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Abstract: Ransomware attacks are one of the biggest and attractive threats in cyber security today. Anti-virus software’s are often 
inefficient against zero-day malware and ransomware attacks, important network infections could result in a large amount of data 
loss. Such attacks are also becoming more dynamic and able to change their signatures – hence creating an arms race situation. 
This study investigates the relationship between a process behavior and its nature, in order to determine whether it is ransomware 
or not. The paper aim is to see if using this method will help the evading malicious software’s and use as a self-defense mechanism 
using machine learning that emulates the human immune system. The analysis was conducted on 7 ransomware, 41 benign 
software, and 34 malware samples. The results show that we are able to distinguish between ransomware and benign applications, 
with a low false-positive and false-negative rate. 
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1. Introduction 
Ransomware is a category of malicious software which, when run, disables the functionality of a computer, or encrypts 
the files in it. Ransomware operates in many different ways, from simply locking the desktop of the infected computer 
to encrypting all of its files [3]. The ransomware program displays a message that demands payment to restore 
functionality or decrypt files. The malware, in effect, holds the computer at ransom. This is highly profitable, with 2.9 
percent of compromised users paying out. An investigation into one of the smaller players in this scam identified 
68,000 compromised computers in just one month, which could have resulted in victims being defrauded of up to 
$400,000 USD [2]. Ransomware is significantly grown since the last decade and it has a financially motivated 
cyberattack. Europol has reported in 2018 that ransomware is one of the biggest threat in cyber security. In order to 
test a viable solution, we wrote a Python program, to perform two main functionalities: 

• Collect data about resources used by a process, by using a server-oriented solution; 
• Detect and kill any suspicious process. 
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The data collected are used to train a machine learning system, which might detect ransomware itself after enough 
training. The discrimination could be made in two ways: with machine learning, or by defining pre-set thresholds. The 
latter is used to analyze data which cannot fit into the machine learning system, like string variables. Malware is 
malicious software created in order to harm a computing system. The main goal is generally to earn money, by 
extracting critical information to sell them later or blackmailing the targeted user. A brief definition of terms is 
provided in Table 1 

Table 1Key Terms Definitions 
Virus Viruses are able to be replicate and they can be expanded on the network 

in order to infect other computers 
Worm Instead of the virus, the worm is able to be spread autonomously on the 

network 
Trojan A Trojan is a software that looks seemingly legitimate but in reality it 

contains a malicious program 
Ransomware Ransomware is a malicious software who encrypt personal data in order to take 

our computer in hostage. If you want to restore your data, you need to pay a 
ransom 

When the user executes an infected file, the ransomware will ask to the attacker server an encryption key. The attacker 
server will send back the encrypted key to the ransomware. The key contains a very long character string which is 
unique to the victim PC. 

         
Figure 1: The victim PC getting the encryption key              Figure 2: The victim PC being encrypted 

Then, the ransomware will start encrypting all personal data and asking you a ransom in order to recuperate it. All your 
data will no longer be accessible. The pictures on the test machine have been encrypted, and now have the extension 
“.WNCRY ”. For our proposed architecture, we had two virtual machines. One virtual machine running on Windows 7 
and the other virtual machine is a Linux machine running on Ubuntu 16.04 LTS. All virtual machines were on a private 
network in order to avoid propagation into the network. The Linux machine IP address is 192.168.56.104 and the 
windows machine IP address is 192.168.56.103. 

2 Related work 
The days of worrying with the issue of phishing emails from a proposed wealthy individual or those with deceased 
family members who are trying to transfer their wealth to other countries and similar email are phasing out gradually. 
The most lucrative aspect now is in the form of Ransomware which can also be spread via a similar concept i.e. 
phishing emails. The security industries have been able to develop ways of mitigating the first scenario via the 
identification of typos and grammatical errors in such email but finding it difficult to help prevent ransomware 
attacks. These attacks are more lucrative and successful, as a result when you are infected your option is either to 
pay off, lose your data or in some other instances infect a given number of others systems before your data will be 
decrypted. Having said that, there is a silent movement in terms of a project nomorerandome 
(https://www.nomoreransom.org/) which helps solve/minimize the problem of paying for ransom. In this section, we review 
existing work in order to perform a state of the art related to ransomware detection.  

An overview of ransomware attacker and countermeasures has been provided by tailor Jinal P and Patel Ashish D 
[11] where comparisons of recent studies, key contributions, and limitations were presented. Detailed 
“CryptoLocker” analysis and explanation has been provided by Ross Brewer et al. [7], this also includes the details 
on how to handle a ransomware attack. For example one of the common method to make a backup of all your data 
on the computer. As well as advising organizations to develop an incident response team. This will help to ensure a 
prompt response in a scenario where time is of the essence to stop or contain a serious situation. 

R. Richardson et al. [9] insists on the fact that human is the key factor in most of the ransomware infection, by 

https://www.nomoreransom.org/
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affirming that 59% of infections came by e-mail (phishing, infected attachment), and 24% came via websites. K. 
Cabaj et al. [4] are proposing a solution based on ransomware traffic characteristics, more precisely the HTTP 
requests made by the infected host to the remote server in order to exchange the asymmetric encryption key. By 
analyzing first a large range of ransomware (359 CryptoWall samples), they were able to perform detection rates 
of 97-98%. A. Azmoodeh et al. [5] proposed a solution based on the ransomware’s power consumption fingerprint. 
They were able to achieve a precision rate of 89.19% and a detection rate of 95.65%. A cloud-based solution, called 
Malware Detection as A Service (MDaaS) has been presented by A. Bhardwaj et al. [1]. The system is composed 
of three virtual environments running services for Malware Behavioural Analysis, Malware Code Analysis, and 
Malware Reporting. Despite being a real-time anti-malware, the files analysis might take a lot of time and resources, 
involving high latency and delay in case of poor internet connection. The use of three virtual environments instead 
of one means 3 times more resources, which is a disadvantage compared to the standard cloud service anti-malware 
solution. If the user is offline, his device cannot be protected and he could get infected by a worm using an offline 
propagation method, like through removable drives. An alternative solution composed of three important parts: the 
Crypto function hooking, the key vault, and a file recovery system has been demonstrated by E. Kolodenker et al. 
[8]. They are combined to form a cohesive system that is able to reverse file encryption performed by hybrid 
cryptosystem ransomware. Song et al [10] have proposed a process monitoring ransomware solution for android 
devices by focusing on some preventative measures based on process usage, memory usage input and output rates 
to detect abnormal behaviors of processes. Our proposed solution is an extension to this basic concept by looking 
more into key process usages in terms of disk usage, reads and writes as well as creating a multi-threaded approach 
to increase the efficiency of the detection and prevention process. We have also demonstrated our solution based 
on a larger dataset for both ransomware and benign ware and malware samples. Our solution also includes the 
analysis of  DLL’s used as well as API calls, which provides a more compressive and detailed analysis of the 
process to provide a dynamic preventative solution.  
3 Proposed detection method 
The final goal is to determine whether a process running within an ecosystem is ransomware or not, in order to 
stop it. To achieve that, the following points are checked: 

• Which DLL APIs are called? How much the system resources are used?  Which files are opened by the 
process?  

Once the program got that information, it uses manually entered pre-sets coupled to a machine learning solution in 
order to determine the nature of the process. The purpose of our paper is to propose a solution able to detect and 
neutralize ransomware. To achieve that, we have to collect information about systems behavior, by executing them 
on a virtual machine.  Nonetheless, if a Python script is running on this machine, there is a high chance that the 
script and all it generates might be destroyed. So once the program retrieves any information about a process, it 
sends the data directly to a monitor using a secure connection channel, the monitoring system is Linux based 
to minimize potential ransomware infection. We executed ransomware, malware and trusted software’s on 
the windows machine. The python program is able to transfer the data we collect from ransomware, malware and 
trusted software to the Ubuntu machine. 

 
Figure 3:  Lab architecture 

For the reason that not all the data we retrieve needs to be periodically monitored, we initially created two different 
threads: 
1. The “analysis” thread which collects the variable data and loop until the process is ended; 
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2. The “info” thread which collects the constant data, send them and stop. 
And because all the data are not taking the same amount of time to obtain them, we created two other threads 

for the “slow-to-collect” data: The “tagfile” thread, reading the tagfile content; the “files” thread which collect 
the name of all the files opened by the process. 

The flowchart in Figure 4 represents how the main program works. It shows the different type of data in each 
thread. By doing this type of separation, it optimizes the program, because obtaining one value may take time, 
during which time the thread is paused. With this system, the constants are returned once, and the variables are 
returned periodically following the process execution speed. 

 
Figure 4:  Main program flowchart 

We first thought about collecting any possible data, so we could determine which one might be useful. At the end of 
our paper, we are not using all of the data in Table 2. 

Thread Data Frequency 
Analysis process name Every 1s 
Analysis PID Every 1s 
Analysis CPU Usage Every 1s 
Analysis RAM Usage Every 1s 
Analysis Disk usage Every 1s 
Analysis Network connections Every 1s 
Tagfile DLLs used (API calls) Every 2s 

Info PID One-Time 
Info Shell command line One-Time 
Info Executable path One-Time 
Info Startup programs One-Time 

Files opened Files opened Every 1s 
Table 2: Data distribution among the threads 
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All the collected data are added to a queue before being sent to the server. In this way, the main thread associated with 
the analyzed process can gather the data from the different threads, and proceed with the discrimination using all the 
data collected. 

We used third-party software in order to strengthen our ransomware detection program: Tiny tracer, which allows 
us to gather information about DLLs API calls and also capturing the transition between sections of the traced 
module. Tiny tracer is a program made in C++. When you execute a program with tiny tracer he will generate a 
“.tag” file which contains all the DLLs API calls of the program. This tag file can be easily read with a simple 
notepad. 

We analyzed 41 benign applications, especially software installers because they are the ones with the closest 
behavior to ransomware. The reason for this is the number of disk inputs and outputs made by these types of 
program, which are way higher than others. 

We analyzed 34 malware processes. They were useful for our final detection program: by doing that, we could 
see if there is a difference between a malware’s behaviors and any other type of software. 

We analyzed different ransomware (7 in total). We will describe the behavior of some of them, in order to 
manually identify patterns. 

 
Figure 5:  Ransomware analyzed 

After analyzing ViraLock (Figures 6, and 7), we saw that the CPU had a lot of variation. The maximum value of the 
CPU is 25% usage. On the other side, the memory usage is more stable. The maximum value is 2% usage. The CPU 
usage can help determine the presence of a malicious program, but might not be the key factor. The values of disk 
read and write is drastically increasing. The maximum value of disk write is around 450000. The maximum value of 
disk read is around 420,000. This is the most important factor among all the values we analyzed. The values of bytes 
read and writing is also increasing. The maximum value of reading is around 6,000,000,000. The maximum value writing 
value is around 50,000,000,000. Those values are extremely high, in contrast to benign applications. 

    
Figure 6: ViraLock CPU and memory usage                Figure 7: ViraLock read and write bytes 

When it comes to WannaCry, our Python program analyze it only four times before crashing. WannaCry ransomware 
is more powerful than the others. The maximum CPU used is 24.7% and the memory usage is very low (around 0.2% 
usage). The number of reading and write counts is increasing drastically. The maximum value of reading is 97 and it’s 
764 to write (pretty low). The maximum value of reading bytes is around 60 000 000. The maximum value of write 
bytes is around 120,000,000 (Figure 8 and 9 respectively). 
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Figure 8: WannaCry CPU and memory usage         Figure 9: WannaCry read and write bytes 

After analyzing Cerber (Figure 10) we saw that the maximum CPU usage is 37.5% and the memory usage is around 
0.1%. We can suppose that Cerber is starting the process of encryption when the CPU is at 37.5%. The maximum read 
is around 2,200 and to write, it’s 1,800. After 22 timestamp our python program was killed by Cerber. The number of 
reading and write is high. That is proof that the ransomware is active and is encrypting our data. The number of reading 
and write has been increased drastically. It is another proof of ransomware activity. 

  
Figure 10: Cerber CPU and memory usage          Figure 11: WinLocker CPU and memory usage 

Winlocker killed the python program. The program analyses 10 times the process before crashing. The maximum 
value of the CPU is at process startup and it is 3%. The CPU is increasing at 1.5%. The memory usage is around 0.2%. 
As we can see (Figure 11), the number of reading and write counts are increasing over time. The maximum read count 
is 42 and the maximum write count is 20. We saw the number of bytes written and read is increasing as well. We 
improved graphs by classifying PID in order to have a good overview of ransomware behavior. 

 
Figure 12:  CPU usage 

The data discrimination is divided into two parts, depending on the type of data to analyze. The reason for this is that 
we cannot put any type of data in the machine learning program, it supports only integers and floats. The strings will 
be analyzed using a threshold system and another method, as in Table 3. 
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Table 3 Discinimation Data 
Discrimination method Data var type 

Machine Learning 
Machine Learning 
Machine Learning 
Machine Learning 

PID 
CPU Usage 
RAM Usage 
Disk usage 

int 
float 
float 
float 

Threshold 
Threshold 

API calls 
Files opened 

String 
String 

We created a system to determine whether a data is a clue to spot ransomware or not: We use a weighted average 
system. For each data added, the values are analyzed by specific functions which contain thresholds. Then, the 
specific analysis functions return a value between 0 and 1, which can be compared to a mark, and an integer which 
is a coefficient. The value of this coefficient change following the threshold triggered in the function. Finally, all 
those values are merged to calculate a weighted average. If this average is superior to 0.5, the process is suspected 
to be ransomware, and the user is warned with a pop-up, which provides the user with an option to kill it or not. 

With the data we collected, we were able to make a solution against ransomware. Our python program will be 
launched at the PC start-up. When we execute ransomware, a window will appear and tell us that this program is 
suspicious. If we click on yes, it will immediately kill the process. For this example we ran WinLocker and we have 
five values in total: ([0, 5], [0, 4], [1, 11], [1, 3], [1, 2]). 

 
Figure 13: Windows displayed when ransomware is detected 

For the first case of each value “1” mean it is detected as ransomware and “0” mean it is not detected as 
ransomware. The second value of each case corresponds to the coefficient used. 

The first value corresponds to the machine learning detection. We choose “5” for the coefficient of machine 
learning. This coefficient will be the same whether it is detected as ransomware or not. 

The second value corresponds to the files extensions. If the process found a file with an extension know as 
malicious, like “wnry” for example for WannaCry, the value will be “[1, 100]”, so the coefficient will be at 100. If 
not, the value will be “[0, 4]”, so with the lowest coefficient which will be “4”. 

The third value corresponds to API calls made by the DLLs. We collected all of the API calls of the ransomware 
DLLs’s in order to find which function of a DLL is called. We classified those API calls and if a known function 
used by a DLL is called at least five times, the first case value will turn to 1. To calculate the coefficient, we count 
the number of iterative calls made by all DLLs functions and we divide by two. 

 
The fourth value corresponds to disk usage. If a number of written bytes is higher than 100,000 and the number 

of written bytes is less than 5,000 we will have “[1, 10]” as output. If the number of bytes written is less than the 
number of reading bytes, then the output will be “[0, 5]” because we cannot have more read bytes than written bytes 
after our analyses. If the number of written bytes is higher than reading bytes, then the output will be “[1, 3]”. And 
finally, if we do not have either of all the proposition, the output will be “[0.5, 1]”.  

 
Figure 14 ML Experimentation Results 
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The last value corresponds to the threads.  If the number of thread is less than 5, the output will be “[1, 2]”. If the 
number of thread is higher than five the output will be “[0, 2]” because after analyzing the values collected, the number 
of a thread never went higher than five.  

Making a graph with python was very effective to study the behavior of malware. With the system usage, we saw on 
the graph the variation of the different values. The CPU usage was an important factor to determine if there is a 
malicious process running on the computer. The write, read bytes and count on the disk can improve to detect 
ransomware. It allows us to have much important information which can be very effective in order to study a 
ransomware behavior.  

The resulting output of process flags are saved as a CSV file and this is used as input to the machine learning module 
using a decision tree, random forest, and neural network. Out test result consists of splitting the dataset into training 
and test samples. The result as presented in Figure 14 shows that the random forest produces the best result and more 
need to be done to improve the results. 

4 Conclusion  
We were able to study a lot of different ransomware and extracting values from like the DLLs used and the system 

usage. We were able to increase my dataset of malware and ransomware. Even if the machine learning technique needs 
more training, we were able to implement a solution against ransomware attacks which allow us to detect the process 
and determine if it is ransomware or not with the API calls of each function used by DLLs, with the extensions, the 
disk usage and the number of threads. 

Our system is able to detect zero-day ransomware attacks and warn the user about a potential threat.  The benefit of 
our solution is that it does not need a signature database, but a dataset of ransomware and none- ransomware data. The 
more the dataset is enhanced, the more the system is successful in its discrimination. Our next step is to try and get 
this detection done within the first 5 seconds of malicious activity, then pass this information into an agent that will 
communicate this information securely to the ecosystem so as to form an early warning system for self-defense an 
create a more reactive preventative solution rather than a reactive defense – hence provide a zero-trust security 
solution.   
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