0 (41)

Thus the tracking error eq will converge to zero. Using the control law (33) and

the NN weight update law (40), the robot can complete the reproducted motion

accurately without the knowledge of the robot manipulator dynamics.195

3. Experiment Study

The experiments are performed using a Baxter robot, which has two 7-DOF

arms, as shown in Fig. 3. An ATI force sensor is attached on the end of the

left arm to detect the human force. We verify the performance of the proposed

framework by respectively testing the methods in each phase.200

3.1. Parameter Adaptation of Admittance Model in Push-and-Pull Task

The push-and-pull experiment is conducted to test the performance of the

adaptive admittance controller. The human tutor holds the left end-effector of
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Figure 3: Experiment setup.

the robot and moves it between two specified points along the y-axis back and

forth. Two specified points are set as y1 = 0 (m) and y2 = 0.33 (m). The205

period is set as 8s. Firstly, a admittance controller with fixed parameters is

tested. The parameters is set as: Mm = 10, Dm = 40,Km = 0. The human

force in this process is recorded as shown in Fig. 6(a). Then this group of

parameters is used to initialize the parameters in adaptive admittance controller

with a sampling period Ts = 0.02s, which are transformed in RLS algorithm as:210

H1 = 1.92, H2 = −0.92, H3 = 0.0004.

We conduct comparative experiments to verify the performance of the pro-

posed task model. In the first experiment, a linear task model is employed, the

output of which is exponential type function. In the second experiment, the

human tutor first demonstrate this point-to-point motions four times and the215

demonstration is recorded to learn a task model using GMR. The number of

the Gaussian components is set as 16. The learning result is shown in Fig. 4.

Then this task model is used in the adaptive admittance controller. The output

of the admittance model and the human force in both experiments are recorded

as shown in Fig. 5 and in Fig. 6.220
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Table 1: PERFORMANCE COMPARISON OF THE PROPOSED METHODS

Task model Linear Demonstration-based

MSE 0.0314 0.0004

V ar(∆F ) 0.6898 0.4079

The pursued target of the proposed method is to provide a better interaction

experience, which can be characterized as smaller human force. From the results

we can find that the admittance controller with fixed parameters requires a

relatively large human force in the interaction, while the adaptive admittance

controller requires a relatively small force.225

We use the mean square error (MSE) to quantify the output error of the

admittance model:

MSE =
1

N

N∑
k=1

(xm(k)− xd(k))2

where N is the number of the samples, xm(k) is the admittance model output

and xd(k) is the task model output. We also use the variance of the differences

V ar(∆F ) to quantify the smoothness of human force:

V ar(∆F ) =
1

N − 1

N−1∑
k=1

(f(k)− f(k + 1)− E(∆F ))2

where f(k) is the human force and E(∆F ) is the mean of the differences of

human force. Smaller variance indicates better smoothness. The results are

shown in TABLE 1, showing that the output error of the admittance model

with demonstration-based task model is smaller than that of the admittance

model with linear task model. And the smoothness of human force is better,230

which indicates better user experience for the human tutor.

3.2. Motion Generalization Using DMP in Pick-and-Place Task

In this experiment, the human tutor teaches the robot to complete a pick-

and-place task. The human tutor holds the left end-effector of the robot and
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Figure 4: Learned task model using GMR.

moves it around to demonstrate this task. And then the recorded motion is used235

to train a DMP model. The number of the Gaussian function in DMP model is

set as 10. The start position of the motion is x = 0.7, y = 0.03, z = −0.14 (m)

and the target position is x = 0.83, y = 0.32, z = −0.08 (m). When the DMP

model is learned, it is used to reproduct and generalize the motion. The target

of the generalized motion is set as: x = 0.90, y = 0.60, z = −0.08 (m).240

The demonstration, the reproduction, and the generalization are shown in

Fig. 7. We can see that the target of the motion is successfully adjusted to a

new position and the characteristics of motion is still kept. Thus we can use

the DMP model to generate motions that can adapt to different similar task

situations.245

3.3. Trajectory Tracking Using NN-based Controller

We conduct comparative experiments to verify the performance of the NN-

based controller on a joint of the Baxter. We set a desired trajectory for con-

troller to track, which is defined as: q = 0.5sin(2πt/4) + 1.0. In the first exper-

iment, a PD controller is used, the parameters is set as: Kp = 15,Kd = 1.8. In250

the second experiment, the proposed controller is employed. The NN node is

set as 37 and the centers of the basis function are set uniformly distributed in

the joint motion interval. The experiment is shown in Fig. 8 and in Fig. 9. We
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Figure 5: Model output: (a) Adaptive admittance controller with linear task model. (b)

Adaptive admittance controller with Demonstration-based task model.

can see that the tracking error of the NN-based controller is smaller than that

of the PD controller. Thus, the framework can enables the robot to accurately255

complete the motion in the reproduction phase.

4. Conclusion

In this paper, a novel robot learning framework based on adaptive admit-

tance control and generalizable motion modeling is developed. This frame-

work considers the performance of the methodology in each phase of LfD. A260

demonstration-based task model is developed using GMR to integrate the hu-

man characteristics into the adaptive admittance model. The DMP is used to

18



model generalizable motion in the learning phase and a RBF-NN-based con-

troller is developed to track the reproducted motion accurately. In future work,

we will develop a task model database to learning different human characteris-265

tics, so that the admittance model can adapt to different individuals.
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Figure 6: Human force: (a) Admittance controller with fixed parameters. (b) Adaptive

admittance controller with linear task model. (c) Adaptive admittance controller with

Demonstration-based task model.
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