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Abstract
Constitutive laws that describe the mechanical responses of cardiac tissue under loading hold the key to accurately model the 
biomechanical behaviour of the heart. There have been ample choices of phenomenological constitutive laws derived from 
experiments, some of which are quite sophisticated and include effects of microscopic fibre structures of the myocardium. A 
typical example is the strain-invariant-based Holzapfel–Ogden 2009 model that is excellently fitted to simple shear tests. It has 
been widely used and regarded as the state-of-the-art constitutive law for myocardium. However, there has been no analysis 
to show if it has both adequate descriptive and predictive capabilities for other tissue tests of myocardium. Indeed, such an 
analysis is important for any constitutive laws for clinically useful computational simulations. In this work, we perform such 
an analysis using combinations of tissue tests, uniaxial tension, biaxial tension and simple shear from three different sets of 
myocardial tissue studies. Starting from the general 14-parameter myocardial constitutive law developed by Holzapfel and 
Ogden, denoted as the general HO model, we show that this model has good descriptive and predictive capabilities for all 
the experimental tests. However, to reliably determine all 14 parameters of the model from experiments remains a great chal-
lenge. Our aim is to reduce the constitutive law using Akaike information criterion, to maintain its mechanical integrity whilst 
achieving minimal computational cost. A competent constitutive law should have descriptive and predictive capabilities for 
different tissue tests. By competent, we mean the model has least terms but is still able to describe and predict experimental 
data. We also investigate the optimal combinations of tissue tests for a given constitutive model. For example, our results 
show that using one of the reduced HO models, one may need just one shear response (along normal-fibre direction) and one 
biaxial stretch (ratio of 1 mean fibre : 1 cross-fibre) to satisfactorily describe Sommer et al. human myocardial mechanical 
properties. Our study suggests that single-state tests (i.e. simple shear or stretching only) are insufficient to determine the 
myocardium responses. We also found it is important to consider transmural fibre rotations within each myocardial sample of 
tests during the fitting process. This is done by excluding un-stretched fibres using an “effective fibre ratio”, which depends 
on the sample size, shape, local myofibre architecture and loading conditions. We conclude that a competent myocardium 
material model can be obtained from the general HO model using AIC analysis and a suitable combination of tissue tests.

Keywords  Akaike information criterion (AIC) · Holzapfel–Ogden (HO) constitutive law · Reduced HO models · Simple 
shear tests · Uniaxial tests · Biaxial tests · Myocardial mechanical tests

1  Introduction

Cardiac diseases remain a major public healthy burden, 
especially the adverse remodelling of cardiac function after 
acute myocardial infarction. Studies have demonstrated 
that stress/strain in myocardium can have great effects on 
pathological processes such as hypertrophy and myocardial 
infarction (Zile et al. 2004; Costa et al. 2001; Mangion et al. 
2017). Accurate prediction of myocardial stress relies on 
the choice of constitutive laws. Determining the constitutive 
laws and their parameters from limited experimental data, 
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however, remains a great challenge for the cardiac model-
ling community.

In general, biological tissue, including myocardium, 
mainly consists of proteins such as collagen, elastin and 
ground substance. Published in vitro/ex vivo experimental 
tests of the mechanical behaviour of human myocardium 
(Pinto and Fung 1973) have shown strong anisotropy and 
transmural variations. Similar conclusions have also been 
reported by other studies, with Langdon et al. (1999) inves-
tigating the effect of biaxial constraint caused by glutaralde-
hyde cross-linking on the equal-biaxial mechanical proper-
ties of bovine pericardium. Dokos et al. (2002) examined the 
shear properties of passive ventricular myocardium through 
six modes of simple shear tests on samples from porcine 
hearts, reporting that simple shear responses are highly non-
linear along the micro-structural axes of the tissue. Later, 
Sommer et al. (2015b) determined biaxial extension and tri-
axial shear properties, characterizing the underlying micro-
structure of the passive human ventricular myocardium. 
Results showed it is a nonlinear, anisotropic (orthotropic), 
viscoelastic and history-dependent soft biological material 
that undergoes large deformations. Very recently, Ahmad 
et al. (2018) studied biomechanical properties of neonatal 
porcine cardiac tissue by using uniaxial tensile, biaxial ten-
sile and simple shear loading modes with samples from the 
anterior and posterior walls of the right and left ventricles. 
The compressibility of myocardial tissue is quantified by 
McEvoy et al. (2018) using a joint experimental-computa-
tional approach, investigating volumetric changes in excised 
porcine myocardium tissue under both tensile and confined 
compression loading conditions.

Over the years, a number of models have been developed 
to describe myocardial mechanical properties, ranging from 
linear elastic to hyperelastic, from isotropic to anisotropic, 
and from phenomenological to microstructurally based con-
stitutive laws (Holzapfel and Ogden 2009). Nowadays, it is 
a common practice to characterize myocardium as an ani-
sotropic, hyperelastic material. One approach employs the 
angular integration of each collagen fibre’s contribution fol-
lowing a distribution map. Lanir (1983) developed a general 
multi-axial theory for the constitutive relations in fibrous 
connective tissues on the basis of micro-structural and ther-
modynamic considerations. Sacks et al. (2016) developed a 
rigorous full structural model (i.e. explicitly incorporating 
various features of the collagen fibre architecture) for exog-
enously cross-linked soft tissues, which made an extension 
to the collagenous structural constitutive model, meaning the 
uncross-linked collagen fibre responses could be mapped to 
the cross-linked configuration. Based on Sack’s study, Avaz-
mohammadi et al. (2017b) proposed a fibre-level constitutive 
model for the passive mechanical behaviour of the right ven-
tricular free wall, which explicitly separated the mechanical 

contributions of myocytes and collagen fibre ensembles, 
whilst accounting for their mechanical interactions.

Another widely used approach employs strain compo-
nents directly or strain invariants when developing such 
constitutive laws. For instance, Guccione et al. (1991) used 
a transverse isotropic exponential Fung-type hyperelastic 
material model to characterize the equatorial region of the 
canine left ventricle, in which the strain energy function con-
sists of six strain components. Soon afterwards, LeGrice 
et al. (1995) found that the micro-structure of myocardium 
was a composite of discrete fibre layers, which suggested an 
orthotropic mechanical response according to a local ortho-
tropic material axes: the fibre direction � , the sheet direc-
tion � and the sheet–normal � . The transversely isotropic 
Fung-type relation was then extended to account for the 
orthotropy described by Costa et al. (2001). There are many 
constitutive laws that use strain-invariant-based orthotropic 
or transversely isotropic constitutive laws to characterize 
passive myocardial tissue, which were recently reviewed in 
Holzapfel and Ogden (2009). Based on the simple shear data 
from Dokos et al. (2002), Holzapfel and Ogden proposed a 
simplified formulation (HO2009) derived from a more gen-
eral strain-invariant-based material model (the general HO 
model) (Holzapfel and Ogden 2009). The HO2009 model 
has one term related to the matrix responses, two terms 
related to the stress responses along � and � , and a final term 
for interaction between � and �.

The HO2009 model and its variation have been widely 
used in the cardiac modelling community such as the Living-
Heart Project (Baillargeon et al. 2014). Göktepe et al. (2011) 
developed a general constitutive and algorithmic approach to 
the computational modelling of passive myocardium using 
the HO2009 model, which is embedded in a nonlinear finite 
element method. Wang et al. (2013) studied the fibre ori-
entation on left ventricular diastolic mechanics using the 
HO2009 model and further extended it to include residual 
stresses (Wang et al. 2014). Gao et al. (2017) implemented 
the HO2009 model into an immersed boundary framework 
combined with finite element to study left ventricle (LV) 
biomechanics both in diastole and systole. Simplified forms 
of the HO2009 model were also used by Asner et al. (2016) 
with personalized ventricular dynamics derived from in vivo 
data. General structural tensors accounting for collagen fibre 
dispersion were introduced by Eriksson et al. (2013), fol-
lowed by the recent extension of Melnik et al. (2018) to 
account for fibre dispersion in the coupling term between 
the fibre and sheet directions. Inverse estimation of unknown 
parameters in the HO2009 model from in vivo data was first 
investigated by Gao et al. (2015), and later by Nikou et al. 
(2015), and by Palit et al. (2018). The HO2009 model has 
also been applied to simulate various heart diseases such as 
myocardial infarction (Gao et al. 2017; Baillargeon et al. 
2014).
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No study has previously investigated the descriptive and 
predictive capability of HO-type strain energy functions. A 
competent constitutive law should be able to describe as 
many deformation modes (uniaxial, biaxial, simple shear, 
etc.) as possible in qualitative point and then from quantita-
tive point, with acceptable errors of simulation with respect 
to the experimental data (Destrade et al. 2017), and have 
the fewest terms. Mechanical properties of myocardium are 
traditionally measured by a single series of either uniaxial 
(Pinto and Fung 1973), biaxial tests (Demer and Yin 1983) 
or simple shear deformations (Dokos et al. 2002), despite it 
being demonstrated that combined biaxial data (with differ-
ent loading protocols) and simple shear data (with various 
loading directions) are required to adequately capture the tis-
sue’s direction-dependent nonlinear response (Holzapfel and 
Ogden 2009). For example, Holzapfel and Ogden (2009), 
and Schmid et al. (2009) both only used simple shear data 
of Dokos et al. (2002) to demonstrate the good descriptive 
capability of selected constitutive laws. Only recently Som-
mer et al. (2015b) have performed both biaxial and shear 
tests on similar human myocardial samples, whilst Ahmad 
et al. (2018) reported their experiments on neonatal por-
cine myocardium samples with uniaxial, biaxial and shear 
tests. An unanswered question is whether a selected material 
model, such as the HO2009 model, can adequately fit to dif-
ferent types of mechanical tests.

A competent constitutive law should also be able to pre-
dict stress responses from different deformation modes. A 
constitutive law with parameters derived from simple shear 
test data can, for example, be used to accurately predict the 
biaxial test data. This predictive capability is critical for 
achieving accurate cardiac modelling, where the deformation 
states can differ significantly from the original experimen-
tal data. Some studies describe the predictive capability of 
constitutive laws for arterial tissues, but rarely consider myo-
cardium. For example, Hollander et al. (2011) compared the 
descriptive and predictive powers of a Fung-type exponen-
tial phenomenological model, a strain-invariant-based par-
tial structure model and a structural model based on angular 
integration, by characterizing coronary arterial media. They 
found that different test protocols (extension, inflation, and 
twist) are necessary to reliably predict mechanical response. 
Polzer et al. (2015) studied the ability of a material model 
to predict the biaxial response of porcine aortic tissue with 
a predefined collagen structure. Schroeder et al. (2018), 
recently, showed that the Holzapfel–Gasser–Ogden model 
with generalized structure tensors (Gasser et al. 2006) can-
not predict the biaxial arterial wall behaviour when deter-
mined from only uniaxial tests, whilst the four-fibre-family 
constitutive law is the most robust when predicting uniaxial 
or biaxial behaviour of porcine aortic tissue.

This study first considers the descriptive capabilities of 
the general and specific HO models proposed in Holzapfel 

and Ogden (2009), using Dokos et al. simple shear data of 
porcine myocardium (Dokos et al. 2002), Sommer et al. 
biaxial and simple shear data of human myocardium (Som-
mer et al. 2015b), and Ahmad et al. uniaxial, biaxial and 
simple shear data of neonatal porcine myocardium (Ahmad 
et al. 2018). Secondly, the Akaike information criterion 
(AIC) (Schmid et al. 2006; Ten Eyck and Cavanaugh 2018; 
Avazmohammadi et al. 2017a) is used to analyse the good-
ness of fit of the general HO model to the experimental data, 
with AIC values determined when excluding different strain 
invariants. Based on the AIC analysis, reduced HO mod-
els for different experimental studies are then proposed by 
excluding those strain invariants with little contribution to 
the overall goodness of fit. Finally, we use predictive capa-
bility of the reduced HO models to find the optimal combi-
nation of experiments for each species of tissues that uses 
minimal mechanical tests.

2 � Method

2.1 � Selected myocardial experiments

In this study, the experimental data are taken from three 
ex vivo myocardial biomechanical studies: Dokos et al. 
(2002) investigating porcine myocardium; Sommer et al. 
(2015b) investigating human myocardium; and Ahmad et al. 
(2018) investigating neonatal porcine myocardium. These 
are briefly summarized below. For details, please refer to 
the original papers.

•	 Dokos et  al. (2002) published shear data of passive 
myocardium from porcine hearts with six different 
shear modes, shown in Fig. 1a where (ij) is used to refer 
to shear in the j direction within the ij plane, where 
i ≠ j ∈ {f, s, n} . Myocardial samples were cut from adja-
cent regions in the left lateral ventricular mid-wall with 
a size of ∼ 3 × 3 × 3 mm.

•	 Sommer et al. (2015b) performed similar six shear-mode 
experiments, with samples from human hearts (size: 
∼ 4 × 4 × 4 mm). They also performed biaxial testing 
with different stretch ratios (1:1, 1:0.75, 1:0.5, 0.75:1, 
0.5:1) along the mean fibre direction (MFD) and the 
cross-fibre direction (CFD) (Fig 1b). MFD is the aver-
age angle of the dominant orientation of collagen fibres 
on the upper and lower surfaces of each sample (Sommer 
et al. 2015a), with CFD perpendicular to MFD. Square 
specimens with dimensions ∼ 25 × 25 × 2.3 mm were 
used in biaxial tests, with tension applied along the 
MFD and CFD. They recorded the collagen fibre rotation 
within samples, which was   14.8 ± 6.9◦ per mm depth in 
the transmural direction.
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•	 Ahmad et al. (2018) performed uniaxial (Fig. 1c), biaxial 
and simple shear experiments on myocardial samples 
from neonatal porcine left and right ventricular free 
walls. Sample dimensions were ∼ 15 × 5 × 3 mm for 
uniaxial tests, ∼ 15 × 15 × 3 mm for biaxial tests and 
∼ 3 × 3 × 3 mm for simple shear tests. Shearing was only 
performed in the sheet–fibre and sheet–normal planes, 
whilst the MFD was determined based on the external 
surface texture and not the average angle of the dominant 
orientation of collagen fibres as in Sommer et al. (2015a).

is related to the applied force components fij in the tests and 
Cauchy stress tensor � as

where � is deformation gradient tensor.

•	 Uniaxial tests
	 For uniaxial stretch experiments along MFD, we have 

 in which �1 is the stretch ratio, f1 is the applied force 
along MFD direction, and in this case f1 = f11 , �11 is the 
Cauchy stress component, and A1 is the reference cross-
sectional area perpendicular to MFD. Similarly, for uni-
axial stretch along CFD 

 where the applied force f2 = f22.
•	 Biaxial tests
	 For the shear-free biaxial test along MFD and CFD, since 

A1 = A2 = A , then 

 Again, in this case, we have f1 = f11 , f2 = f22.
	   If shear exists in the biaxial test as in Fig.  2, 

�12 ≠ 0 and �21 ≠ 0 , then
	 

	   Because the measured force is the sum of forces along 
the directions 1 and 2, there is no force applied in the 
third direction, f1 and f2 satisfy the following equations 
(Sommer et al. 2015a) 

(1)

� =

⎡⎢⎢⎣
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⎤
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1
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0
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0
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1√
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(4)
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�1 �2

⎤
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(5)� =
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and �11 = �1 P11 + �12 P12, �22 = �2 P22 + �21 P21.

(6)f1 = f11 + f12, and f2 = f21 + f22.

Fig. 1   a A sketch of all six possible shear modes, � , � , and � denote 
the fibre, sheet, and normal direction, respectively. (ij) refers to shear 
in the j direction within the ij plane, where i ≠ j ∈ {f, s, n} . b A 
sample with fibres (red dash lines), which is stretched along the two 
orthogonal directions (MFD and CFD) in fibre-normal plane during 
a biaxial test; c uniaxial tension tests along the MFD and CFD; f1 
and f2 are the loading force along the MFD and CFD. L is the initial 
length of specimen, and �1 and �2 are stretch ratios

In the following, we refer these three sets of experiments 
as Dokos’s data, Sommers’s data, and Ahmad’s data. Let 
1, 2, 3 represent the components in MFD, CFD and sheet 
(transmural) directions and assume that the test sample is 
incompressible. To make use of the experiments, it is con-
venient to use the first Piola–Kirchhoff (P–K) stress � , which 
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 Finally, the relationship between the first P–K stress 
components and the applied forces is 

 Note when shear is present, �11 ≠ �f1∕A and �22 ≠ �f2∕A . 
Therefore, we need to determine the P–K stress compo-
nents from experiments using (7), and then recover the 
Cauchy stress components from (1).

	   We further assume the shear increases linearly with 
stretch, that is 

 where k1 and k2 are the maximum values of �12 and �21.
•	 Simple shear tests
	 For the simple shear tests, shown in Fig. 1a, we have 

 and in this case, the stress components are determined 
from 

(7)
P11 + P12 = (��−T)11 + (��−T)12 =

f1

A
,

P21 + P22 = (��−T)21 + (��−T)22 =
f2

A
.
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2
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,

(9)
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(10)�ij = Pij =
fij

A
, i ≠ j ∈ {1, 2, 3}.

2.2 � The general HO model

To characterize the mechanical behaviours of myocardium, 
the general HO strain energy function proposed by Holzap-
fel and Ogden (Holzapfel and Ogden 2009) is employed, 
which is

where a, b, ai, bi, aij, bij are the 14 material constants, 
I1 = trace(�T�) , representing the overall squared stretch, 
I4f , I4s and I4n are squared stretches along each direction,

in which �0, �0, �0 are the initial fibre, sheet and normal direc-
tions. The max() in (11) will ensure the collagen fibres can 
only bear the load when stretched but not in compression. 

(11)

� =
a

2b
exp[b(I1 − 3)] +

∑
i=f,s,n

ai

2bi
{exp[bi(max(I4i, 1) − 1)2] − 1}

+
∑

ij=fs,fn,sn

aij

2bij
[exp(bijI

2
8ij
) − 1],

I4f = �0 ⋅ (�
T
� �0), I4s = �0 ⋅ (�

T
� �0), I4n = �0 ⋅ (�

T
��0),

Fig. 2   The recorded image in a biaxial tensile specimen in Ahmad 
et al. (2018) (a). The four white markers in the centre of the experi-
mental sample in a are also shown in b, in which the solid rectan-

gle represents the initial shape; and the deformed shape is shown in 
dashed lines. f1 and f2 are the loading forces in MFD and CFD

I8fs , I8fn and I8sn are invariants representing the coupling 
between two different directions,

I8fs = �0 ⋅ (�
T
� �0), I8fn = �0 ⋅ (�

T
��0), I8sn = �0 ⋅ (�

T
��0).
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2.3 � Effective fibre contribution

The rotation of collagen fibres from epicardium to endocar-
dium plays a significant role in the myocardial mechanical 
response. Thus, it is necessary to consider fibre rotation in 
tested samples when fitting constitutive laws to experimental 
data. We further assume collagen fibres (along with myo-
cytes) only lie in the � − � plane. Considering a myocardial 
sample with linearly rotated fibres from �1 to �2 as shown 
in Fig. 3a, the local fibre angle related to the MFD with a 
depth of h is

where H0 is the total thickness of the sample, and the local 
�–�–� system is

(12)�(h) =
�2 − �1

H0

h + �1,

� = (cos �, sin �, 0), � = (− sin �, cos �, 0) and � = (0, 0, 1).

Fig. 3   a The fibre direction varies along the thickness of myocar-
dium. b The effective area (blue) when the fibre direction is � under 
uniaxial loading in the MFD test. The collagen fibres (red dot line) 

within the region enclosed by the two blue dashed lines are defined as 
effective fibres that are stretched both sides. The effective fibre ratio 
is defined by rectangle area dividing blue effective area

Because collagen fibres can only bear the load when 
stretched, factors depending on fibre angle ( � ) are introduced 
in the general HO law for I4f , I4s and I4n which measure the 
squared stretches of different fibre families, but not for I8fs , 
I8fn and I8sn which are dependent on the angels between dif-
ferent directions. Therefore,

(13)
� (�) =�1 + �4f(�)�4f

+ �4s(�)�4s + �4n(�)�4n + �8fs + �8fn + �8sn,

in which �i is the strain energy term associated with the 
invariant of Ii . �4f(�) , �4s(�) and �4n(�) values will depend on 
the experimental loading conditions and the fibre structure 
of tested samples. For example, in an uniaxial test along the 
MFD as shown in (Fig. 3b), only when fibres are attached 
to both ends (the most left and right sides), or in the shaded 
area in Fig. 3b, can they be stretched along the MFD and 
contribute to the stress response. If only one end of the fibres 
is stretched (e.g. the unshaded area in Fig. 3b), they will 
not contribute to the stress response (i.e. the other end is 
unconstrained). �4f(�) is defined as the ratio between the 
shaded blue area and the total area of the sample as shown 
in Fig. 3b, denoting the effective fibre ratio �� . Similarly, 
collagen aligned in the CFD may contribute to the stress 
response depending on the size of the sample, the fibre angle 
and the experimental set-up. Collagen in the sheet direction 
is not stretched, which means they do not contribute to the 
uniaxial test; therefore, for the uniaxial test in Fig. 3b, the 
effective fibre ratios are

where W0  and L0  are the width and length of the tested 
sample in the �–� plane, and �0 = arctan

W0

L0
 . Effective ratios 

for biaxial and simple shear tests can be found in the 
appendix.

The stress tensor in a myocardium layer ( det (�) = 1 ) with 
a specific fibre angle � is

(14)

𝛼4f(𝜃) =

{
1 −

L0

W0

| tan(𝜃)| for −𝜃0 < 𝜃 < 𝜃0,

0 for others ,

𝛼4n(𝜃) =

{
1 −

L0

W0

| cot(𝜃)| for
𝜋

2
− 𝜃0 < 𝜃 <

𝜋

2
or −

𝜋

2
< 𝜃 < −

𝜋

2
+ 𝜃0,

0 for others ,

𝛼4s(𝜃) = 0.

(15)�
� = �

�� (�)

��
�
−T − p�−T .



1219On the AIC‑based model reduction for the general Holzapfel–Ogden myocardial constitutive law﻿	

1 3

Because the local fibres in a test sample rotate from �1 to �2 
transmurally (as shown in Fig. 3), the total Cauchy stress 
tensor for the sample is approximated as:

2.4 � Parameter estimation

For Dokos et al. study, all six shear experiments are used for 
formulating (17). For Sommer et al. study, we fit the strain 
energy functions using both the biaxial and simple shear tests. 
All three modes of experimental data from Ahmad et al. study 
are combined together. Material parameters are estimated 
using a nonlinear least square minimization function (fmin-
con from MatLab, MathWorks 2017), with the loss function

where � denotes the set of unknown parameters, N is the 
total number of data points and Pexp

n  are the experimen-
tal values. The relative and absolute differences of the 
area-under-the-curve between the experimental and fitted 
stress–strain curves ( errRelative , errAbsolute ) are introduced to 
quantitatively describe the goodness of fit,

in which �min and �max are the minimum and maximum 
stretch or shear, respectively. A value of 0 indicates a per-
fect fitting.

2.5 � Reduced HO models

Some of the invariants may be excluded in the general 
HO model when applied to human myocardium, whilst 
still achieving a good agreement with experimental data. 
For example, Holzapfel and Ogden (2009) reported that 
after dropping I4n, I8fn and I8sn from the general HO model, 
they could still fit the six shear tests of Dokos et al. (2002) 
very well; hence, they proposed an 8-parameter HO model 
(HO2009),

(16)� =
1

�2 − �1 ∫
�2

�1

�
�d�.

(17)L(�) =

N∑
n=1

[Pn(�) − Pexp
n

]2,

(18)
errRelative =

∫ �max

�min
|Pn(�) − P

exp
n | d�

∫ �max

�min
P
exp
n d�

,

errAbsolute = �
�max

�min

|Pi(�) − Pexp
n

| d�,

(19)

� =
a

2b
exp[b(I1 − 3)] +

∑
i=f,s

ai

2bi
{exp[bi(max(I4i, 1) − 1)2] − 1}

+
afs

2bfs
[exp(bfsI

2
8fs
) − 1].

The reason for excluding I8fn and I8sn is because the two 
shear responses marked as (nf) and (ns) were not distin-
guishable based on Dokos et al. data. There lacks, however, 
a study investigating whether the general HO and HO2009 
can fit all other myocardial experiments well, such as human 
myocardium in Sommer et al. (2015b).

Reducing the general HO model (11) is advantageous, as 
so many strain invariants and material parameters prevent 
efficient personalized cardiac simulations. Furthermore, 
multiple sets of optimal material parameters from limited 
experimental data can lead to different simulation results 
for a given boundary-value problem (Ogden et al. 2004). To 
derive a simplified but competent strain energy function, the 
AIC analysis (Burnham and Anderson 2003) is employed in 
this study to reduce the general HO model, which is defined 
as

where K is the number of model parameters. AIC is typi-
cally used for model selection by considering both the model 
complexity and the loss function. The best model is the one 
with the lowest AIC value. This approach has previously 
been used by Schmid et al. (2006) to compare five different 
myocardial strain energy functions. Note the AIC in (20) is 
negative when the fitting is good. Therefore, for any two dif-
ferent models and the same experimental data, the one with 
the more negative AIC value suggests a better fitting. Similar 
AIC values represent comparable models. In this study, we 
consider various reduced forms of (11). This allows us to 
drop the terms in (11) that make little change in the AIC 
value. This way we can select the simplest strain energy 
function that fits to the test data. To this end, we introduce 
the AIC ratio:

where � represents the ratio of AIC values of a reduced and 
the general HO model for the same experimental data.

We aim to simplify the general HO model with a subset of 
strain invariants ( {I4f , I4s , I4n , I8fs , I8fn , I8sn} ), for effectively 
characterizing different experimental studies. The steps for 
reducing the general HO model are

1.	 Compute the AIC value for the general HO model and 
� = 1;

2.	 Compute � values for reduced models whilst removing 
one strain invariant at a time;

3.	 The invariant associated with the least changed � value 
may be dropped, leading to a reduced HO model,

4.	 Repeat 2–3 for the remaining set of the strain invariants,

(20)AIC = N ln
[
1

N
L(�)

]
+ 2K,

(21)� =
AICmodel

reduced

AICmodel
general
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5.	 If the � value is reduced by a predetermined threshold � , 
stop; otherwise, go to 2.

In this study, we chose � to be 0.05.
We further compare the modelling accuracy between 

the general and various reduced HO models using a three-
dimensional (3D) finite element (FE) bi-ventricular model, 
which is reconstructed from 3D computed tomography 
(CT) data. Details of the data acquisition can be found in 
Ahmad et al. (2018). The 3D CT data are first segmented 
using Seg3D;1 then, the boundary contours are exported into 
SolidWorks (Dassault Systemes, MA USA) for 3D geometry 
reconstruction, and then meshed with ICEM (ANSYS, Inc. 
PA USA). Finally, explicit Abaqus (Dassault Systemes, MA 
USA) is used for the FE simulation. User subroutines are 
implemented for different strain energy functions. Diastolic 
filling in the left ventricle (Fig. 4a) is simulated with layered 
myofibre rotating from the epicardial to endocardial surface 
(Fig. 4b), with rotation angles measured from experimental 
studies using a rule-based approach (Wang et al. 2013).

2.6 � Optimal combination of experiments 
through predictive analysis

Likewise, we can use AIC method to determine the opti-
mal combination of experiments using minimum tests. For 
a given strain energy function, we firstly fit it to a subset 
of experimental data with Ns data points and then use it 
to predict the remaining points ( N − Ns ). We introduce a 
similar AIC ratio

where AICexp

subset
 and AICext

all
 are computed using parameters 

optimized from a subset or all combinations of experimental 

(22)� =
AIC

exp

subset

AIC
exp

all

.

data, respectively. We do not consider cases when � becomes 
negative. Hence, � denotes the AIC change using different 
combinations of experiments for the same model. We chose 
the criterion for the best combination to be the minimum 
group of tests which satisfies � ≥ 0.8 . This corresponds to 
about 5% change of the relative error in (18). The pseudo-
code for this analysis is listed in Algorithm 1.

Algorithm 1 The predictive analysis for determining the 
optimal combination with minimal tests

3 � Results

3.1 � The general HO strain energy function

Figure 5a shows the results by fitting the general HO model 
to the Dokos et al. shear tests. Improved agreement can be 
found when including the effective fibre ratio (AIC: −589.3 ) 
compared to without (AIC: −464.7 ), whilst the mean rela-
tive error also decreases from 15.9% to 9.3%. When fitting 

Fig. 4   a The 3D FE bi-ventricle 
mesh geometry with a pres-
sure boundary condition applied 
to the left ventricle inner 
surface (red surface). The pres-
sure linearly increases from 0 
to 4 mmHg in a period of 0.5s. 
b The myofibre distribution in 
the ventricle wall, which rotates 
from epicardium to endocar-
dium ( 60o to −60o)

1  http://www.sci.utah.edu/cibc-softw​are/seg3d​.html

http://www.sci.utah.edu/cibc-software/seg3d.html
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all test data from Ahmad et al. study with the effective fibre 
ratio, the AIC value is reduced significantly from −338.5 to 
−1170.3 (shown in Figs. 5b–d), whilst the relative errors for 
the uniaxial test along the MFD decrease from 36.06% to 
4.25%, and from 26.76% to 6.97%, for the biaxial test along 
the CFD.

In Ahmad et al. data, we estimate k1 = 0.18 and k2 = 0.05 
using markers for the sample angle changes (Fig. 2). In Som-
mer et al. (2015b), no information on the shear measure-
ments is available. However, we assume the maximum shear 
angles in both MFD and CFD in Sommer et al. biaxial tests 
are around 6◦ , i.e. k1 = k2 ≈ 0.1 (Sommer et al. 2015a; Bil-
liar and Sacks 2000), which is necessary for a good fit to 
their experiments. As for Ahmad et al. and Sommer et al. 

biaxial tests, the difference with and without shear for the 
same model in Fig. 6 indicates including the shear compo-
nent is critical when fitting biaxial experimental tests, since 
for fibre-reinforced material, it is almost impossible to con-
duct biaxial tests without inducing shear (Freed et al. 2010).

Figure 7a demonstrates that both the general HO (AIC: 
−589.3 ) and HO2009 (AIC: −559.3 ) models can fit Dokos 
et al. shear test data very well, whilst noticeable differ-
ences can be found when fitting the two material models 
to Sommer et al. data (Fig. 7b, c, where only plotting one 
set (MFD:CFD=1:1) experimental data, whilst the remain-
ing  four sets have similar results and are included in 
the appendix (Fig. 12). Better agreement is achieved for the 
general HO model (AIC: −1102.6 ) than the HO2009 model 

Fig. 5   Comparison of the fitting 
results with and without consid-
ering fibre effective ratio ( � ). a 
Fitting the general HO model to 
Dokos’s data, b–d the differ-
ences in uniaxial, biaxial and 
simple shear tests in Ahmad’s 
data

Fig. 6   Comparison of the first 
P–K stress, including shear 
(red) and not including shear 
(blue) using same strain energy 
function. a is for Sommer et al. 
biaxial test and a minimum 
shear angle of 6o is introduced. 
Below 6o there is no good fit, 
above it is not supported by 
Sommer et al. experiments. b 
is for Ahmad et al. biaxial test, 
corresponding to Fig. 8e
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(AIC: −849.5 ). Figure 7d–f shows the results when fitting 
the two models to Ahmad’s data. Again, much better agree-
ment can be found when using the general HO model (AIC: 
−1170.3 ) compared to the HO2009 model (AIC: −423.1 ); 
in particular, the HO2009 model fails to fit the shear test in 
(Fig. 7f).

3.2 � Reduced strain energy functions based on AIC 
analysis

Although the general HO model can fit the three selected 
experimental studies very well as shown in Fig. 7, it includes 
seven invariants with fourteen unknown parameters, which can 
be extremely challenging to obtain an unique solution when 
fitting to limited experimental data. A reduced form, such as 
the HO2009 model, is desirable for constructing personalized 
models (Gao et al. 2017; Palit et al. 2018; Nikou et al. 2015). 
However, since HO2009 is derived from fitting the Dokos et al. 

data only, if such a model fails to describe other experimen-
tal data, we need to have strategies in place to derive a better 
reduced model with test data available for tissues of interests.

In this work, alternative reduced strain energy functions 
are identified from the general HO model for selected exper-
imental studies based on the AIC analysis. Figure 8a reports 
� values when individually excluding each invariant from 
the general HO model (11) and fitting to three experimental 
studies. For Dokos et al. data, I4n , I8fn and I8sn have much 
less contribution to the agreement compared to I4f , I4s and 
I8fs , because � remains more than 0.95 when dropping these 
terms. This means I4n , I8fn and I8sn can be dropped from (11), 
and it can now be denoted as HO-D, which actually equates 
to the HO2009 model (19). In other words, � is reduced 
by 3% when using the HO-D model (HO2009) to replace 
the general HO model. Similarly, invariants I4s , I8fn and I8sn 
may be excluded from the general HO model when fitting to 
Sommer et al. biaxial and simple shear data. This gives us 

Fig. 7   Comparison between 
descriptive ability of the general 
HO and the HO2009 models for 
the three experimental studies. 
a Dokos’s simple shear tests; b 
and c Sommer’s biaxial tension 
and simple shear tests; d–f 
Ahmad’s uniaxial, biaxial ten-
sion and simple shear tests
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a reduced strain energy function for Sommer’s data (HO-S) 
at a 4% of drop in �,

(23)

� =
a

2b
exp[b(I1 − 3)] +

∑
i=f,n

ai

2bi
{exp[bi(max(I4i, 1) − 1)2] − 1}

+
afs

2bfs
[exp(bfsI

2
8fs
) − 1].

Figure 8c shows the fitting results of the HO-S model to 
various biaxial tests with different stretch ratios, and fitting 
results to the shear tests are shown in Fig. 8d. Notice, good 
agreement for Sommer’s biaxial data can only be achieved 
when a small amount of shear is included. The reduced 
model for Ahmad et al. data in Fig. 8a, (HO-A), is similarly 
determined

Fig. 8   Descriptive capability of 
reduced HO models. a Change 
of � when dropping the terms 
associated with the invariants 
for the different three experi-
ments. The fitting results for the 
HO-D model (b), and c–d the 
HO-S model and e–g the HO-A 
model
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in which I4s , and Isn are excluded from the general HO 
model, and � is only reduced by 0.015. Figure 8e–g shows 
the fitting results to the uniaxial stretch, biaxial stretch and 
simple shear tests, respectively. Again, the HO-A model has 
good descriptive capability for Ahmad et al. experiments. 
All estimated parameters for the HO-D (HO2009), HO-S 
and HO-A models and the fitting errors with their corre-
sponding experimental data, can be found in Tables 1 and 2. 

Figure 9a describes the left ventricular pressure–volume 
relationship from the 3D FE bi-ventricle model using the 
general HO, HO2009 and HO-A models with parameters 
determined from Ahmad et al. study. Nearly identical pres-
sure–volume relationships can be found between the general 
HO and HO-A models; however, the ventricle is stiffer when 
using the HO2009 model even though the parameters are 
determined using the same experimental data. This appears 
to indicate that the HO2009 model cannot effectively charac-
terize Ahmad et al. myocardial samples. We further compare 
the displacement differences among different material mod-
els based on Ahmad et al. data. The displacement differences 
between the general HO and HO-A models are nearly negli-
gible (Fig. 9c), but large discrepancies exist for the HO2009 
model (Fig. 9b).

3.3 � Optimal combination of experimental tests

To find the optimal combination of tissue tests, we use 
reduced HO models and a random initialization strategy to 
get the average value of � , avg(�) , and its corresponding 
standard deviation, std.

Combinations from Dokos et  al. data As shown  
in Fig.  10a, in additional to all tests, case 25 
( (fs) + (fn) + (ns) ), case 42 ( (fs) + (fn) + (sf) + (sn) ), case 
57 ( (fs) + (fn) + (sf) + (sn) + (nf) ) meet the criterion of 
avg(�) ≥ 0.8 . Clearly, case 25 is the optimal combination.

Combinations from Sommer et al. data Figure 10c  
displays partial avg(�) values of Sommer et al. AIC analysis 
when combining different biaxial and simple shear test data 
using the HO-S model; for clarity, only group 1, 2, 3, 5 and 
6 are shown. The best combination is case 20 ((1:1)+(nf)). 
In particular, case 562 ((1:1)+(1:0.75)+(0.75:1)+(1:0.5)+(0
.5:1)) is the combination of all biaxial data and has negative 
� value, suggesting using biaxial data only cannot predict 
the simple shear responses. Likewise, using simple shear 
tests only, case 1484 ( (fs) + (fn) + (sf) + (sn) + (nf) + (ns) ) 
is unable to predict biaxial data. Therefore, both biaxial 
and simple shear test data are needed when characterizing 

(24)

� =
a

2b
exp[b(I1 − 3)] +

∑
i=f,n

ai

2bi
{exp[bi(max(I4i, 1) − 1)2] − 1}

+
∑

ij=fs,fn

aij

2bij
[exp(bijI

2
8ij
) − 1],
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myocardial properties. This agrees with the observation 
by Holzapfel and Ogden (2009). Figure 10d, e shows the 
stress of biaxial tests and simple shear tests with parameters 
determined from stress responses in (1:1)+(nf).

Combinations from Ahmad et al. data In Fig. 10f, 
apart from all tests, none of the other combinations meet 
� ≥ 0.8 in Ahmad et al. study. The fitting curves using all 
the tests are already shown in Fig. 8e, g, f.

4 � Discussion

This study focuses on a rational reduction of the general HO 
model for the myocardial tissue responses. Three different 
myocardial experiments are selected, including Dokos et al. 
study on porcine myocardium over a decade ago (Dokos 
et al. 2002), Sommer et al. study on human myocardium 
published several years ago (Sommer et al. 2015b), and the 
very recent experimental data from Ahmad et al. (2018) 
on neonatal porcine myocardium (Ahmad et  al. 2018). 
To our best knowledge, these are the most comprehensive 
myocardial mechanical experiments. Dokos et al. (2002) 
is the first presenting simple shear tests to characterize the 
direction-dependent myocardial mechanical property, which 
has driven new developments in strain energy function and 
led to the extensive use of the HO2009 model (Holzapfel 
and Ogden 2009). Sommer et al. (2015b) included biaxial 
and simple shear tests, with both needed for characterizing 
an orthogonal hyperelastic material (Holzapfel and Ogden 
2009). We show, for the first time, that the general HO model 
is very good as describing stress responses from different 
deformation types as shown in Fig. 7.

A number of studies have used the HO-based strain 
energy functions (mostly HO2009 model) to construct per-
sonalized biomechanical models (Gao et al. 2017; Asner 
et al. 2016; Baillargeon et al. 2014). The widely success-
ful application of the HO-type models suggests it is good 
for characterizing myocardial mechanical properties and 
provides the natural starting point to optimize the general 
HO model for specific tissue types, aiming to achieve the 
least terms and yet retaining sufficient descriptive and pre-
dictive capability. However, it has been recognized that the 
HO2009 model has its limitations (Fig. 7). This is because 
their model reduction is based on Dokos et al. simple shear 
data only, which did not include all responses of the myo-
cardial tissues.

In the past several decades, efforts have been made to 
develop a strain energy function with fewest terms, whilst 
accurately describing the test data and predicting the dynam-
ics (Zhang et al. 2019). A simplified but competent material 
model not only reduces computational cost, but is also easy 
to implement and personalize from limited test data. In this 
study, the AIC analysis is employed to systematically reduce Ta
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the general HO model, whilst maintaining good descriptive 
and predictive capabilities. An invariant is excluded from 
the general HO model if it causes only a small change in 
the resultant AIC value. For instance, Fig. 8a suggests that 
I4n , I8fn and I8sn could be excluded when fitting to the Dokos 
et al. data, which is the same formulation as the HO2009 
model. Other approaches can also be used for model reduc-
tion and selection such as parameter sensitivity analysis, by 
setting those insensitive parameters to constant values or 
zero (Snowden et al. 2017).

Interestingly, the reduced HO models are different for the 
selected experimental studies. Presumably, this is because 
these tests were for different species and ages; Dokos et al. 
(2002) used adult porcine myocardium, Ahmad et al. (2018) 
used the neonatal porcine myocardium, and Sommer et al. 
(2015b) worked on human myocardium. When fitting to the 
biaxial tests only from Sommer et al. data, the general HO 
model can be simplified to a reduced form consisting of only 
I1 and I4f , similar to the findings reported in Holzapfel and 
Ogden (2009). This is because in the biaxial tests, collagen 
fibres are only stretched in fibre-normal plane, but not in 
the sheet direction, thus max(I4s, 1) = 1 and I8fs = 0 . When 
fitting to the biaxial and simple shear tests together, the term 
with I4n needs to be included, which is different from the 
reduced formulation when fitting only to Dokos et al. data. 
One reason is that the shear responses along (fs) and (fn) are 
closer to each other in Sommer et al. human myocardium, 
than in Dokos et al. porcine myocardium. This is similar to 

shear responses along (sf) and (sn), and along (nf) and (ns), 
which suggests there may be a difference in passive myo-
cardial properties between human and porcine myocardium. 
The reduced HO model from Ahmad et al. data needs to 
incorporate I8fn , which might be explained by: (1) the asym-
metric fibre structure in relation to the stretching axis; and 
(2) limited test data with only 2 shear responses, 2 biaxial 
tests and 2 uniaxial tests. There is, however, no conclusion 
as to the number of tests required with different deformation 
types to fully characterize myocardium.

The AIC analysis can also be used to choose the best 
combination of experiments. As shown in Fig. 10, different 
combinations of test data affect the prediction accuracy. Spe-
cifically, within the shear responses (Fig. 10a), the groups 
containing (fs) and (fn) always have better predictive capabil-
ity than other groups. One reason is that the shear responses 
along (fs) and (fn) are much stiffer than other directions in 
both Dokos et al. and Sommer et al. data. For the biaxial test, 
most combinations have good predictive capability, which 
suggests that not all the biaxial tests in Sommer et al. data 
are needed to fit the general HO model or the HO-S model. 
For instance, one stretching ratio with 1(MFD):0.75(CFD) 
from Sommer et al. biaxial tests has good predictions for 
other stretching ratios. But if the stretch ratio is largely non-
equal, such as 1(MFD):0.5(CFD) or 0.5(MFD):1(CFD), 
the prediction is poor (see Fig. 13 in Appendix), partially 
because the material response with lower stretch ratios is 
still within the toe regime with non-stretched collagen fibres 

Fig. 9   The differences of FE 
bi-ventricle model using the 
HO2009, HO-A and general HO 
models for Ahmad et al. data. a 
The pressure–volume curve in 
diastolic filling, b the displace-
ment differences between 
the general HO and HO2009 
models and c the displacement 
differences between the general 
HO and HO-A models
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(Cheng et al. 2018; Lanir 1979). Prediction between differ-
ent deformation types is poor, as shown in Fig. 10b, using 
biaxial tests only (case 563) and simple shear only (case 
1484). This might be because one experiment type is inad-
equate to capture the nonlinearity and anisotropy of myocar-
dium. Ahmad et al. (2018) included simple shear, biaxial and 
uniaxial tests, which allows investigation of uniaxial data in 
characterizing myocardium property. However, even with 
Ahmad et al. data, the predictions of uniaxial tests using 
the two biaxial and simple shear tests (case 25) are poor. 
As discussed in Holzapfel and Ogden (2009), biaxial tests 
are insufficient for characterizing a hyperelastic anisotropic 
material. When using stress responses from both the simple 
shear and biaxial tests, the least test data for the HO-S model 
with good prediction are one shear test along (nf), together 
with a biaxial test 1(MFD):1(CFD). Our results presented 
here suggest uniaxial tests are still needed for an experiment 
like Ahmad et al. study, whilst further studies may be needed 
for experiments like Sommer et al. study using uniaxial tests.

In general, the stiffness aligned to the collagen fibre direc-
tion is much greater than the extracellular matrix, which is 
considered homogeneous and isotropic. Many studies have 
demonstrated the importance of excluding compressed fibres 
which cannot bear load (Zhuan et al. 2018; Holzapfel and 
Ogden 2017). Here we use a simpler approach, effective fibre 
ratios, to consider this effect. Because of the gradual fibre 
rotation transmurally, we assume the collagen fibres will 
experience the same deformation as the extracellular matrix 
only when both ends are stretched. A simplified FEM model 
based on Fig. 3b is simulated under uniaxial stretch along 
the MFD (Fig. 11), showing that the stress is much higher 
in the effective fibre area. The inclusion of the effective fibre 
ratio is also supported by Fig. 5, where the goodness of fit 
for the general HO model is much better than without it. 
The effective fibre ratio is a geometrical effect and depends 
on the sample size, loading direction and the local collagen 
fibre structures. It does not affect the fit to biaxial tests since 
the in-plane collagen fibres will be physically stretched at 
both ends, but will affect the fit to the uniaxial and simple 
shear tests.

This study also demonstrates that biaxial stretch of 
myocardium cannot be free of shear. The shear-free sce-
nario is only possible if fibres are strictly aligned in both 
stretching directions and without cross-fibre effects. Both 
are not true in mycardium tissue tests. The assumption 
of no shear in the model leads to the poor outcome of 
predicting biaxial test data from simple shear tests, even 
if the general HO model is used. Indeed, we show that 
assuming shear-free behaviour in Sommer et al. biaxial 
testing produced relatively poor goodness of fit for both 
the general HO and HO-S models; however, this is sig-
nificantly improved when including a small shear com-
ponent as per biaxial tests of fibre-reinforced anisotropic Ta
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material (Sommer et al. 2015a; Billiar and Sacks 2000)
(Figs. 6a). As the shear components in the biaxial tests 
are not reported by Sommer et al. (2015b), the maximum 
shear angles are assumed to be the same along the CFD 
and MFD, respectively, at around 6o . In Ahmad et al. data, 
the shear components in the biaxial tests are estimated, 
with the results presented here (Fig. 6b) suggesting that 
measuring of shear components in biaxial testing is nec-
essary for myocardium and potentially, other anisotropic 
materials.

To determine the variability of material parameters when 
fitting the various HO models to the experimental data, a 
random initialization strategy is used with 100 samples 
drawn from predefined parameter ranges. Estimated param-
eters from different guesses are summarized in Table 3. In 
general, all estimated parameters for reduced HO models 
have small standard deviations compared to the average 
values, and also less than the standard deviations from 
the general HO model, suggesting a better determinabil-
ity for reduced HO models. The large standard deviations 
in the general HO model are expected because it has more 

Fig. 10   � values that are com-
puted according to Algorithm 1, 
where the cases whose average 
(avg) � ≥ 0.8 are marked in red. 
a In Dokos et al. experiments, 
case 25 ((fs) + (fn) + (ns)) is 
the optimal case which has 
few tests whilst meeting the 
criterion, b the corresponding 
fitting curves using case 25. 
In Sommer et al. experiments, 
case 20 ((1:1) + (nf)) is the 
optimal case as shown in c, 
and the corresponding fitting 
curves are shown in d and e. f 
is for Ahmad et al. experiments, 
case ALL is the only one which 
satisfies the criterion. The 
other cases are corresponding 
to certain combinations to be 
discussed in the text
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parameters. It is also noted when fitting to Dokos et al. data 
that some parameters lie in the lower bounds such as bs in the 
HO-D model. This may be partially explained by the limited 
experimental data, which cannot capture some directional 
stress responses, or due to the interdependence of material 
parameters (Gao et al. 2015). Since no studies exist on the 
quantity of experimental data required to fully capture myo-
cardial mechanical properties, we limit this study to three 
experimental studies in our AIC analysis.

Many other constitutive models exist such as the “pole-
zero” model (Nash and Hunter 2000), various Fung-type 
models (Costa et al. 2001; Guccione et al. 1991) and the 
constitutive framework with minimized cross-term covari-
ance proposed by Criscione et al. (2002). The AIC analysis 
can be readily applied to select different types of material 
models. For instance, we can compare the HO-D model and 
the Feng-type Guccione’s model (Guccione et al. 1991) with 
Dokos et al. shear data. We find that better fitting results can 
be achieved using the HO-D model, which has a much lower 
AIC value ( −559.3 ) than the value from the Guccione’s 
model ( −65.8 ). This is because the Guccione’s model is a 
transversely isotropic material model, but myocardium is 
known to be orthotropic.

5 � Conclusion

This study describes an AIC-based constitutive model reduc-
tion for myocardium. We make use of three different myo-
cardial mechanical studies, including uniaxial, biaxial and 
simple shear tests. We propose three different reduced HO 
models based on the congressing myocardial tissue studies, 
with all models retaining similar descriptive and predictive 
capabilities as the general HO model. We demonstrate the 
importance of accounting for the shear in the biaxial experi-
ments, as without shear, it is not possible to describe the 

biaxial experiments reliably. We further demonstrate that 
it is necessary to consider through thickness fibre rotations 
in the sample, which is done by introducing the effective 
fibre ratio when fitting material models to the uniaxial and 
simple shear myocardial experiments. Finally, we use the 
AIC analysis to identify the best combinations of tissue tests, 
and our results show that the minimum one shear response 
(nf) and one biaxial test with stretch ratio 1(MFD): 1(CFD) 
are required to capture human myocardial mechanical prop-
erty in Sommer et al. study. The different reduced material 
models for the three experimental studies indicate that the 
least terms required to achieve a competent material model 
may depend on species, ages and pathologies. Therefore, a 
combined experimental and modelling approach is impor-
tant in selecting an appropriate material model for predictive 
biomechanical models in personalized medicine. 
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Appendix

Effective ratio for biaxial and simple shear

In biaxial tests, because the four sides are stretched along 
two directions simultaneously in the fibre-normal plane , 
thus

and �4s(�) = 0 because the fibre in � direction is compressed.
�4f(�) = �4n(�) = 1,

Fig. 11   Stress distribution when 
fibre direction is 10◦ in uniaxial 
tensile along MFD as shown in 
Fig. 3. The green area enclosed 
by the two dashed lines is the 
effective area with higher stress, 
whilst the blue area (the right 
bottom and left upper corners ) 
is the ineffective area with much 
lower stress

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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There are six different shear modes; fibre effective ratio 
will be different in every shear mode. If assuming the fibre 
rotation is from − �

4
 to �

4
 and the specimen is a cube, then 

we have

(fs) ∶ 𝛼4f(𝜃) =
{
1 − | tan(𝜃)| for −

𝜋

4
< 𝜃 <

𝜋

4
𝛼4s(𝜃) = 𝛼4n(𝜃) = 0,

(fn) ∶ 𝛼4f(𝜃) =

{
1 − | tan(𝜃)| for 0 ≤ 𝜃 <

𝜋

4

0 for −
𝜋

4
< 𝜃 < 0

𝛼4s(𝜃) = 𝛼4n(𝜃) = 0,

(sf) ∶ 𝛼4s(𝜃) =
{
1 for −

𝜋

4
≤ 𝜃 <

𝜋

4
𝛼4f(𝜃) = 𝛼4n(𝜃) = 0,

(sn) ∶ 𝛼4s(𝜃) =
{
1 for −

𝜋

4
≤ 𝜃 <

𝜋

4
𝛼4f(𝜃) = 𝛼4n(𝜃) = 0,

(nf) ∶ 𝛼4n(𝜃) =

{
0 for 0 ≤ 𝜃 <

𝜋

4

1 − | tan(𝜃)| for −
𝜋

4
< 𝜃 < 0

𝛼4f(𝜃) = 𝛼4s(𝜃) = 0,

(ns) ∶ 𝛼4n(𝜃) =
{
1 − | tan(𝜃)| for −

𝜋

4
< 𝜃 <

𝜋

4
𝛼4f(𝜃) = 𝛼4s(𝜃) = 0.

Rest fitting results in Sommer et al. biaxial test

See Figs. 12 and 13. 

References

Ahmad F, Liao J, Soe S, Jones MD, Miller J, Berthelson P, Enge D, 
Copeland KM, Shaabeth S, Johnston R et al (2018) Biomechani-
cal properties and microstructure of neonatal porcine ventricles. 
J Mech Behav Biomed Mater 88:18–28

Asner L, Hadjicharalambous M, Chabiniok R, Peresutti D, Sam-
mut E, Wong J, Carr-White G, Chowienczyk P, Lee J, King A 
et al (2016) Estimation of passive and active properties in the 
human heart using 3d tagged mri. Biomech Model Mechanobiol 
15(5):1121–1139

Avazmohammadi R, Hill M, Simon M, Sacks M (2017a) Transmural 
remodeling of right ventricular myocardium in response to pulmo-
nary arterial hypertension. APL Bioeng 1(1):016,105

Avazmohammadi R, Hill MR, Simon MA, Zhang W, Sacks MS 
(2017b) A novel constitutive model for passive right ventricular 

Fig. 12   The rest four loading 
protocols [(1:0.75), (0.75:1), 
(1:0.5) and (0.5:1)] for Sommer 
et al. biaxial tests. a Com-
parison of the first P–K stress 
including shear (solid lines) or 
not (dash lines) as in Fig. 6a. 
b The comparison between the 
general HO model and HO2009 
model in Fig. 7b. c Fitting 
results using the reduced HO 
model (HO-S) in Fig. 8c. d 
The simulated results accord-
ing to optimized combinations 
(1:1)+(nf) in Fig. 10e

Fig. 13   Only using biaxial tests in Sommer et  al. data, we compute 
� by fitting the HO-S model to one individual stretch ratio and pre-
dicting the remained experimental data from other stretch ratios. 
Only (1:1) and (1:0.75) meet � ≥ 0.8 , whilst (1:0.5) and (0.5:1) have 
� ≤ 0.4



1231On the AIC‑based model reduction for the general Holzapfel–Ogden myocardial constitutive law﻿	

1 3

myocardium: evidence for myofiber-collagen fiber mechanical 
coupling. Biomech Model Mechanobiol 16(2):561–581

Baillargeon B, Rebelo N, Fox DD, Taylor RL, Kuhl E (2014) The living 
heart project: a robust and integrative simulator for human heart 
function. Eur J Mech-A/Solids 48:38–47

Billiar KL, Sacks MS (2000) Biaxial mechanical properties of the 
native and glutaraldehyde-treated aortic valve cusp: part ii–a 
structural constitutive model. J Biomech Eng 122(4):327–335

Burnham KP, Anderson DR (2003) Model selection and multimodel 
inference: a practical information-theoretic approach. Springer, 
Berlin

Cheng F, Birder LA, Kullmann FA, Hornsby J, Watton PN, Watkins S, 
Thompson M, Robertson AM (2018) Layer-dependent role of col-
lagen recruitment during loading of the rat bladder wall. Biomech 
Model Mech 17(2):403–417

Costa K, Holmes J, McCulloch A (2001) Modelling cardiac mechanical 
properties in three dimensions. Philos Trans R Soc Lond Ser A: 
Math Phys Eng Sci 359(1783):1233–1250

Criscione JC, McCulloch AD, Hunter WC (2002) Constitutive 
framework optimized for myocardium and other high-strain, 
laminar materials with one fiber family. J Mech Phys Solids 
50(8):1681–1702

Demer LL, Yin F (1983) Passive biaxial mechanical properties of iso-
lated canine myocardium. J Physiol 339(1):615–630

Destrade M, Saccomandi G, Sgura I (2017) Methodical fitting for 
mathematical models of rubber-like materials. Proc R Soc A 
473(2198):20160,811

Dokos S, Smaill BH, Young AA, LeGrice IJ (2002) Shear properties of 
passive ventricular myocardium. Am J Physiol-Heart Circ Physiol 
283(6):H2650–H2659

Eriksson TS, Prassl AJ, Plank G, Holzapfel GA (2013) Modeling the 
dispersion in electromechanically coupled myocardium. Int J 
Numer Methods Biomed Eng 29(11):1267–1284

Freed AD, Einstein DR, Sacks MS (2010) Hypoelastic soft tissues. 
Acta Mechanica 213(1–2):205–222

Gao H, Li WG, Cai L, Berry C, Luo XY (2015) Parameter estimation 
in a Holzapfel-Ogden law for healthy myocardium. J Eng Math 
95(1):231–248

Gao H, Aderhold A, Mangion K, Luo X, Husmeier D, Berry C (2017) 
Changes and classification in myocardial contractile function in 
the left ventricle following acute myocardial infarction. J R Soc 
Interface 14(132):20170,203

Gasser TC, Ogden RW, Holzapfel GA (2006) Hyperelastic modelling 
of arterial layers with distributed collagen fibre orientations. J R 
Soc Interface 3(6):15–35

Göktepe S, Acharya S, Wong J, Kuhl E (2011) Computational mod-
eling of passive myocardium. Int J Numer Methods Biomed Eng 
27(1):1–12

Guccione JM, McCulloch AD, Waldman L (1991) Passive material 
properties of intact ventricular myocardium determined from a 
cylindrical model. J Biomech Eng 113(1):42–55

Hollander Y, Durban D, Lu X, Kassab GS, Lanir Y (2011) Constitutive 
modeling of coronary arterial media–comparison of three model 
classes. J Biomech Eng 133(6):061,008

Holzapfel GA, Ogden RW (2009) Constitutive modelling of passive 
myocardium: a structurally based framework for material char-
acterization. Philos Trans R Soc Lond A: Math Phys Eng Sci 
367(1902):3445–3475

Holzapfel GA, Ogden RW (2017) On fiber dispersion models: exclu-
sion of compressed fibers and spurious model comparisons. J 
Elast 129(1–2):49–68

Langdon SE, Chernecky R, Pereira CA, Abdulla D, Lee JM (1999) 
Biaxial mechanical/structural effects of equibiaxial strain during 
crosslinking of bovine pericardial xenograft materials. Biomateri-
als 20(2):137–153

Lanir Y (1979) A structural theory for the homogeneous biaxial 
stress-strain relationships in flat collagenous tissues. J Biomech 
12(6):423–436

Lanir Y (1983) Constitutive equations for fibrous connective tissues. 
J Biomech 16(1):1–12

LeGrice IJ, Smaill B, Chai L, Edgar S, Gavin J, Hunter PJ (1995) 
Laminar structure of the heart: ventricular myocyte arrangement 
and connective tissue architecture in the dog. Am J Physiol-Heart 
Circ Physiol 269(2):H571–H582

Mangion K, Gao H, Husmeier D, Luo X, Berry C (2017) Advances in 
computational modelling for personalised medicine after myocar-
dial infarction. Heart 311,449

McEvoy E, Holzapfel GA, McGarry P (2018) Compressibility and 
anisotropy of the ventricular myocardium: experimental analysis 
and microstructural modeling. J Biomech Eng 140(8):081,004

Melnik AV, Luo X, Ogden RW (2018) A generalised structure ten-
sor model for the mixed invariant I8. Int J Non-linear Mech 
107:137–148

Nash MP, Hunter PJ (2000) Computational mechanics of the heart. J 
Elast Phys Sci Solids 61(1–3):113–141

Nikou A, Dorsey SM, McGarvey JR, Gorman JH, Burdick JA, Pilla JJ, 
Gorman RC, Wenk JF (2015) Computational modeling of healthy 
myocardium in diastole. Ann Biomed Eng 1–13

Ogden R, Saccomandi G, Sgura I (2004) Fitting hyperelastic models 
to experimental data. Comput Mech 34(6):484–502

Palit A, Bhudia SK, Arvanitis TN, Turley GA, Williams MA (2018) 
In vivo estimation of passive biomechanical properties of human 
myocardium. Med Biol Eng Comput 1–17

Pinto JG, Fung Y (1973) Mechanical properties of the heart muscle in 
the passive state. J Biomech 6(6):597–616

Polzer S, Gasser T, Novak K, Man V, Tichy M, Skacel P, Bursa J 
(2015) Structure-based constitutive model can accurately predict 
planar biaxial properties of aortic wall tissue. Acta Biomaterialia 
14:133–145

Sacks MS, Zhang W, Wognum S (2016) A novel fibre-ensemble level 
constitutive model for exogenous cross-linked collagenous tissues. 
Interface Focus 6(1):20150,090

Schmid H, Nash MP, Young AA, Hunter PJ (2006) Myocardial mate-
rial parameter estimation-a comparative study for simple shear. J 
Biomech Eng 128(5):742

Schmid H, Wang Y, Ashton J, Ehret A, Krittian S, Nash M, Hunter P 
(2009) Myocardial material parameter estimation: a comparison 
of invariant based orthotropic constitutive equations. Comput 
Methods Biomech Biomed Eng 12(3):283–295

Schroeder F, Polzer S, Slazanskỳ M, Man V, Skácel P (2018) Predic-
tive capabilities of various constitutive models for arterial tissue. 
J Mech Behav Biomed Mater 78:369–380

Snowden TJ, van der Graaf PH, Tindall MJ (2017) Methods of model 
reduction for large-scale biological systems: a survey of current 
methods and trends. Bull Math Biol 79(7):1449–1486

Sommer G, Haspinger DC, Andrä M, Sacherer M, Viertler C, Regitnig 
P, Holzapfel GA (2015a) Quantification of shear deformations and 
corresponding stresses in the biaxially tested human myocardium. 
Ann Biomed Eng 43(10):2334–2348

Sommer G, Schriefl AJ, Andrä M, Sacherer M, Viertler C, Wolinski 
H, Holzapfel GA (2015b) Biomechanical properties and micro-
structure of human ventricular myocardium. Acta Biomaterialia 
24:172–192

Ten Eyck P, Cavanaugh JE (2018) Model selection criteria based 
on cross-validatory concordance statistics. Comput Stat 
33(2):595–621

Wang H, Gao H, Luo X, Berry C, Griffith B, Ogden R, Wang T (2013) 
Structure-based finite strain modelling of the human left ventricle 
in diastole. Int J Numer Methods Biomed Eng 29(1):83–103



1232	 D. Guan et al.

1 3

Wang H, Luo X, Gao H, Ogden R, Griffith B, Berry C, Wang T (2014) 
A modified holzapfel-ogden law for a residually stressed finite 
strain model of the human left ventricle in diastole. Biomech 
Model Mechanobiol 13(1):99–113

Zhang W, Zakerzadeh R, Zhang W, Sacks MS (2019) A material mod-
eling approach for the effective response of planar soft tissues 
for efficient computational simulations. J Mech Behav Biomed 
Mater 89:168–198

Zhuan X, Luo X, Gao H, Ogden RW (2018) Coupled agent-based and 
hyperelastic modelling of the left ventricle post-myocardial infarc-
tion. Int J Numer Methods Biomed Eng e3155

Zile MR, Baicu CF, Gaasch WH (2004) Diastolic heart failure–abnor-
malities in active relaxation and passive stiffness of the left ven-
tricle. New Engl J Med 350(19):1953–1959

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	On the AIC-based model reduction for the general Holzapfel–Ogden myocardial constitutive law
	Abstract
	1 Introduction
	2 Method
	2.1 Selected myocardial experiments
	2.2 The general HO model
	2.3 Effective fibre contribution
	2.4 Parameter estimation
	2.5 Reduced HO models
	2.6 Optimal combination of experiments through predictive analysis

	3 Results
	3.1 The general HO strain energy function
	3.2 Reduced strain energy functions based on AIC analysis
	3.3 Optimal combination of experimental tests

	4 Discussion
	5 Conclusion
	Acknowledgements 
	References




