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Abstract

This paper presents a novel three-dimension (3-D) underwater trajectory

tracking method for an autonomous underwater vehicle (AUV) using model

predictive control (MPC). First, the 6-degrees of freedom (DoF) model of a

fully-actuated AUV is represented by both kinematics and dynamics. After

that, the trajectory tracking control is proposed as an optimization problem

and then transformed into a quadratic programming (QP) problem which

can be readily computed online. The practical constraints of the system in-

puts and states are considered effectively in the design phase of the proposed

control strategy. To make the AUV move steadily, the control increments are

considered as the system input and optimized. The receding horizon imple-
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mentation makes the optimal control inputs be recalculated at each sampling

instant, which can improve the robustness of the tracking control under the

model uncertainties and time-varying disturbances. Simulations are carried

out under two different 3-D trajectories to verify the performance of trajec-

tory tracking under random disturbances, ocean current disturbances, and

ocean wave disturbances. The simulation results are given to show the fea-

sibility and robustness of the MPC-based underwater trajectory tracking

algorithm.

Keywords: trajectory tracking, autonomous underwater vehicle (AUV),

receding horizon control, model predictive control (MPC), fully-actuated.

1. Introduction

As tools for human beings to explore and develop the ocean, autonomous

underwater vehicles (AUVs) have drawn a lot of attention from researchers

around the world (Xiang et al., 2015). Over the past few decades, AUVs have

been increasingly used in scientific, industrial, commercial and military areas.

The main applications include oceanographic mapping, deep sea exploration

(Zhang et al., 2015), offshore oil and gas development, pipeline maintenance

(Xiang et al., 2010), maritime rescue, underwater target tracking (Ferri et al.,

2018) and patrolling (Zhang et al., 2007). In order to execute above tasks

well, it is necessary to implement precise control for AUVs (Refsnes et al.,

2008; Kim et al., 2016). However, it is a hard task to accurately control

the AUVs because of the model nonlinearity, complex hydrodynamic coeffi-

cients and uncertain external disturbances (Cui et al., 2016). That is why

the motion control of the AUVs attracts a lot of attention from researchers
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worldwide.

Trajectory tracking is the main technical basis for AUVs to perform var-

ious underwater tasks, which involves the design of a controller so that the

AUVs can follow a desired, time-parameterized trajectory starting from a

given initial state (either on or off the trajectory) (Aguiar and Hespanha,

2007; Wang et al., 2017). Over the past several decades, many kinds of con-

trol methods have been proposed to tackle the trajectory tracking problem,

such as proportional-integral-derivative (PID) control, backstepping control

(BSC), adaptive control, fuzzy logic control (FLC), sliding mode control

(SMC), neural network control (NNC) and model predictive control (MPC)

(Healey and Lienard, 1993; Khodayari and Balochian, 2015; Xiang et al.,

2017; Qiao et al., 2017; Zhu et al., 2018; Gan et al., 2018). PID is a simple

control method with low complexity. In Jalving (1994), a PID-based control

system was proposed and three autopilots were designed for steering, heaving

and velocity control. In Perrier and Canudas-De-Wit (1996), a PID controller

for subsea robots was introduced, which could address the linear constraint

caused by the low sampling rate. However, PID can provide accurate con-

trol only if the system model is linear and the interferences are constant

(Smallwood and Whitcomb, 2004). BSC has been a useful method to control

nonlinear systems. In Xu et al. (2014), a BSC controller was proposed, which

defined a virtual speed error dynamics and could effectively avoid the prob-

lem of singularity and simplify the calculations. A BSC-based 3D trajectory

tracking method was designed for underactuated AUVs, in which the ve-

locity error function was constructed to obtain the proper control force and

moments (Ye et al., 2015). However, the computing complexity increases
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rapidly as the system order increases because of the repeated differentiations

of virtual controllers (Park et al., 2010). The adaptive control method is

presented for plants with uncertain dynamics. In Antonelli et al. (2001), an

adaptive approach was proposed for AUVs in the complex underwater en-

vironment where the parameters are dynamic and difficult to obtain. Sahu

and Subudhi (2014) proposed an adaptive controller for underwater vehicles,

in which the hydrodynamic effects was considered. However, the adaptive

control method is effective only for the system with constant or slow chang-

ing parameters, and the complexity grows drastically as the system order

increases (Xu et al., 2015). SMC is a promising control method for accurate

trajectory tracking due to its strong robustness against uncertain model and

time-varying parameters. In Londhe et al. (2017), a SMC method based on

an uncertainty disturbance estimator was presented, which could effectively

compensate the hydrodynamic uncertainty and unknown disturbances of an

AUV. In Qiao and Zhang (2019a), a second-order fast nonsingular termi-

nal SMC method was proposed for the trajectory tracking of fully actuated

AUVs in the presence of dynamic uncertainties and time-varying external

disturbances. A double-loop integral terminal SMC scheme was designed,

which could improve the tracking accuracy and enhance the robustness a-

gainst parameter uncertainties (Qiao and Zhang, 2019b). However, the SMC

method may incur an undesirable high-frequency oscillations called ”chatter-

ing” around the sliding surface, which can lead to low control accuracy and

high energy consumption (Hammad et al., 2017). FLC is an intelligent con-

trol method which can make machines reason like humans. A robust fuzzy

inference system was introduced for AUV docking, which used the fuzzified
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command and velocity vector fields to control the vehicle (Teo et al., 2012).

In Sun et al. (2018), a fuzzy control method was introduced for AUV mis-

sion in the complex underwater environment, which can obtain an optimal

path by incorporating with an optimization algorithm. However, FLC need-

s existing experience to establish fuzzy rules which is very subjective (Gan

et al., 2018). NNC utilizes a neural network as controller, which can approx-

imate any nonlinear function. A robust nonlinear controller for AUVs was

introduced to approximate the uncertain dynamics based on a linearly pa-

rameterized neural network (Ji-HongLi et al., 2007). Park (2015) proposed a

tracking control method based on the neural network to cope with the model

uncertainties of AUV. The main disadvantage of NNC is that it has large

computation cost and weak real-time performance (Gan et al., 2018). There

are still some weaknesses of the aforementioned trajectory tracking method-

s, for instance, the input and state constraints are hardly to be dealt with

conveniently. Ignoring the system constraints during the design stage may

lead to poor performances of the trajectory tracking.

MPC is a closed-loop optimal control strategy which can provide a sys-

tematic way to deal with the input and state constraints. The system con-

straints caused by physical or security restrictions widely exist in all con-

trol systems. In Beal and Gerdes (2013), a MPC controller was utilized to

bound the vehicle motion within a stable region of the state space. In Gao

et al. (2016), a nonlinear MPC-based adaptive positioning control approach

for an underwater vehicle was presented, in which the MPC controller are

combined with a neural network adaptive controller to achieve the tracking

optimization and improve the robustness to model uncertainty and unknown
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dynamics. A standard MPC framework for AUV trajectory tracking was

proposed to overcome the problem of strong model non-linearity and a con-

traction constraint was considered to theoretically guarantee the stability of

closed-loop system (Shen et al., 2017, 2018). However, the authors only de-

signed some simple simulations without any interferences. Actually, it is still

a difficult issue to design a 3-D trajectory tracking controller for AUVs at

present.

In this paper, the analysis of trajectory tracking problem for an AUV is

conducted, and a MPC-based 3-D trajectory tracking method is presented.

The input and state constraints are explicitly considered in the algorith-

m. The trajectory tracking problem is transformed into an optimization

problem with input and state constraints. The state constraints are trans-

formed into a form of input constraints and then the optimization problem is

transformed into a standard quadratic programming problem which can be

computed online. When the AUV reaches a new position, the next optimal

inputs are recalculated based on the current states and the desired trajecto-

ry. Therefore, the MPC-based algorithm can still be carried out well even in

the complex ocean environment with several uncertain disturbances. At last,

the trajectories used for the illustration during simulations are a raster scan

path and a sinusoidal curve. Simulation results are presented and discussed

which verify the effectiveness and robustness of the designed tracking control

method.

The rest of this paper is organized as follows. Section II presents the

reference frames and mathematical model used for AUV trajectory tracking.

In Section III, the formulation of the optimization problem is introduced and
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the detailed MPC design procedure is formulated. Simulation results of the

MPC-based method are illustrated in Section IV. Finally, conclusive remarks

of this paper are given in Section V.

2. AUV modeling

2.1. Frames of reference

The AUV motion is generally described in 6-degrees of freedom (DOF)

which includes translational component and rotational component. The

translational component includes surge, sway and heave, which describe the

AUVs position. The rotational component consists of roll, pitch and yaw,

which describe the AUVs orientation.In order to study the motion model, an

AUV can be regarded as a rigid body in 3-D space.

Figure 1: Reference frames, AUV image courtesy of http://seaeye.com.

For the convenience of clearly analyzing the 6-DOF motion of AUV, as de-

picted in Fig. 1, an inertial reference frame (i-frame) and a body-fixed frame

(b-frame) are defined. The i-frame, which is denoted by (OG,XG,YG,ZG), is

coincident with the East-North-Up (ENU) coordinate system in this paper.
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Within this frame, origin OG is a point on the surface of the ocean, the XG-

axis points towards the east, the YG-axis points towards the north, and the

ZG-axis points upwards perpendicular to the Earth’s surface. The b-frame

is a moving reference frame denoted by (OB,XB,YB,ZB), the origin OB of

which coincides with the center of the AUV gravity. The XB-axis is directed

from aft to fore along the longitudinal axis of the AUV, the YB-axis points

towards larboard, and the ZB-axis is directed from bottom to top.

2.2. Kinematic model

The i-frame is used to record the global information of the AUV motion.

Therefore, the motion of AUV need to be described as the motion of the

b-frame with respect to the i-frame. In this paper, the Euler angle param-

eterization is used to describe the transformations between the two frames.

As depicted in Fig. 1, the orientation of the b-frame with respect to the

i-frame is expressed in terms of three successive rotations about the axes ZB,

YB and XB, which are yaw φz, pitch φy, and roll φx, respectively.

Let s1 = [x, y, z]T and s2 = [φx, φy, φz]
T be the position vector and ori-

entation vector of the AUV in the i-frame, where x, y and z represent the

three Cartesian coordinates, φx, φy and φz represent the three attitude com-

ponents (roll, pitch, and yaw angles), respectively. In order to avoid the

singularity problem of the Euler angle, the pitch angle φy is bounded, satis-

fying −π/2 < φymin ≤ φy ≤ φymax < π/2, where φymin and φymax represent

the predefined lower bound and upper bound of φy, respectively. In practice,

the pitch angle is not likely to get close to π/2 because of the metacentric

restoring forces (Do and Pan, 2009). As a result, the constraint of φy is

reasonable. Furthermore, let v1 = [vx, vy, vz]
T and v2 = [ωx, ωy, ωz]

T be the
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linear velocity vector and angular velocity vector of the AUV in the b-frame,

where vx, vy, vz are the three translational velocity components, and ωx, ωy,

ωz are the three rotational velocity components, respectively. With these

notations, the linear velocity vector ṡ1 along the three coordinate axes in

i-frame can be represented as

ṡ1 = G1(s2)v1 (1)

where G1(s2) is the translational velocity rotation matrix from the b-frame

to the i-frame, which is given as

G1(s2) =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 (2)

where a11 = cosφy cosφz, a12 = sinφx sinφy cosφz − cosφx sinφz, a13 =

cosφx sinφy cosφz+sinφx sinφz, a21 = cosφy sinφz, a22 = sinφx sinφy sinφz+

cosφx cosφz, a23 = cosφx sinφy sinφz − sinφx cosφz, a31 = − sinφy, a32 =

sinφx cosφy, a33 = cosφx cosφy.

In addition, the angular velocity vector ṡ2 around the three coordinate

axes in i-frame can be described as

ṡ2 = G2(s2)v2 (3)

where G2(s2) is the rotational velocity rotation matrix from b-frame to the

i-frame, which is defined as follows:

G2(s2) =


1 sinφx tanφy cosφx tanφy

0 cosφx − sinφx

0 sinφx secφy cosφx secφy

 . (4)
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Finally, according to equations (1), (2), (3) and (4), the kinematic equa-

tions of the AUV in 3-D space can be formulated as the following compact

form:

ṡ = Gv (5)

with

G =

 G1(s2) O3∗3

O3∗3 G2(s2)

 (6)

s = [s1, s2]
T (7)

v = [v1, v2]
T (8)

where O3∗3 is a 3× 3 zero matrix.

2.3. Dynamic model

Dynamics mainly studies the relationship between the force acting on an

AUV and the AUV motion. The dynamic equations of a 6-DOF AUV can

be presented based on the Newton-Euler method as follows (Fossen, 2011):

Mv̇ + C(v)v +D(v)v + g(s) = τ (9)

where τ = [Fvx , Fvy , Fvz , Fωx , Fωy , Fωz ]
T represents the generalized external

thrust forces and moments.

M = (MRB+MA) denotes the inertia matrix. MRB = diag(m,m,m, Ix, Iy, Iz)

is the rigid body mass matrix. MA = diag(−Xv̇x ,−Yv̇y ,−Zv̇z ,−Kω̇x ,−Mω̇y ,−Nω̇z)

is the added inertia matrix.
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C(v) accounts for the Coriolis and centripetal matrix, which is expressed

as

C(v) = CRB(v) + CA(V ) (10)

where

CRB(v)=



0 0 0 0 mvz −mvy
0 0 0 −mvz 0 mvx

0 0 0 mvy −mvx 0

0 mvz −mvy 0 Izωz −Iyωy

−mvz 0 mvx −Izωz 0 Ixωx

mvy −mvx 0 Iyωy −Ixωx 0


(11)

and

CA(V ) =



0 0 0 0 −Zv̇zvz Yv̇yvy

0 0 0 Zv̇zvz 0 −Xv̇xvx

0 0 0 −Yv̇yvy Xv̇xvx 0

0 −Zv̇zvz Yv̇yvy 0 −Nω̇zωz Mω̇yωy

Zv̇zvz 0 −Xv̇xvx Nω̇zωz 0 −Kω̇xωx

−Yv̇yvy Xv̇xvx 0 −Mω̇yωy Kω̇xωx 0


.

(12)

D(v) = diag(Xvx + X|vx|vx|vx|, Yvy + Y|vy |vy |vy|, Zvz + Z|vz |vz |vz|, Kωx +

K|ωx|ωx|ωx|,Mωy +M|ωy |ωy |ωy|, Nωz +N|ωz |ωz |ωz|) is the hydrodynamic damp-

ing matrix including the linear and quadratic drag.

g(s) represents the vector of restoring forces and moments due to gravity
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and buoyancy, which is defined as

g(s) =



(W −B) sinφy

−(W −B) cosφy sinφx

−(W −B) cosφy cosφx

yBB cosφy cosφx − zBB cosφy sinφx

−zBB sinφy − xBB cosφy cosφx

xBB cosφy sinφx + yBB sinφy


. (13)

The symbols used in the above equations are defined as follows: m is

the mass of the AUV; Ix, Iy and Iz are inertial tensors; W = mg is the

gravity and B = bg is the buoyancy; xB, yB and zB are the coordinates of

the center of the AUV buoyancy in the b-frame. Xv̇x , Yv̇y , Zv̇z , Kω̇x , Mω̇y ,

Nω̇z , Xvx , Yvy , Zvz , Kωx , Mωy , Nωz , X|vx|vx , Y|vy |vy , Z|vz |vz , K|ωx|ωx , M|ωy |ωy ,

N|ωz |ωz are the hydrodynamic coefficients which can be directly or indirectly

obtained in advance by practical experiments.

3. MPC-Based Trajectory Tracking Strategy

MPC is a numerical optimization-based control strategy, in which a sys-

tem model is designed to predict the future control inputs and the future

plant responses. It has a sound theoretical basis. By computing a sequence

of future system input adjustment, the MPC controller attempts to optimize

future plant responses at each regular interval (Qin and Badgwell, 2003). A

system cost function is constructed which refers to the errors between the

predicted system responses and the desired system outputs. By minimizing

the cost function, the optimal control input sequence of the future N sam-

pling instants can be obtained. During solving the optimization problem,
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the input and state constraints can be explicitly tackled, which can improve

the robustness of the system. Rolling optimization and feedback correction

are the main characteristics of MPC, which can effectively reduce or even

eliminate the time-delay in a closed-loop system (Wang et al., 2018). There-

fore, the MPC-based system can achieve excellent stability, optimality, and

robustness (Mayne et al., 2000; Rawlings, 2002).

In this paper, the desired 3-D trajectory is assumed to be known in ad-

vance. A time parameterized triplet is introduced to determine the absolute

position of the trajectory in the i-frame. The desired trajectory can be de-

scribed in the following form:

Yd(t) = [xd(t) yd(t) zd(t)]
T . (14)

We also assume that the desired trajectory is smooth and bounded, and

appropriate by taking into account the physical limits of the AUV.

3.1. Prediction

In order to control the AUV motion, the kinematic model (5) is redefined

in terms of the linear time-invariant (LTI) state-space representation with a

sampling period T as follows:

s(k + 1) = s(k) +G(k)v(k)T (15)

where s(k), G(k) and v(k) are the system state vector, the rotation matrix

and the control input vector at the kth sampling instant, respectively, with
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s(k) = [x(k) y(k) z(k) φx(k) φy(k) φz(k)]T (16)

v(k) = [vx(k) vy(k) vz(k) ωx(k) ωy(k) ωz(k)]T . (17)

However, the velocity of the AUV cannot be changed sharply in the ac-

tual underwater environment due to physical limits. Therefore, the optimal

control inputs obtained by the model predictive control method may not be

accepted and executed by the AUV. To solve this problem, an incremental

version of (15) is introduced with the control input vector

u(k) = v(k)− v(k − 1). (18)

The improved model with state-space representation can be expressed as

X(k + 1) = A(k)X(k) +B(k)u(k) (19)

Y (k) = CX(k) (20)

with
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X(k) = [s(k) v(k − 1)]T (21)

A(k) =

 I6 G(k)T

O6∗6 I6

 (22)

B(k) =

 G(k)T

I6

 (23)

Y (k) = s(k) (24)

C = [I3 O3∗9] (25)

where I6, O6∗6, and O3∗6 denote a 6× 6 identity matrix, a 6× 6 zero matrix,

and a 3× 6 zero matrix, respectively.

Remark 1: The state X(k + 1) is derived as follows:

X(k + 1) =

 s(k + 1)

v(k)

 =

 s(k) +G(k)v(k)T

v(k)


=

 s(k)+G(k)v(k)T +G(k)v(k−1)T−G(k)v(k−1)T

v(k) + v(k−1)−v(k−1)


=

 s(k)+G(k)v(k−1)T

v(k−1)

+

G(k)v(k)T−G(k)v(k−1)T

v(k)−v(k−1)


=

 I6 G(k)T

O6∗6 I6

 s(k)

v(k − 1)

+

 G(k)T

I6

[ v(k)−v(k−1)
]

= A(k)X(k) +B(k)u(k).

According to the state prediction model (19), given an input sequence,

the corresponding prediction state sequence of the system can be calculat-
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ed by simulating the model forward over N sampling intervals, where N is

termed as prediction horizon. For notational convenience, the input sequence

and predicted state sequence are often stacked into vectors U(k) and X(k),

respectively. U(k) and X(k) are described as

U(k)=


u(k|k)

u(k+1|k)
...

u(k+N−1|k)

, X(k)=


X(k+1|k)

X(k+2|k)
...

X(k+N |k)

 (26)

where u(k+ i|k) and X(k+ i|k) are the input vector and state vector at time

k + i predicted at time k, respectively.

To make the AUV move more steadily, the rotation along three axes

should be decreased during the practical trajectory tracking task. For this

reason, in order to reduce the computational effort, we assume that the

velocity rotation matrix G(k), coefficient matrix A(k) and B(k) are invariant

during the prediction stage. Then, X(k + i|k) can be calculated according

to (19) by

X(k+i|k)=A(k)X(k+i−1|k)+B(k)u(k+i−1|k) (27)

= A(k)iX(k|k) +
i−1∑
j=0

A(k)i−1−jB(k)u(k + j) (28)

with the initial condition X(k|k) = X(k).

Based on equations (27) and (28), the X(k) can be re-expressed as

X(k) = A(k)x(k) +B(k)U(k) (29)
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where A(k) = [A(k) A(k)2 · · · A(k)N ]T , and

B(k) =


B(k) 0 · · · 0

A(k)B(k) B(k) · · · 0
...

...
. . .

...

A(k)N−1B(k) A(k)N−2B(k) · · · B(k)

 .

3.2. Constraints Handling

In an actual trajectory tracking task, the AUV faces several constraints.

These constraints can be either soft constraints or hard constraints. If nec-

essary, soft constraints may be violated to avoid infeasibility. But hard con-

straints must always be satisfied. In the trajectory tracking task, the system

state vector x(k) has a lower bound and an upper bound, and the range of

input vector u(k) also has constraints. Thus, the following constraints should

be imposed on the system.

umin ≤ u(k) ≤ umax (30)

Xmin ≤ X(k) ≤ Xmax (31)

where umin, Xmin are the predefined lower bounds, and umax, Xmax are the

predefined upper bounds.

By translating the constraints for state X(k) into constraints for input

u(k), and stacking everything into a compact matrix form, the input and

state constraints can be rewritten as
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U(k) ≤ Umax (32)

−U(k) ≤ −Umin (33)

A(k)X(k)+B(k)U(k) ≤ Xmax (34)

−A(k)X(k)−B(k)U(k) ≤ −Xmin. (35)

Constraints (32)-(35) can be expressed in the following compact linear

constraint form:

LU(k) ≤ l (36)

where

L =


I6N

−I6N
B(k)

−B(k)

, l =


Umax

−Umin

Xmax − A(k)X(k)

−Xmin + A(k)X(k)

 . (37)

3.3. Optimization

In this section, a controller is designed so that the AUV can be steered

to a desired trajectory stably and precisely. The optimization problem is

solved regularly to minimize a predicted performance cost (denoted by J)

by adjusting the current and future inputs of the system. The predicted

performance cost is defined as follows:

J =

∫ T

0

[‖Y (t)−Yd(t)‖2Qy
+‖u(t)‖2Qu

] dt (38)
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where ‖x‖2Q = xTQx; Y (t) and Yd(t) are the predicted trajectory and the

desired trajectory, respectively; u(t) denotes the predicted inputs; Qy and

Qu are the symmetric positive definite weight matrices.

We can see that the performance cost J includes an integral operation.

To address the optimization problem, the integral operation need to be per-

formed numerically in practice. Here, we divide T into N steps, and the

discretized version of J(k) at the sampling instant k can be represented as

J(k) =
N∑
i=1

[‖Y (k+i|k)−Yd(k + i)‖2Qy
+‖u(k+i−1|k)‖2Qu

] (39)

where Y (k+i|k) and u(k+i−1|k) denote the predicted position and system

input at time k + i predicted at time k; Yd(k + i) is the desired position at

time k + i.

For a given Y (k), X(k) can be calculated by

X(k) = C+Y (k) (40)

where C+ denotes the pseudoinverse of matrix C.

By substituting (40) into (39), we can obtain another discretized version

of J(k) represented by

J(k) =
N∑
i=1

[‖X(k+i|k)−Xd(k + i)‖2Qx
+‖u(k+i−1|k)‖2Qu

] (41)

where

Xd(k + i) = C+Yd(k + i) (42)

Qx = C+QyC. (43)
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According to (29), a simplified version of J(k) can be represented by

J(k) = ‖X(k)−Xd(k)‖2
Qx

+ ‖U(k)‖2
Qu

= ‖A(k)x(k)+B(k)U(k)−Xd(k)‖2
Qx

+‖U(k)‖2
Qu
. (44)

where

Xd(k) =


Xd(k+1)

Xd(k+2)
...

Xd(k+N)

 (45)

Qx =


Qx 0 · · · 0

0 Qx · · · 0
...

...
. . .

...

0 0 · · · Qs

 (46)

Qu =


Qu 0 · · · 0

0 Qu · · · 0
...

...
. . .

...

0 0 · · · Qu

. (47)

From (44), it can be noticed that J(k) is a function of U(k). Then, the

optimization problem can be expressed as follows:

U∗(k) = argmin
U(k)

J(k)

s.t. LU(k) ≤ l (48)
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where U∗(k) denotes the optimal input sequence.

The constrained optimization problem (48) is rather complicated to cal-

culate. Fortunately, it can be transformed into a convex quadratic program-

ming (QP) problem which a QP solver can be utilized to solve online over a

finite receding horizon. It has been proved that the standard convex QP op-

timization problem has a unique optimal solution (Boyd and Vandenberghe,

2004), which shows the stability of our method. After a series of deductions,

the final standard convex QP form of (48) can be represented as follows:

U∗(k) = argmin
U(k)

1

2
UT (k)H(k)U(k) + fT (k)U(k)

s.t. LU(k) ≤ l (49)

with

H(k) = 2(B
T

(k)QxB(k) +Qu)

f(k) = 2B
T

(k)Qx(A(k)x(k)−Xd(k)).

3.4. Receding horizon implementation

The QP problem (49), involving linear input and state constraints (36),

can be computed online. Then an predicted optimal input vector U∗(k) is

obtained. however, only the first element of U∗(k) is used by the AUV.

u(k) = u∗(k|k) (50)

According to (18), the derivative of v(k) by time can be obtained as:

v̇(k) = u(k)/T (51)
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Once v̇(k) has been determined, the approximate forces and moments

vector τ(k) which are needed to achieve the desired accelerations can be

estimated by the dynamic inversion.

τ(k) = Mv̇(k) + C(v(k − 1))v(k − 1) +D(v(k − 1))v(k − 1) + g(s(k − 1))

(52)

Based on the dynamic equations (9)-(13), the independent system control

at the kth sampling instant can be expressed as follows:

Fvx(k) = (m−Xv̇x) v̇x + n1(s(k − 1), v(k − 1)) (53)

Fvy(k) = (m− Yv̇y) v̇y + n2(s(k − 1), v(k − 1)) (54)

Fvz(k) = (m− Zv̇z) v̇z + n3(s(k − 1), v(k − 1)) (55)

Fωx(k) = (Ix −Kω̇x)ω̇x + n4(s(k − 1), v(k − 1)) (56)

Fωy(k) = (Iy −Mω̇y)ω̇x + n5(s(k − 1), v(k − 1)) (57)

Fωz(k) = (Iz −Nω̇z) ω̇x + n6(s(k − 1), v(k − 1)) (58)

where

N(s(k − 1), v(k − 1)) , C(v(k − 1))v(k − 1) +D(v(k − 1))v(k − 1) + g(s(k − 1))

(59)

= [ni(s(k − 1), v(k − 1))], i ∈ {1, 2, 3, 4, 5, 6}. (60)

At each sampling instant k, the U∗(k) is recalculated. Then, the optimal

control forces Fvx , Fvy , Fvz and control moments Fωx , Fωy , Fωz are computed

and executed by the AUV repeatedly to achieve the rolling optimization.

The predicted state vector X(k) and the optimal input vector U∗(k) are only

determined by the current state X(k). Therefore, the MPC method can pro-

vide a degree of robustness to modeling errors and time-varying disturbances
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in complex ocean. The optimization process iterates until the AUV finish

the trajectory tracking task.

3.5. Algorithm

The complete MPC-based trajectory tracking control algorithm is sum-

marized in Algorithm 1.

Algorithm 1 MPC-based 3-D Trajectory Tracking Algorithm

Input: X(0) (initial state), Yd (desired trajectory), N (prediction horizon),

C (coefficient matrix), Qu, Qy (weighting matrices), umin, umax(input

constraints), Xmin, Xmax (state constraints)

1: k ← 1

2: X(k)← X(0)

3: Compute Qx, Qx, Qu, Umin, Umax, Xmin, and Xmax

4: while k ≤ len(Yd) do

5: Update G(k), A(k), and B(k)

6: Compute A(k), B(k), L, and l

7: Solve the QP problem (49)

8: Get the first control input u(k) from U∗(k)

9: Compute the forces and moments vector τ(k)

10: Implement τ(k) to the AUV

11: k ← k + 1

12: Measure the current state X(k)

13: end while
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4. Simulation Results

In this section, simulations are performed to verify the feasibility and

robustness of the proposed MPC-based method. All simulations are done

on a laptop with an Intel Core i5-4220U 2.30-GHz dual-core processor using

a simulator developed on Matlab R2017a platform. Two types of desired

trajectories are chosen. The first is a raster scan trajectory, and the second

is a sinusoidal trajectory.

Each simulation is performed with or without ocean disturbances. Let

dx, dy, and dz be the disturbances with respect to XG-axis, YG-axis, and

ZG-axis in the i-frame, respectively. There are three kinds of disturbances

considered in the following simulations. The first is a random disturbance

defined as


dx = 0.4 ∗ randn(1) m/s

dy = 0.3 ∗ randn(1) m/s

dz = 0.2 ∗ randn(1) m/s

(61)

the second is an ocean current disturbance defined as


dx = −0.2 m/s

dy = 0.2 m/s

dz = 0.2 m/s,

(62)

and the third is a ocean wave disturbance defined as
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Table 1: Values of the AUV inertia and hydrodynamic parameters.

Parameters Value Parameters Value

m 116kg b 116.2kg

Xv̇x −167.6kg Ix 9.3kgm2

Yv̇y −477.2kg Iy 14.9kgm2

Zv̇z −235.7kg Iz 13.1kgm2

Kω̇x −11.6kgm2 xB −0.00045m

Mω̇y −15.5kgm2 yB −0.00128m

Nω̇z −15.9kgm2 zB −0.04298m

Xvx 26.9kg/s X|vx|vx 241.3kg/m

Yvy 35.8kg/s Y|vy |vy 503.8kg/m

Zvz 6.19kg/s Z|vz |vz 119.1kg/m

Kωx 3.0kgm2/(s · rad) K|ωx|ωx 101.6kgm2/rad2

Mωy 4.9kgm2/(s · rad) M|ωy |ωy 59.9kgm2/rad2

Nωz 3.5kgm2/(s · rad) N|ωz |ωz 76.9kgm2/rad2

g 9.8N/kg


dx = −0.35 cos(tπ/8) m/s

dy = 0.35 cos(tπ/8) m/s

dz = 0.3 cos(tπ/8) m/s

(63)

where randn(1) is a normal distribution noise signal with 0 mean and 1

variance.

In all simulations, the values of the parameters with respect to the AUV

dynamics are obtained from the identified dynamic model of Falcon(Proctor,
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2014) and are shown in Table 1. The values of the parameters with respect

to the MPC algorithm are as follows: the sampling period T = 0.5s, the pre-

diction horizon N = 10, the weighting matrices Qy = diag(1, 1, 1, 1, 1, 1, 1),

Qu = diag(0.1, 0.1, 0.1, 0.1, 0.1, 0.1), the initial state vector s(0) = [0, 6,−52, 0, 0, 0]T ,

the initial velocity vector v(0) = [0, 0, 0, 0, 0, 0]T , the input constraints umax =

[0.2, 0.2, 0.2, 0.05, 0.05, 0.05]T and umin = [−0.2,−0.2,−0.2,−0.05,−0.05,−0.05]T ,

the state constraintsXmax = [+∞,+∞, 0, π, 2π/5, π, 2, 2, 2, π/18, π/18, π/18]T ,

Xmin = [−∞,−∞,−∞,−π,−2π/5,−π,−2,−2,−2,−π/18,−π/18,−π/18]T .

4.1. Tracking of raster scan trajectory

A common trajectory tracking task for an AUV equipped with survey

instruments to execute is raster scan. A raster scan makes the AUV to cover

an area of interest. The raster scan reference trajectory is defined as follows:

Yd(t) =



[t m, 0 m, 3t/22− 50 m]T , 0 ≤ t < 60

[60 m, t− 60 m, 3t/22− 50 m]T , 60 ≤ t < 80

[140− t m, 20 m, 3t/22− 50 m]T , 80 ≤ t < 140

[0 m, t− 120 m, 3t/22− 50 m]T , 140 ≤ t < 160

[t− 160 m, 40 m, 3t/22− 50 m]T , 160 ≤ t < 220

(64)

In the raster scan task, the AUV encounters several straight lines and

sharp turns. To verify the performance of our algorithm, the initial location

of the AUV is chosen as [0, 6,−52]T in the i-frame, which is not the same

with the starting location of the desired trajectory.

Fig. 2 shows the trajectory tracking results of the raster scan task in 3-D

space. The red curve is the simulated tracking result without disturbance, the
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blue curve represents the simulated tracking result with random disturbance,

the green curve represents the simulated tracking result under ocean current,

and the pink curve represents the simulated tracking results under ocean

wave, while the black curve represents the desired raster scan trajectory. As

can be seen that the AUV can successfully achieve the realtime tracking of

the desired raster scan trajectory with or without disturbances.
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Figure 2: AUV 3-D trajectories for raster scan task under different disturbances.

The curves of position tracking performances in three directions versus

time are plotted in Fig. 3. It can be readily observed that (i) in all simula-

tions, the AUV is successfully steered to closely track the desired trajectory

despite the presence of initial errors; (ii) the MPC-based method can achieve

excellent performance in the absence of disturbances; (iii) when the AUV

deviates from the trajetory due to disturbances, the MPC-based method can

make the AUV approach the desired trajectory quickly.
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Figure 3: Position tracking performances for raster scan task under different disturbances.

The main performance metric used in this paper is cross-track error, which

refers to the distance between the actual position and the desired position

in 3-D space. The cross-track error is a true measurement of the difference

between the actual trajectory and the desired trajectory. The curves of cross-

track error versus time are shown in Fig. 4.

Since the initial position of AUV is different from the starting point of
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Figure 4: Cross-track errors for raster scan task under different disturbances.

the desired trajectory, the cross-track errors are large in the beginning. After

about 10s, the errors go to around 0. From Fig. 4, it can be shown that

the cross-track errors suddenly increase at 60s, 80s, 140s and 160s. This is

because the AUV encounters sharp turns of 90 degrees. Another observation

can be made is that the cross-track errors with disturbance is larger than

that without disturbance. This is because these disturbances cause the AUV

to deviate from the desired trajectory. For the sake of clarity, the cross-

track error measurements after 5 seconds are listed in Table. 2. It can be

seen that the average of cross-track errors without disturbance is very small

(about 0.0137m) for an AUV with a speed of more than 1m/s. Moreover,

the average of cross-track errors with disturbances is about 0.3m, which
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Table 2: Cross-track error measurements after 5 seconds for raster scan task

Disturbances Maximum(m) Minimum(m) Average(m)

None 0.6613 0.0000 0.0137

Random 1.4399 0.0172 0.3235

Ocean current 1.5343 0.1425 0.2597

Ocean wave 1.1683 0.0183 0.3087

demonstrates the good performance of our method.

Fig. 5 shows the curves of actual control forces and moments versus

time under different disturbances. The actual control forces and moments

without disturbance are stable and change very slowly (red curves). However,

the actual control forces and moments with disturbances change significantly.

This is because the position of the AUV deviates from the desired trajectory

due to disturbances, and the AUV needs to change the control forces and

moments dramatically to approach the desired trajectory as early as possible.

4.2. Tracking of sinusoidal trajectory

Another task for an AUV to execute is tracking a curve trajectory, which

is rather different from the raster scan trajectory. The sinusoidal reference

trajectory is a curve trajectory defined as follows:

Yd(t) =


t m

25 sin(0.1t) m

3t/10− 50 m

, 0 ≤ t < 100 (65)
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Figure 5: Actual control forces and moments for raster scan task under different distur-

bances.
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Figure 6: AUV 3-D trajectories for sinusoidal tracking task under different disturbances.

In the sinusoidal trajectory tracking task, the AUV encounters several

curves with different degrees of curvature. The sinusoidal trajectory tracking

results in 3-D space are shown in Fig. 6.

The position tracking performances in three directions are plotted in Fig.

7, the Cross-track errors are recorded in Fig. 8 and the cross-track error

measurements after 5 seconds are listed in Table. 3. Similar observations can

be made that the AUV can be successfully steered to the desired sinusoidal

trajectory in real time with or without disturbances.

As can be seen from both Figs. 7 and 8, the actual trajectory of the

AUV without disturbance basically coincides with the desired trajectory (red

curves). At the beginning of the simulations, the cross-track errors are large

since the initial position is not the same as the starting point of the desired

trajectory. But as time goes by, the cross-track errors gradually decrease
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Figure 7: Position tracking performances for sinusoidal tracking task under different dis-

turbances.

and tend to zero. Because there are no sharp changes of direction in the

sinusoidal trajectory tracking, the cross-track errors are very small during

the whole task (an average of 0.0066m without disturbance).

The actual control forces and moments for sinusoidal tracking task under

different disturbances are depicted in Fig. 9. The same as the raster scan tra-
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Figure 8: Cross-track errors for sinusoidal tracking task under different disturbances.

jectory tracking, the actual control forces and moments without disturbance

are stable and change very slowly (red curves). The simulation results un-

der various disturbances further illustrate the robustness of our MPC-based

method.

5. Conclusion

In this paper, a novel MPC-based 3-D trajectory tracking strategy for AU-

Vs has been presented. Firstly, the kinematic analysis of an fully-actuated

AUV is conducted and the 6-DOF kinematics equation is established. Sec-

ondly, the practical input and state constraints are considered explicitly.

Meanwhile, for convenience, the state constraints are translated into the in-
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Table 3: Cross-track error measurements after 5 seconds for sinusoidal tracking task

Disturbances Maximum(m) Minimum(m) Average(m)

None 0.3174 0.0000 0.0066

Random 1.0083 0.0557 0.3331

Ocean current 0.5782 0.2184 0.2414

Ocean wave 1.1629 0.0286 0.2804

put constraints. Thirdly, the control increments are introduced as the system

input to improve the stability of the AUV. Finally, the trajectory tracking

problem is transformed into a constrained standard QP problem which can

be computed online. During an actual trajectory tracking in the complex

ocean environment, the AUV encounters various disturbances, such as ran-

dom disturbances, ocean current disturbances and ocean wave disturbances.

Because the optimal control inputs are recalculated at each sampling instant,

the trajectory tracking task can be well accomplished even though the AUV

are under these disturbances.

Simulation studies of tracking two different types of reference trajectories

have been conducted and have demonstrated the feasibility and robustness of

the MPC-based algorithm under uncertain disturbances in the complex ocean

environment. In the near future, we would like to design a more complex

3-D trajectory tracking control strategy for under-actuated AUVs.

Acknowledgment

This work was supported by the National Natural Science Foundation of

China (Grant No. 61473120), the Key Research and Development Program of

35



1000

750

500

250

0

250

500

750

1000

F
x 

(N
)

2000

1000

0

1000

2000

F
y 

(N
)

1000

750

500

250

0

250

500

750

1000

F
z 

(N
)

1000

800

600

400

200

0

200

F
x 

(N
m

)

Control without disturbance
Control with random disturbance
Control under ocean current
Control under ocean wave

1000

800

600

400

200

0

200

F
y 

(N
m

)

0 20 40 60 80 100
Time (s)

1000

500

0

500

1000

F
z(

N
m

)

Figure 9: Actual Control forces and moments for sinusoidal tracking task under different

disturbances.

36



Jiangsu (Grant No. BE2017071, BE2017647, BE2018004-04), the Fundamen-

tal Research Funds for the Central Universities (Grant No. 2018B47114), the

Projects of International Cooperation and Exchanges of Changzhou (Grant

No. CZ20170018), and the Projects of Anhui Province University Outstand-

ing Youth Talent Support Program (Grant No. gxyq2019094).

References

Aguiar, A.P., Hespanha, J.P., 2007. Trajectory-tracking and path-following

of underactuated autonomous vehicles with parametric modeling uncer-

tainty. IEEE Trans. Autom. Control 52, 1362–1379.

Antonelli, G., Chiaverini, S., Sarkar, N., West, M., 2001. Adaptive control

of an autonomous underwater vehicle: experimental results on odin. IEEE

Trans. Syst., Man, Cybern. 9, 756–765.

Beal, C.E., Gerdes, J.C., 2013. Model predictive control for vehicle stabi-

lization at the limits of handling. IEEE Trans. Control Syst. Technol. 21,

1258–1269.

Boyd, S., Vandenberghe, L., 2004. Convex Optimization. Cambridge Uni-

versity Press, U.K.

Cui, R., Zhang, X., Cui, D., 2016. Adaptive sliding-mode attitude control

for autonomous underwater vehicles with input nonlinearities. Ocean Eng.

123, 45–54.

Do, K.D., Pan, J., 2009. Control of Ships and Underwater Vehicles:Design for

37



Underactuated and Nonlinear Marine Systems. Springer-Verlag, London,

U.K.

Ferri, G., Munaf, A., Lepage, K.D., 2018. An autonomous underwater vehicle

data-driven control strategy for target tracking. IEEE J. Ocean. Eng. 43,

323–343.

Fossen, T.I., 2011. Handbook of marine craft hydrodynamics and motion

control. John Wiley & Sons.

Gan, W., Zhu, D., Ji, D., 2018. Qpso-model predictive control-based ap-

proach to dynamic trajectory tracking control for unmanned underwater

vehicles. Ocean Eng. 158, 208–220.

Gao, J., Liu, C., Proctor, A., 2016. Nonlinear model predictive dynamic

positioning control of an underwater vehicle with an onboard usbl system.

J. Mar. Sci. Technol. 21, 57–69.

Hammad, M.M., Elshenawy, A.K., El Singaby, M.I., 2017. Trajectory follow-

ing and stabilization control of fully actuated auv using inverse kinematics

and self-tuning fuzzy pid. Plos One 12, e0179611.

Healey, A.J., Lienard, D., 1993. Multivariable sliding mode control for au-

tonomous diving and steering of unmanned underwater vehicles. IEEE J.

Ocean. Eng. 18, 327–339.

Jalving, B., 1994. The ndre-auv flight control system. IEEE J. Ocean. Eng.

19, 497–501.

38



Ji-HongLi, Pan-mookLee, Wonhong, S., Sang, J., 2007. Stable nonlinear

adaptive controller for an autonomous underwater vehicle using neural

networks. Int. J. Syst. Sci. 38, 327–337.

Khodayari, M.H., Balochian, S., 2015. Modeling and control of autonomous

underwater vehicle (auv) in heading and depth attitude via self-adaptive

fuzzy pid controller. J. Mar. Sci. Technol. 20, 559–578.

Kim, J., Joe, H., Yu, S.C., Jin, S.L., Kim, M., 2016. Time-delay controller

design for position control of autonomous underwater vehicle under dis-

turbances. IEEE Trans. Ind. Electron. 63, 1052–1061.

Londhe, P.S., Dhadekar, D.D., Patre, B.M., Waghmare, L.M., 2017. Un-

certainty and disturbance estimator based sliding mode control of an au-

tonomous underwater vehicle. Int. J. Dyn. Control 5, 1122–1138.

Mayne, D., Rawlings, J., Rao, C., Scokaert, P., 2000. Constrained model

predictive control: Stability and optimality. Automatica 36, 789–814.

Park, B.S., 2015. Neural network-based tracking control of underactuated

autonomous underwater vehicles with model uncertainties. J. Dyn. Syst.

Meas. Control 137, 1–7.

Park, B.S., Yoo, S.J., Jin, B.P., Choi, Y.H., 2010. A simple adaptive control

approach for trajectory tracking of electrically driven nonholonomic mobile

robots. IEEE Trans. Control Syst. Technol. 18, 1199–1206.

Perrier, M., Canudas-De-Wit, C., 1996. Experimental comparison of pid vs.

pid plus nonlinear controller for subsea robots. Auton. Robots 3, 195–212.

39



Proctor, A.A., 2014. Semi-autonomous guidance and control of a Saab Sea-

Eye Falcon ROV. Ph.D. thesis. Department of Mechanical Engineering,

University of Victoria. Victoria, BC, Canada.

Qiao, L., Yi, B., Wu, D., Zhang, W., 2017. Design of three exponentially

convergent robust controllers for the trajectory tracking of autonomous

underwater vehicles. Ocean Eng. 134, 157–172.

Qiao, L., Zhang, W., 2019a. Adaptive second-order fast nonsingular terminal

sliding mode tracking control for fully actuated autonomous underwater

vehicles. IEEE J. Ocean. Eng. 44, 363–385.

Qiao, L., Zhang, W., 2019b. Double-loop integral terminal sliding mode

tracking control for uuvs with adaptive dynamic compensation of uncer-

tainties and disturbances. IEEE J. Ocean. Eng. 44, 29–53.

Qin, S.J., Badgwell, T.A., 2003. A survey of industrial model predictive

control technology. Control Eng. Pract. 11, 733–764.

Rawlings, J.B., 2002. Tutorial overview of model predictive control. IEEE

Control Syst. Mag. 20, 38–52.

Refsnes, J.E., Sorensen, A.J., Pettersen, K.Y., 2008. Model-based output

feedback control of slender-body underactuated auvs: Theory and experi-

ments. IEEE Trans. Control Syst. Technol. 16, 930–946.

Sahu, B.K., Subudhi, B., 2014. Adaptive tracking control of an autonomous

underwater vehicle. Int. J. Auto. Comput. 11, 299–307.

40



Shen, C., Buckham, B., Shi, Y., 2017. Modified c/gmres algorithm for fast

nonlinear model predictive tracking control of auvs. IEEE Trans. Control

Syst. Technol. 25, 1896–1904.

Shen, C., Shi, Y., Buckham, B., 2018. Trajectory tracking control of an au-

tonomous underwater vehicle using lyapunov-based model predictive con-

trol. IEEE Trans. Ind. Electron. 65, 5796–5805.

Smallwood, D.A., Whitcomb, L.L., 2004. Model-based dynamic positioning

of underwater robotic vehicles: theory and experiment. IEEE J. Ocean.

Eng. 29, 169–186.

Sun, B., Zhu, D., Yang, S.X., 2018. An optimized fuzzy control algorithm

for three-dimensional auv path planning. Int. J. Fuzzy Syst. 20, 597–610.

Teo, K., An, E., Beaujean, P.P.J., 2012. A robust fuzzy autonomous under-

water vehicle (auv) docking approach for unknown current disturbances.

IEEE J. Ocean. Eng. 37, 143–155.

Wang, C., Liu, X., Yang, X., Hu, F., Jiang, A., Yang, C., 2018. Trajec-

tory tracking of an omni-directional wheeled mobile robot using a model

predictive control strategy. Appl. Sci. 8, 231–245.

Wang, Z., Lu, R., Wang, H., 2017. Finite-time trajectory tracking control

of a class of nonlinear discrete-time systems. IEEE Trans. Syst., Man,

Cybern. 47, 1679–1687.

Xiang, X., Jouvencel, B., Parodi, O., 2010. Coordinated formation control

of multiple autonomous underwater vehicles for pipeline inspection. Int.

J. Adv. Robot. Syst. 7, 75–84.

41



Xiang, X., Lapierre, L., Jouvencel, B., 2015. Smooth transition of auv mo-

tion control: From fully-actuated to under-actuated configuration. Robot.

Auton. Syst. 67, 14–22.

Xiang, X., Yu, C., Lapierre, L., Zhang, J., Zhang, Q., 2017. Survey on fuzzy-

logic-based guidance and control of marine surface vehicles and underwater

vehicles. Int. J. Fuzzy Syst. 20, 572–586.

Xu, J., Wang, M., Qiao, L., 2014. Backstepping-based controller for three-

dimensional trajectory tracking of underactuated unmanned underwater

vehicles. Control Theory Appl. 31, 1589–1596.

Xu, J., Wang, M., Qiao, L., 2015. Dynamical sliding mode control for the tra-

jectory tracking of underactuated unmanned underwater vehicles. Ocean

Eng. 105, 54–63.

Ye, L., Cong, W., Qi, W., Chen, P., Jiang, Y., Li, Y., 2015. Study of 3

dimension trajectory tracking of underactuated autonomous underwater

vehicle. Ocean Engineering 105, 270–274.

Zhang, F., Fratantoni, D., Paley, D., Lund, J., Leonard, N., 2007. Control of

coordinated patterns for ocean sampling. Int. J. Control 80, 1186–1199.

Zhang, F., Marani, G., Smith, R.N., Choi, H.T., 2015. Future trends in

marine robotics. IEEE Robot. Autom. Mag. 22, 14–122.

Zhu, D., Cao, X., Sun, B., Luo, C., 2018. Biologically inspired self-organizing

map applied to task assignment and path planning of an auv system. IEEE

Trans. Cogn. Dev. Syst. 10, 304–313.

42


