
1

Bio-inspired Approach for Long-Range Underwater
Navigation Using Model Predictive Control

Yongding Zhang, Xiaofeng Liu, Member, IEEE, Minzhou Luo, and Chenguang Yang, Senior Member, IEEE

Abstract—Lots of evidence has indicated that many kinds of
animals can achieve goal-oriented navigation by spatial cognition
and dead reckoning. Geomagnetic field (GF) is a ubiquitous cue
for navigation by these animals. Inspired by the goal-oriented
navigation of animals, a novel long-distance underwater geo-
magnetic navigation (LDUGN) method is presented in this paper,
which only utilizes the declination component (D) and inclination
component (I) of GF for underwater navigation without any
priori knowledge of geographical location or geomagnetic map.
The D and I measured by high-precision geomagnetic sensors are
compared periodically with that at the destination to determine
the velocity and direction in the next step. A model predictive
control (MPC) algorithm with control and state constraints is
proposed to achieve the control and optimization of navigation
trajectory. Because the optimal control is recalculated at each
sampling instant, the MPC algorithm can overcome interferences
of geomagnetic daily fluctuation, geomagnetic storms, ocean
current, and geomagnetic local anomaly. The simulation results
validate the feasibility and accuracy of the proposed algorithm.

Index Terms—Geomagnetic navigation, underwater navigation,
bio-inspired, autonomous underwater vehicle (AUV), model pre-
dictive control (MPC).

I. INTRODUCTION

UNDERWATER navigation technologies have been paid
more and more attention because of broad applications in

scientific exploration, commercial, military, rescue, surveying
and mapping in the past decades [1]. Because the most com-
mon positioning and navigation technology, global positioning
system (GPS), is not available in underwater environment,
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the positioning and navigation of AUVs face greater chal-
lenge [2]. Many alternative technologies have been utilized
for underwater navigation, such as inertial navigation system
(INS), terrain-aided navigation, gravity-aided navigation, a-
coustic navigation and geomagnetic navigation [3], [4]. The
INS uses sensors, such as accelerometers and gyroscopes, to
continuously calculate the position, orientation, and velocity of
a moving object by dead reckoning without external references
[5]. However, the position error of INS gradually increases
with time, which is fatal for a long-duration underwater
navigation [6]. Many methods have been proposed to improve
the accuracy of INS [7]–[10]. An embedded dynamics aiding
technique was proposed to enhance the position, velocity, and
attitude error estimations in INS [11]. By using information
from a scanning sonar, the terrain-aided navigation compares
the terrain features below the AUV with the known high
resolution terrain map to estimate the location [12]. However,
it is a difficult task to make the terrain map in advance [13],
[14]. As a passive navigation technology, the gravity-aided
navigation also requires a fairly accurate gravity map and
is only suitable for regions with large variation of gravity
characteristics [15], [16]. The acoustic navigation uses acous-
tic transponder beacons to determine position and has the
advantages of high precision and no accumulated error, but
it needs to deploy external transducers in advance, which is
not suitable for applications such as ocean voyages [17], [18].
The geomagnetic navigation is a passive navigation technology
with good concealment, low cost and no cumulative error.
Geomagnetic matching is a conventional navigation technique,
which can realize high precision positioning by comparing
the geomagnetic profile acquired on board with the pre-stored
geomagnetic map [19]. However, it strongly depends on a
priori geomagnetic map, which is rather difficult to realize
in practice for long distance underwater navigation [20].

It has been widely known that many animals have the ability
to migrate or home across thousands of kilometers [21]. Hom-
ing pigeons released at a unacquainted place can fly hundreds
of kilometers to return home [22]. The Pacific salmon can
use geomagnetic cues to navigate to the correct coastal area
from the open ocean in the final phase of their spawning
migration [23]. It has been hypothesized that marine animals
can imprint on the magnetic fields associated with their coastal
reproductive areas and to use that information to return months
or years later. Putman et al. [24] examined the geomagnetic
imprinting hypotheses of natal homing with datasets that
recorded variation in the migratory routes of salmon. It is
speculated that salmon might assess location using a map
sense based in part on magnetic intensity and inclination angle.
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Adult green turtles can detect geomagnetic information, which
helps them return to their egg laying site [25]. In [26], the
findings imply that sea turtles have a navigational system that
exploits the geomagnetic field (GF) as a kind of bicoordinate
magnetic map from which both longitudinal and latitudinal
information can be extracted. In [27], the findings provide
genetic corroboration of geomagnetic imprinting, and provide
strong evidence that geomagnetic imprinting and magnetic
navigation help shape the population structure of sea turtles
and perhaps numerous other long-distance migrants that return
to their natal areas to reproduce.

Inspired by the goal-oriented navigation of animals, dif-
ferent bio-inspired navigation strategies are proposed in the
literatures. Fiack et al. [28] proposed an embedded architecture
for bio-inspired vision-based robot navigation, which relies on
visual attention to learn specific actions in each place. A fast
and efficient homing algorithm based on Fourier transformed
panoramic images was presented [29]. By continuously com-
paring Fourier coefficients calculated from the current view
with coefficients representing the goal location, a mobile robot
is able to find its way back to known locations. However, the
vision-based methods have a huge workload of image pro-
cessing, poor real-time performance and cannot work in dark
environment. Taking inspiration from echolocating mammals,
especially bats, a novel navigation technique was presented
employing both multistatic and monostatic acoustic sensors
[30]. However, the bio-inspired acoustic navigation need to
place the transmitters beforehand, which is infeasible for long-
distance navigation. A bio-inspired polarization navigation
sensor was constructed to detect the polarization of skylight,
and all the outputs are utilized to compute optimal angle esti-
mation [31]. Inspired by the ant navigational strategies, a celes-
tial compass was designed based on the linear polarization of
ultraviolet skylight [32]. In [33], the geolocation of an observer
can be determined based on radial underwater polarization
patterns by using a bio-inspired polarization-sensitive imager.
However, the structure of polarization navigation system is
with high complexity and low accuracy. The geomagnetic
matching navigation has high positioning accuracy and re-
liability, but it is obviously different from the way animals
navigate. It seems that these marine animals do not need
any large-scale spatial distribution of the GF, but only need
the perceived real-time geomagnetic information during the
navigation. Inspired by these phenomena, many biomimetic
geomagnetic filtering navigation approaches are proposed. In
[34], the navigation process is generalized as the convergence
of geomagnetic multi-parameter from the present point values
to the object point values, but the method was verified only
under ideal conditions, without considering geomagnetic daily
fluctuations and geomagnetic anomalies. To imitate animals’
long-distance geomagnetic homing, an extended Kalman filter
algorithm is introduced in [35] to estimate the location during
navigation and is able to find a shortcut in the geomagnetic
space. However, the method is not suitable for underwater
navigation and the performance is very poor while passing
through geomagnetic anomaly regions. The research works
have confirmed the feasibility of underwater geomagnetic nav-
igation, but navigation in geomagnetic anomalies region and

navigation trajectory optimization need to be further studied.
In this paper, the analysis of the GF is conducted and then

a long-distance underwater geomagnetic navigation (LDUGN)
method using model predictive control (MPC) is proposed.
Without any assistance of prestored geomagnetic map or
geographic information, we only use the realtime declination
(D) and inclination (I) components of GF measured by geo-
magnetic sensors during the navigation. In the proposed MPC-
based algorithm, the velocity and direction of the AUV are
taken as manipulated variables, and the geomagnetic D and I
are regarded as controlled variables. Simulations are conducted
to validate our theoretical models and MPC-based algorithm.
The results show that such a navigation method can find
an optimal trajectory in GF space without being affected by
interferences from geomagnetic daily fluctuation, geomagnetic
storms, ocean current, and geomagnetic local anomalies.

The rest of this paper is organized as follows. The GF is
introduced and analyzed in Section II. Section III presents
details of our proposed LDUGN approach, followed by the
simulations in Section IV. Finally, we conclude this paper in
Section V.

II. FUNDAMENTALS

A. Description of the GF

The Earth is like a giant magnet. The GF is the Earth’s
natural resource and extends from the Earth’s interior out
into space [36], [37]. The intensity of GF ranges between
approximately 25 and 65 µT at the Earth’s surface. It is
widely accepted that the GF is produced by large-scale electric
currents in the liquid outer core of the Earth consisting of
highly conductive molten irons [38]. At every location on or
above the Earth, the GF has a well-known direction, which can
be used as a reference frame to orient ships, aircraft, satellites,
antennas, drilling equipment and handheld devices [39].

As depicted in Fig. 1, the Earth is described by a spherical
coordinate system. The GF vector is described by seven
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Fig. 1. Seven elements of the GF associated with an arbitrary point on the
Earth.
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elements. They are the northerly intensity X, the easterly
intensity Y, the vertical intensity Z, the horizontal intensity
H, the total intensity F, the inclination I, and the declination
D, respectively. The GF currently tilts at an angle of about
11◦ with respect to the Earth’s rotational axis, as if there were
a bar magnet placed at that angle at the center of the Earth. As
a result, the horizontal direction of the GF does not coincide
with the direction of geographic north in most cases.

The GF is a function of space position and time. Many
mathematical models have been designed to represent the
Earth’s magnetic field, such as the World Magnetic Mod-
el (WMM), the International Geomagnetic Reference Field
Model (IGRF) and the Enhanced Magnetic Model (EMM).
The WMM model is a spherical harmonic model and was
developed jointly by the National Geophysical Data Center
(NGDC, Boulder CO, USA) and the British Geological Survey
(BGS, Edinburgh, Scotland). It has been widely used in civil-
ian navigation systems [39]. In this paper, instead of measuring
the real GF, we use the WMM2015 model to generate the
realtime geomagnetic data, including D and I. The resolution
of the GF intensity in WMM2015 model is 1 nT, and the
distance resolution is 0.01◦ in latitude and longitude.

B. Analysis of GF Data

1) Geomagnetic Secular Variation: The GF changes on
time scales from milliseconds to millions of years. Shorter

time scales mostly arise from currents in the ionosphere and
magnetosphere, and changes over time scales of a year or more
mostly reflect the changes in the Earth’s interior [40]. Secular
variation can be observed in measurements at magnetic obser-
vatories, some of which have been in existence for hundreds
of years. The direction and intensity of the dipole change over
time. Over the last two centuries the dipole strength has been
decreasing at a rate of about 6.3%. A prominent feature in
the non-dipolar part of the secular variation is a westward
drift at a rate of about 0.2◦ per year. Fig. 2 shows the annual
variation of geomagnetic elements D and I at Beijing Ming
Tombs Station and Sanya Station in 2014. It can be observed
that the real geomagnetic variation is very slowly. In 2014,
the geomagnetic D in Beijing Ming Tombs Station and Sanya
Station increased by 0.061◦ and 0.038◦, respectively (Fig. 2a).
Correspondingly, the geomagnetic I in Beijing Ming Tombs
Station and Sanya Station declined by 0.079◦ and 0.159◦,
respectively (Fig. 2b). This is highly suggestive of that it
is feasible to use geomagnetic D and I measured by high-
precision geomagnetic sensors for underwater navigation.

2) Geomagnetic Declination and Inclination: Geomagnetic
D is the angle on the horizontal plane between the magnetic
north and the geographic north. It varies with positions on the
Earth’s surface, and changes over time. By convention, the D
is positive when magnetic north is to the east of geographic
north, and negative when it is to the west. Geomagnetic I is the
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Fig. 2. Monthly Means of Declination and Inclination at Beijing Ming Tombs Station and Sanya Station in 2014. (a) Declination. (b) Inclination.
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Fig. 3. Contour maps of Declination and Inclination of WMM2015 in the Pacific. (a) Declination. (b) Inclination.
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Fig. 4. Variations of Declination and Inclination in different altitudes underwater. (a) Declination. (b) Inclination.

angle made with the horizontal by the GF lines. It also varies
at different points on the Earth’s surface. The positive values
of I indicate that the GF is pointing downward into the Earth
at the points of measurement, and the negative values indicate
that it is pointing upward [39]. Fig. 3 shows the contour map
of D and I in the western Pacific region. In Fig. 3a, the D
in this vast ocean area increases progressively to 9.41◦ from
northwest to southeast from -8.81◦. Similarly, the I increases
progressively to 54.76◦ from south to north from -16.12◦ (Fig.
3b). This indicates that the D and I in the Pacific are unique,
and a geographic position can be uniquely determined by a
given geomagnetic D and I.

3) Geomagnetic Spatial Variation: The AUVs are at differ-
ent heights below sea level during a mission. It is necessary
to discuss the variation of GF in different depths below the
surface of the water. The average depth of the Pacific Ocean
is 3,957 meters with a maximum depth of 11,034 meters. This
section mainly analyzes the space variation of underwater GF.
Fig. 4 shows the variations of D and I in different altitudes
underwater. For a given longitude and latitude, the variations
of D (Fig. 4a) and I (Fig. 4b) is less than 0.02◦ in different
altitudes underwater (from 0 km to -10 km), which can be
ignored during long-range geomagnetic navigation.

III. PROPOSED LDUGN APPROACH

In order to achieve long-distance underwater geomagnetic
navigation, we assume that the D and I at the destination
have been known before the navigation. The D and I at
any location underwater can be obtained by geomagnetic
sensors in real time. The hypotheses here are the same as
[35]. In the course of geomagnetic navigation, the D and I
measured in real time are compared with the D and I at the
destination to determine whether the destination is reached or
not. Unlike [35], we assume that the navigation occurs in the
underwater environment, where it is not available to obtain
the geographical direction by sun or constellations. During
the navigation, a relative coordinate frame is established. The
relative motion and direction can be obtained by means of
highly sensitive triaxial accelerometers and gyroscopes, which
have been studied and widely used in aviation, aerospace and
navigation for several decades [41]–[43].

First of all, the process of LDUGN is described. The
gradient of D and I at the origin is required at the beginning
of navigation. As shown in Fig. 5, we move towards an
arbitrary direction (denoted by x) for a distance s0 and then
move towards another direction (denoted by y) which is
90◦counterclockwise with x for another distance s1. As a
result, a rectangular coordinate frame (xoy) is set up. The
historic records of D and I at each location are saved and used
to calculate the gradient of GF. According to the D and I at
destination and the D and I at current location, the MPC-based
method calculates the optimal velocity and motion direction
at regular intervals. The geomagnetic navigation iterates until
the differences of D and I between the current location and
the destination are less than a preset value.

A. Problem Formulation
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Fig. 5. Deduction of the bio-inspired geomagnetic navigation algorithm based
on MPC.

As depicted in Fig. 5, we denote the kth sampling loca-
tion by L(k) = [xk, yk]T , where xk and yk represent the
coordinates in the xoy coordinate frame. Lo = [xo, yo]T and
Ld = [xd, yd]T represent the locations at the origin and the
destination, respectively. The D and I at the kth sampling
location are denoted by S(k) = [Dk, Ik]T . So = [Do, Io]T
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and Sd = [Dd, Id]T represent the D and I at the origin and
the destination, respectively. During the navigation, S(k) can
be obtained by shipborne high-precision geomagnetic sensors
while arriving a new sampling location L(k). vk and θk denote
the velocity and the angle deviating from the x direction at
the kth step, respectively. vxk and vyk are the components of
vk along the x direction and y direction, respectively. vk and
θk can be calculated by

vk =
√
v2xk + v2yk (1)

θk = ± arctan
vyk
vxk

. (2)

The gradient of D and I at the kth sampling location is
denoted by G(k), which can be expressed as

G(k) =

[
dDkx dDky

dIkx dIky

]
(3)

where dDkx, dDky , dIkx, dIky denote the gradient of D along
the x direction, the gradient of D along the y direction, the
gradient of I along the x direction, the gradient of I along the
y direction, respectively.

At the initial stage of the geomagnetic navigation, it is
necessary to obtain the gradient of D and I around the origin.
In [35], the gradient is obtained by the simple decompo-
sition of the changes of D and I between two successive
sampling locations in the east and north directions. However,
the changes of D and I in the east and north directions
are not well represented by the gradient since there is no
certain relationship between the gradients in the east and north
direction. On the contrary, there is a distinct difference in
the contribution of D and I along two different directions
in most cases. By analyzing the GF in the Pacific region, it
can be found that the gradient of I in longitude direction is
approximately 10 times that of latitude direction. As shown
in Fig. 5, in order to obtain the gradient of D and I at
L(2) (around the origin), we move from Lo along arbitrary
direction (denoted by x) to L(1) at first. Then we go on
moving to L(2) along the direction (denoted by y) which
is 90◦counterclockwise with the x direction. Therefore, the
gradients of D and I at L(2) can be calculated as

dD2x =
D1 −D0

x1 − x0
(4)

dD2y =
D2 −D1

y2 − y1
(5)

dI2x =
I1 − I0
x1 − x0

(6)

dI2y =
I2 − I1
y2 − y1

. (7)

Because an extra moving distance is needed for calculating
the gradient, it is a waste of time and cost to obtain the
gradient at each sampling location. In this study, the gradient
is calculated once only at the beginning of navigation, and
then updated with the newly acquired D and I at each
sampling location. In a real navigation, the gradient should
be recalculated after a long voyage in order to improve the

navigation accuracy. The gradient at the (k + 1)th sampling
location can be approximately updated by

G(k + 1) = G(k) +

[
∆Dk+1

∆Ik+1

][
cos2 θk
vxkT

sin2 θk
vykT

]
(8)

with

∆Dk+1 = D′k+1 −Dk+1 (9)
∆Ik+1 = I ′k+1 − Ik+1 (10)

where D′k+1 and I ′k+1 are the D and I measured by geo-
magnetic sensors at the (k+1)th sampling location, Dk+1 and
Ik+1 are the D and I estimated by the gradient G(k) at the
(k+1)th sampling location, T is the sampling period.

B. MPC Algorithm

MPC is an optimal control strategy based on numerical op-
timization, which utilizes an explicit process model to predict
the future response of a plant. At each control interval the MPC
method attempts to optimize future plant behavior by comput-
ing a sequence of future manipulated variable adjustments.
The optimal control inputs of the next N sampling instants
are obtained by minimizing a cost function. The outputs of
the future N sampling instants are predicted according to the
system model, and the cost function is constructed based on
the errors between the predicted outputs and the true state
outputs of the system [44]. The input and state constraints
are considered to improve the robustness of the system.
Particularly, the MPC algorithm can handle multivariate and
constrained problems effectively [45]. In this section, a MPC-
based geomagnetic navigation strategy is designed to ensure
that the AUV can reach the destination along an optimal
trajectory in geomagnetic space.

First, the future state of the controlled AUV is predicted
using a dynamic model. Let S(k) = [Dk, Ik]T and u(k) =
[vxk, vyk]T be the model state and input vectors, where Dk,
Ik, vxk and vyk represent the geomagnetic declination, the
geomagnetic inclination, the velocity component along the x
direction and velocity component along the y direction at the
kth sampling location, respectively. Based on zero-order hold
(ZOH), a continuous-time system can be transformed into a
discrete-time form with a sampling period T

S(k + 1) = S(k) + ṠT (11)

where

Ṡ = G(k)u(k). (12)

The discrete-time system model (11) can be expressed with
MPC state-space representation

S(k + 1) = AS(k) +B(k)u(k) (13)

with

A = I2 (14)

B(k) = G(k)T (15)

where I2 denotes a 2-by-2 constant identity matrix, and B(k)
is a 2-by-2 matrix that determined by geomagnetic gradient
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G(k) dynamically. Based on the state-space model, the MPC
algorithm is designed to control the system.

In the real navigation, the control input and system state
have hard constraints. Fortunately, the MPC algorithm can
provide a systematic method of dealing with constraints on
input and state. These constraints are accounted for explicitly
by solving a constrained optimization problem in real-time
to determine the optimal predicted inputs. In this study, the
control input u(k) and the state S(k) are constrained. Thus,
the following constraints should be imposed on the system.

umin ≤ u(k) ≤ umax, Smin ≤ S(k) ≤ Smax (16)

where umin, umax, Smin and Smax are the preset lower bound
of input, the preset upper bound of input, the preset lower
bound of state, the preset upper bound of state, respectively.

Given a predicted input sequence, the corresponding se-
quence of state predictions can be calculated by simulating
the model forward over the prediction horizon (denoted by
N ). For notational convenience, these predicted sequences are
stacked into vectors U(k), S(k) defined by

U(k) =


u(k|k)

u(k+1|k)
...

u(k+N−1|k)

, S(k) =


S(k+1|k)
S(k+2|k)

...
S(k+N |k)

 (17)

where u(k + i|k) and S(k + i|k) denote the input and state
vectors at time k + i which are predicted at time k.

By analyzing the geomagnetic data from WMM2015, it can
be found that the geomagnetic gradient changes very slowly
within hundreds of kilometers (see Fig. 6). For this reason, in
order to reduce the computational effort, we assume that the
geomagnetic gradient G(k) and coefficient B(k) are invariant
in the future N sampling instants. According to (13), we
can predict the future state S(k + i|k) (i = 1, 2, · · · , N ) at
sampling instant k as follows:

S(k+1|k) =AS(k|k)+B(k)u(k|k)

S(k+2|k) =AS(k+1|k)+B(k)u(k+1|k)

...
S(k+N |k) =AS(k+N−1|k)+B(k)u(k+N−1|k) (18)

with initial condition S(k|k)=S(k) and u(k|k)=u(k).
Therefore, the relationship between S(k) and U(k) can be

described as

S(k) = HS(k) + P (k)U(k) (19)

where

H = [A, A2, · · · , AN ]T (20)

P (k) =


B(k) 0 · · · 0
AB(k) B(k) · · · 0

...
...

. . .
...

AN−1B(k) AN−2B(k) · · · B(k)

 . (21)

By taking into account (15), P (k) can be rewritten as

P (k)=


G(k)T 0 · · · 0
AG(k)T G(k)T · · · 0

...
...

. . .
...

AN−1G(k)T AN−2G(k)T · · · G(k)T

 (22)

The predictive control feedback law is computed by min-
imizing a predicted performance cost function, which can
be optimized to obtain the optimal control sequence in the
predictive horizon N . The predicted cost function has the form

J(k) =

N∑
i=1

[‖S(k+i|k)−Sd‖2Q+‖u(k+i−1|k)‖2R] (23)

=

N∑
i=1

[(S(k+i|k)−Sd)TQ(S(k+i|k)−Sd)

+ uT (k+i−1|k)Ru(k+i−1|k)] (24)

where ‖ · ‖ denotes the Euclidean norm; Q and R are the
symmetric definite-positive weight matrices; S(k + i|k) and
u(k+ i−1|k) are the estimated state and input vectors at time
k + i which are predicted at time k, Sd is the desired state
vector at the destination.

Substituting (19) into (24) yields

J(k) = ‖S(k)− Sd‖2Q + ‖U(k)‖2
R

(25)

= ‖HS(k)+P (k)U(k)−Sd‖2Q+‖U(k)‖2
R

(26)

with

Sd = [ Sd, Sd, · · · , Sd ]T

Q = diag( Q, Q, · · · , Q )

R = diag( R, R, · · · , R ).

where diag(·) denotes the diagonal matrix.
From (26), it can be easily seen that J(k) is a function

of U(k). Then, the optimization problem is formulated as
follows:

min
U(k)

‖HS(k)+P (k)U(k)−Sd‖2Q+‖U(k)‖2
R

(27)

s.t. Umin ≤ U(k) ≤ Umax (28)

Smin ≤ HS(k) + P (k)U(k) ≤ Smax (29)

where

Umin = [umin, umin, · · · , umin]T

Umax = [umax, umax, · · · , umax]T

Smin = [Smin, Smin, · · · , Smin]T

Smax = [Smax, Smax, · · · , Smax]T .

Then, constraints (28) and (29) can be rewritten in a
compact form as follows:

CU(k) ≤ c (30)

where

C =


I2N
−I2N
P (k)
−P (k)

, c =


Umax

−Umin

Smax −HS(k)
−Smin +HS(k)

 . (31)
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It is a rather complicated issue to obtain the solution of the
optimization problem (27). Fortunately, we can further convert
it into a convex quadratic programming (QP) problem via a
series of simple transformations. The convex QP optimization
problem has been studied for several decades, and can be
solved by the contemporary methods such as interior point
method, augmented Lagrangian method and conjugate gradi-
ent method [46]. Therefore, (27) is transformed into a standard
convex QP form as follow:

min
U(k)

1

2
U

T
(k)W (k)U(k) +MT (k)U(k) (32)

s.t. CU(k) ≤ c (33)

where

W (k) = 2(PT (k)QP (k) +R) (34)

M(k) = PT (k)Q(HS(k)− Sd). (35)

It has been proved that the standard convex QP optimization
problem has a unique optimal solution [47]. The solution of
(32), denoted by u∗(k), can be readily computed online by
a QP solver in matlab. Then, an optimal control sequence is
obtained. In order to enhance the robustness of the LDUGN
approach, only the first control in the optimal control sequence
is executed by the AUV, and the entire calculation is repeated
at every subsequent control intervals. The MPC optimization
process iterates until the difference of the states at the current
location and the destination is less than a preset value (denoted
by ε).

The complete navigation algorithm is summarized in Algo-
rithm 1.

Algorithm 1 MPC-based Underwater Navigation Algorithm
Input: So (original state), Sd (final state), N (prediction

horizon), A (coefficient matrix), Q,R (weighting matri-
ces), umin, umax(control constraints), Smin, Smax (state
constraints)

1: k ← 1
2: S(k)← So

3: Calculate G(k) by Eqs. (3)-(7)
4: while |S(k)− Sd| ≥ ε do
5: Solve the optimization problem in (32) and (33)
6: Get the first control input from u∗(k)
7: Calculate vk and θk by Eqs. (1) and (2)
8: Apply control input vk and θk
9: Update G(k) by Eq. (8)

10: k ← k + 1
11: Get S(k)
12: end while

IV. SIMULATIONS
In this section, simulations are carried out to verify the per-

formance of the proposed LDUGN algorithm. All simulations
are performed on a personal laptop (CPU: Intel(R) Core(TM)
i5-4220U: 2.30GHz; RAM: 4.00GB) using a simulator devel-
oped on Matlab R2017a platform. The simulation results show
that the maximum, minimum, and average computation time

for the optimization problem are 0.078s, 0.012s, and 0.026s,
respectively. Compared with the sampling period T = 1 hour,
the computation time is acceptable for real-time navigation.
In these simulations, we choose a rectangular area in the vast
western Pacific (see the inset in Fig. 7), which is from 0◦north
latitude, 140◦east longitude (0◦N, 140◦E) to 40◦north latitude,
180◦east longitude (40◦N, 180◦E). According to the geomag-
netic contour maps (see Fig. 3), the geographical coordinates
of the area can be uniquely determined by the D and I values.
In the single-destination scenario, we choose (30◦N, 145◦E)
as the origin and (5◦N,175◦E) as the destination, the states
of which are [−4.54, 41.03]T and [9.05, 3.19]T , respectively.
In all scenarios, the real-time geomagnetic D and I data are
retrieved from the WMM2015 model.

Interval Distance (Km) 

G
ra

d
ie

n
t 

(D
e
g
re

e
/K

m
) 

Fig. 6. Gradient variations of Declination and Inclination with different
interval distance in x and y direction.

At the beginning of the navigation, the AUV need to move
along two arbitrary mutually perpendicular directions to obtain
the gradient of D and I at the origin. Due to the slow changes
of D and I, the actual gradient cannot be obtained if the
distance is too short. Although long distance can get more
accurate gradient, it is a waste of time and cost. In order to get
a more appropriate moving distance, a simple experiment has
been carried out. The experiment shows the change of gradient
of D and I in the x and y directions when the moving distance
changes from 5 km to 100 km. As can be seen from Fig. 6,
when the interval distance is less than 20 km, the gradient
changes greatly, which means the gradient is local and cannot
represented the gradient of this area. The gradient tends to be
stable when the interval distance is greater than 20 km. As a
result, we choose 10 nautical miles (nmi, about 18.52 km) as
the interval distance in subsequent simulations.

In recent years, various AUVs have been designed and
developed. The speed of latest AUV can reach more than 40
knots. In our simulations, we set the max speed of AUV along
two directions to 40 knots at the beginning of navigation. In
order to get a better navigation accuracy, the max speed is
changed to 20 knots when the differences of D and I between
the current location and the destination are less than 1 ◦. The
max speed is changed to 10 knots when the differences are
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less than 0.1◦. If the differences of D and I are less than 0.01◦,
we consider that the AUV has arrived the destination, and then
the navigation is finished.

The rest of the parameters for simulations are set as follows:
the sampling period T= 1; the prediction horizon N= 20; the
weighting matrices Q= diag(10, 10) and R= diag(10−3, 10−3);
the original state So= [−4.54, 41.03]T and the target state Sd=
[9.05, 3.19]T ; the lower bound of state Smin= [−8,−10]T and
the upper bound of state Smin= [10, 54]T .

A. Simulation without Interferences

In the ideal situation, any interferences are not considered
during the geomagnetic navigation. As shown in Fig. 7, the
navigation is started from (30◦N, 145◦E), where the state is
[−4.54, 41.03]T . The D and I at the destination are 9.05◦ and
3.19◦, respectively. First, we move 10 nmi along a direction
(denoted by x), and then move 10 nmi along another direction
(denoted by y, rotate 90◦counterclockwise from the x direc-
tion). The coordinates of the two locations are about (30◦N,
145.17◦E) and (30.17◦N, 145.17◦E), respectively. The states
are [−4.49, 41]T and [−4.56, 41.29]T , respectively. According
to the states of the first three locations, the geomagnetic
gradient around the origin is calculated by (3)-(7). The gra-
dient G(2) = [0.0025,−0.0035;−0.0015, 0.0145]. Then, the
current geomagnetic state S(2), the geomagnetic state at the
destination Sd and the current geomagnetic gradient G(2)
are input into the MPC algorithm to get the optimal con-
trol sequence. At location (30.17◦N, 145.17◦E), the optimal
control sequence is obtained through solving the QP problem
(32). We choose the first element [10.8,−40]T in the optimal
control sequence as our input. After reaching the next location
(29.51◦N, 145.35◦E), we get the local state [−4.29, 40.26]T ,
update the magnetic gradient G by (8), and then get the
optimal control sequence. In Fig. 8, the trajectories of the
control inputs are illustrated. As can be seen from this figure,
the control inputs never transcend the boundary. The absolute
values of the velocity component vx and vy decrease gradually
while approaching the destination.

Fig. 7. Simulation of geomagnetic navigation without interferences.
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Fig. 8. Trajectories of control inputs without interferences.

The process is iterated until the location is near enough
from the destination. Finally, the navigation ends at the loca-
tion (5.01◦N, 174.91◦E), which is 5.43 nmi away from the
destination. The error is extremely small relative to the total
navigation distance (about 2340 nmi). The simulation result
shows that our approach work well and can find a shortcut in
geomagnetic space.

B. Simulation with the Daily Fluctuation of GF

The GF shows distinct periodicity ranging from a few
seconds to several thousand years. Variations with periodicities
less than three years cannot possibly be of internal origin as
these are effectively screened by the Earth’s mantle [48]. The
daily variations of the GF are mainly caused by the change of
the ionosphere and magnetic layer current system in the outer
space of the Earth. The quiet day daily variation range of the
GF increases with solar activity. However, the daily ranges of
the GF at different latitudes in the same longitude zone do not
correlate very well. Generally, the variation rule of the GF is
that the diurnal variation is large and the nocturnal variation
is small. Meanwhile, the daily variation is large in summer
and small in winter. In this section, a simulation is carried out
under the quiet day geomagnetic daily variation. Because of
the daily fluctuation, the D and I measured by geomagnetic
sensors, as well as the gradient, will bring errors into our
model.

In this simulation, a geomagnetic navigation is performed
under interferences which are added on D and I as a Gaussian
white noise with a standard deviation of 1◦ to imitate the
aforementioned fluctuation with the maximum range [35]. The
purple line in Fig. 9 shows the traveling trajectory under the
interferences. For comparison, the traveling trajectory under
interferences which are added on D and I as a Gaussian
white noise with a standard deviation of 0.5◦ is also plotted
in green line. The results indicate that all the simulations
can be carried out successfully, arriving at locations (5.14◦N,
174.64 E) (with 1◦ interferences) and (4.92◦N, 174.88◦E)
(with 0.5◦ interferences), which is 23.17 nmi and 8.65 nmi
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Fig. 9. Simulation of geomagnetic navigation under the GF’s daily fluctua-
tion.

far away from the destination, respectively. The errors are still
small compared with the total navigation distance (about 2340
nmi).

C. Simulation with the Geomagnetic Storms

A geomagnetic storm is a temporary global disturbance of
the Earth’s magnetosphere caused by a solar wind shock wave
or cloud of magnetic field that interacts with the GF [49].
The global disturbance may last for more than ten hours to
tens of hours. During the geomagnetic storm, all geomagnetic
components change drastically, and the geomagnetic horizon-
tal component H changes mostly. A geomagnetic storm has
three phases: initial, main and recovery. At the initial phase,
the H value at low and middle latitudes shows a rise in a few
minutes. The rise may persist for anything from a few minutes
to several hours before it drops back to the pre-impact level.
The main phase is the most spectacular part of a geomagnetic
storm. In low latitudes, the H value drops back to the initial
level and then dip down far below it in a few hours. The
recovery phase is when the H value changes from its minimum
to its quiet time value. The recovery phase may last as short
as 8 hours or as long as 7 days.

In order to verify the validity of the algorithm during a
geomagnetic storm, the simulations are carried out in two
scenarios. Because the initial phase was of short duration, it
can be neglected in the long-distance navigation. In the first
scenario, the geomagnetic storm occurs throughout the whole
navigation. In the second scenario, the geomagnetic storm
starts at the 10th hour and fades away at the 30th hour of
the geomagnetic navigation. In [35], a geomagnetic storm is
considered as 1◦constant increase in D. In this section, the all
time disturbance of geomagnetic storm (denoted by da(k)) is
defined as follow:

da(k) =

 [1, 1]T , 0 < k ≤ 10
[(100−k)/90, (100−k)/90]T , 10 < k ≤ 100

[0, 0]T , k > 100

and the part time disturbance of geomagnetic storm (denoted
by dp(k)) is defined as follow:

dp(k) =


[0, 0]T , 0 < k ≤ 9
[1, 1]T , 9 < k ≤ 13

[(30−k)/16, (30−k)/16]T , 13 < k ≤ 30
[0, 0]T , k > 30

where k denote the sampling instant.
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Fig. 10. Simulation of geomagnetic navigation during the geomagnetic storm.

The simulation result are shown in Fig. 10. The green
line represents the navigation trajectory with the geomagnetic
storm existing all time. The geomagnetic navigation stops at
(5.40◦N, 173.11◦E), which is 116 nmi far from the destina-
tion. The result shows that our algorithm is greatly affected
during the geomagnetic storms. This is because whether the
navigation stop is determined by the geomagnetic D and I,
but the D and I measured by geomagnetic sensors is strongly
influenced by the geomagnetic storm. The navigation path
in the second scenario are denoted by purple line, and the
geomagnetic navigation finally stops at (5.01◦N, 174.92◦E),
which is 4.84 nmi far from the destination. This means
that our method is valid if the magnetic storm stops before
the navigation ends. We find that the result is the same as
simulation without interferences. This is because our MPC-
based method is recalculated at each sampling location.

D. Simulation with Position Drift

The water under the ocean is not static. Ocean current is a
natural phenomenon in which sea water flows on a large scale
along certain routes. It is generated by forces acting upon the
water, such as the wind, the coriolis effect and the unevenness
of the density distribution of sea water caused by the hot salt
effect. Considering the North Pacific Gyre, simulations are
done with different errors in velocity and direction throughout
the whole navigation.

The purple line in Fig. 11 indicates the navigation path
with 10 nmi/h constant errors in velocity to the northeast. For
comparison, the traveling trajectory with inconstant errors in
velocity is also plotted in green line. The drift direction is
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Fig. 11. Simulation of geomagnetic navigation with position drift.

east when the latitude is greater than 20◦, the drift direction
is northeast when the latitude is between 10◦and 20◦, and
the drift fades away when the latitude is less than 10◦. It
can be seen that, with different errors, all the geomagnetic
navigation can be successfully performed. The AUV arrived
at the locations (5.38◦N,175.49◦E) with constant errors and
(5.01◦N,174.92◦E) with inconstant errors, about 37.20 nmi
and 4.84 nmi away from the destination, respectively. The error
of 33.48 nmi is relatively large. This is because the speed of
the AUV is rather slow at the end of navigation, and it can be
avoided by increasing the speed of the AUV. As can be seen
from Fig. 11, the simulation result with position drift is better
than that without error. This is mainly because the position
drift errors makes the AUV to shift northeast by coincidence.
While arriving at the new location, our MPC-based algorithm
will recalculate the optimal control according to the states at
current location and the destination, so the position drift does
not influence the geomagnetic navigation.

E. Simulation with Local-Area GF Anomaly

The geomagnetic anomaly refers to the additional magnetic
field produced by magnetization of rocks with different mag-
netic properties in the Earth’s crust. The magnetic anomalies
are ubiquitous in nature. In this simulation, we assume that
the geomagnetic navigation will pass by a region with ge-
omagnetic anomaly. We added a 1◦constant interference in
geomagnetic D and I in the rectangular anomalous area from
(10◦N, 150◦E) to (20◦N, 160◦E) (see the gray rectangular in
Fig. 12).

As shown in Fig. 12, the AUV is still on the correct nav-
igation path while passing the geomagnetic anomaly region.
Finally, the navigation ends at the location 4.35 nmi far away
from the destination. This is because our navigation algorithm
is independent of the historical geomagnetic D and I. The
MPC-based algorithm is used to get the optimal direction
and velocity of the AUV periodically based on the current
value of D and I. The performance of our method in the
GF anomaly is better than the EKF-based method, in which

Fig. 12. Simulation of geomagnetic navigation through geomagnetic anomaly
area.

the traveling path bypass the anomaly area along a zigzag
route slowly. The EKF-based method does not enter the region
while encountering geomagnetic anomaly, but moves along
the boundary of the region, which obviously reduces the
navigation efficiency.

F. Simulation with Multi-Destination Navigation

In some practical applications, the AUV is required to cruise
under the ocean regularly. In this scenario, there may be
several destinations to visit during a cruise mission. In this sec-
tion, the feasibility and effectiveness of the multi-destination
underwater navigation are verified. The state and location at
the origin are [−2.83, 33.36]T and (25◦N,145◦E), respectively.
The states at the destinations are [5.62, 7.5]T , [6.07, 28.01]T

and [0.06, 40.44]T , respectively. The geographical location-
s of the destinations are (10◦N,160◦E), (20◦N,170◦E) and
(30◦N,160◦E), respectively. The AUV is needed to return back
to the origin when the navigation ends.

Fig. 13. Simulation of geomagnetic navigation of Multi-destination cruise.
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In Fig. 13, each destination is visited under a shortcut path
in geomagnetic space during the navigation. The errors are
5.43 nmi, 5.43 nmi, 7.02 nmi and 6.04 nmi, respectively. For
thousands of nautical miles of voyage, the errors are rather
small and acceptable. When arriving at several nautical miles
near the destination, we can integrate our method with other
navigation methods, such as terrain-based method and gravity-
assisted navigation techniques, to improve the accuracy of our
navigation.

V. CONCLUSION
In this paper, a MPC-based geomagnetic navigation method

is proposed for long-distance underwater voyage. In the L-
DUGN approach, none of priori knowledge of the geomagnetic
map nor the geographic location is required. The feasibility of
LDUGN is verified in the vast region of west Pacific based on
the data retrieved from the WMM2015 model in real time. The
navigation processes and simulation results have been present-
ed and discussed in detail. The MPC algorithm is introduced
in LDUGN to calculate the optimal control sequence based on
geomagnetic gradient information and real-time geomagnetic
D and I measured by geomagnetic sensors. The simulation
results show that our algorithm can successfully reach the
location several to tens of nautical miles from the destination
under different interferences, such as geomagnetic daily fluctu-
ations, geomagnetic storms, and geomagnetic local anomalies.
Likewise, the multi-destination cruise is also simulated, the
result of which shows that the AUV can successfully reach
the locations near the preset destinations and then return
back to the origin. In conclusion, the MPC-based LDUGN
approach can achieve the independent underwater navigation
and has no accumulation of position error. Combined with
other underwater navigation technologies, the accuracy of our
method will be further improved.
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