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Abstract 10 

A tough polyethersulfone (PES) membrane was utilized as a novel reinforcement to improve impact 11 

performance of a carbon/glass hybrid composite. The hybrid composite was made of a glass 12 

fibre/epoxy block that was sandwiched between two carbon fibre/epoxy blocks. The PES reinforced 13 

hybrid composite was compared with an unmodified hybrid composite and a glass reinforced 14 

aluminium (GLARE) laminate. During impact testing, results showed that incorporation of PES led 15 

to an increase in toughness with a reduction in damage propagation in the investigated composite 16 

panels. Furthermore, the results showed that for low impact energy levels (6 J, 12 J and 18 J), the 17 

addition of the PES membrane reduced the area of damage by an average of 67%, compared to the 18 

virgin laminate. By increasing the impact energy level (24 J and 32 J), fibre breakage was the 19 

dominant failure mode and the PES had a negligible effect on the impact performance. A comparable 20 

load bearing performance was observed with the hybrid composites and the GLARE laminate for the 21 

low energy levels (6 J, 12 J and 18 J). However, the GLARE laminate had a better performance 22 

during high energy impacts (24J and 32 J), due to the high ductility of the aluminium plates. 23 

 24 
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 26 

1. Introduction 27 

Poor impact performance is a major drawback for wider application of laminated composite 28 

materials. Barely visible impact damage (BVID) severely reduces composite materials’ mechanical 29 
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capacities, subsequently, it is necessary to consider the presence of this damage at the design stage 1 

[1]. Research has previously been carried out to characterize and evaluate the effective parameters in 2 

the design of impact resistant composites [2-4]. During low-velocity impact of laminated composites, 3 

three main damages mechanisms have been highlighted in the literature: intra-ply cracking, 4 

delamination and fibre failure [5]. Delamination is the most common failure mode in laminated 5 

composite materials [6]. 6 

There have been radical proposals to reduce delamination of composites to improve impact 7 

performance of composite laminates. These include: matrix toughening [7], optimization of stacking 8 

sequence [8], laminate stitching [9, 10], braided fabric [8], edge cap reinforcement [11], critical ply 9 

termination [12], and replacement of a stiff ply by a softer ply [2]. Use of these techniques to arrest 10 

delamination leads to weight and cost increase or reduces in-plane mechanical properties. A 11 

promising method, to mitigate these problems, is interleaving the ply interfaces with ductile materials 12 

to improve the toughness and reduce delamination. Interlayer toughening can be described as the 13 

addition of discrete layers of a secondary ductile material between the plies. The aforementioned 14 

ductile materials can be categorized into particles - such as micro and nanoparticles - and films - such 15 

as thermoplastic Nanofibres mats [13-26]. Studies have shown that fracture toughness improvement 16 

in the interleaved laminates improves the impact performance and enhances the residual strength of 17 

composite materials. The increased toughness in these composites was attributed to different factors, 18 

but mainly inhibiting fibre breakage and pull-out that typically accompanies composite crack growth 19 

during impact. However, in order to have an efficient reinforcement, careful consideration is required 20 

in the bulk material and reinforcement selection, manufacturing and the cost. 21 

High performance thermoplastics with high modulus and high glass transition temperatures have 22 

been reported to be efficient in improving the fracture toughness of laminated composites [27-34]; 23 

they can be cured and implemented during the manufacturing process of the laminated composites 24 

[35]. One of the constraints of these interleave materials is the requirement of a good chemical and 25 

physical compatibility between the interleaving thermoplastic and the bulk thermoset resin. An 26 

example of a typical thermoplastic interleaf employed to increase toughness is polyethersulfone 27 

(PES). Although PES was reported not to be the most effective additive in improving tensile and 28 

flexural properties [36], it still results in significant improvements in fracture toughness [37-39]. PES 29 
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forms long molecular chains when bonded with epoxy resin, resulting in increased toughness [39] by 1 

inhibiting crack propagation. In optimizing the composite to accommodate PES, Mimura et al. [40] 2 

studied the effect of different quantities of PES and moulding temperatures on thermal and toughness 3 

properties. It was found that with the addition of 10% PES, the glass transition temperature increased 4 

by 20 ᵒC and the toughness increased by 60% compared to an unmodified epoxy. Anthony et al. [41] 5 

studied the reinforcing effect of PES between the overlapping finger joint regions in pre-cut 6 

unidirectional carbon fibre prepreg composites subjected to tension. They reported that addition of 7 

the PES interleaf arrested the initial crack which formed at the pre-cut site and delayed catastrophic 8 

failure. The strain-to-failure of the PES interleaved samples tested in their publication, increased by 9 

85% compared to the unmodified samples. Subsequently, PES films have demonstrated to have a 10 

significant effect on improving fracture toughness of laminated composites [36]. Furthermore, PES 11 

is cost-effective and can be implemented easily during manufacturing process of the laminated 12 

composites. The onset and propagation of delamination are largely affected by fracture toughness 13 

values of composite laminates. A positive correlation is reported between the fracture toughness and 14 

impact performance and residual strength of composite materials [42]. Therefore, PES films are a 15 

promising addition for composite materials for improving delamination resistance and impact 16 

performance of laminated composite materials.  17 

Hybrid composites made of carbon or glass fibre reinforced polymer (GFRP or CFRP) provide 18 

synergetic properties, i.e. high strength and light weight of carbon fibre, with the low cost of glass 19 

fibre. However, the design of materials and structures becomes a key challenge on how to fully utilize 20 

the benefits of these fibres to make a structure strong enough to withstand different loads. Zhu et al. 21 

[43] investigated the impact behaviour of Ti/M40 fibre reinforced polymer composites. They reported 22 

that the fracture performance of hybrid composites was predominately affected by their poor bonding 23 

interface. Hung et al. [44] studied the mechanical response and failure patterns of carbon/glass fibre 24 

reinforced polymer hybrid composites subjected to low-velocity impact with different stacking 25 

sequences. It was found that the hybrid composite with surface carbon fibre layers minimised the risk 26 

of damage, in terms of the damage size and deflection.  27 

Glass reinforced aluminium (GLARE) laminates are another type of hybrid composite that is widely 28 

used for aircraft structures due to its excellent hybrid mechanical properties that are as a result from 29 
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mixing the superior fatigue and fracture characteristics of glass fibres, and the plastic behaviour and 1 

durability of aluminium metals [45-46]. The impact resistance of a GLARE laminate is related to the 2 

aluminium and glass/epoxy properties and is significantly higher than the impact resistance of 3 

monolithic aluminium [47]. Similar to other metal-composite interfaces, there is a galvanic corrosion 4 

issue, in addition weak strength of the aluminium and glass interfaces in a GLARE laminate causes 5 

failure modes such as delamination and debonding [48-56]. 6 

A carbon/glass fibre reinforced polymer composite would be a promising alternative for a GLARE 7 

laminate, as it would have a lower density, with better fatigue performance than conventional 8 

GLARE laminate. This study seeks to improve the low-velocity impact performance of carbon/glass 9 

hybrid composites by interleaving with PES membranes and to compare the behaviour with a 10 

conventional GLARE laminate. To the authors’ best knowledge, PES membranes have not been used 11 

to improve impact performance of laminated composite materials. In comparison to other typical 12 

interleaves, such as nanofiber electro-spinning, PES membranes, as a method of improving impact 13 

resistance of laminated composites, is a cheaper solution due to the low cost of the membranes [27]. 14 

This paper has two novel points: the first is the idea of using a PES membrane as impact performance 15 

improvement interleave, and the second is to provide a hybrid laminate with a comparable impact 16 

behaviour to a GLARE laminate. The interleaf-modified hybrid composites can be developed as 17 

modern materials for many engineering applications such as in the aerospace, automotive and civil 18 

industries, where high-performance, lightweight and low-cost components are required. 19 

 20 

2. Material and methods 21 

Figure 1 illustrates a schematic of the investigated composites and their stacking sequence. For the 22 

GLARE sample, a glass/epoxy laminate was sandwiched between two aluminium 2024-T3 sheets. 23 

Axiom 3180 glass fibre/epoxy, which is a cross-ply woven prepreg was laid up with stacking 24 

sequence of [0/±45/0/±45/0]. The layup was chosen to achieve quasi-isotropic mechanical properties 25 

that were found to be most effective in impact by Yaghoubi et al [48]. For the hybrid composite and 26 

modified hybrid composite plates, two plies of carbon Axiom 5180/epoxy (a cross ply woven 27 

prepreg) of [±45/0], were used on each side to replicate both the thickness and the properties of the 28 
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aluminium. This is to give a quasi-isotropic material closest to that of aluminium. For the modified 1 

hybrid composite, the PES film was laid between the two carbon and glass interfaces with the same 2 

stacking sequence of the hybrid composite. A cure of 90 minutes at 130 ᵒC was performed for the 3 

GLARE and hybrid composite plates and a cure of 60 minutes at 125 ᵒC was chosen for the modified 4 

hybrid composite plate. Table 1 shows thicknesses of the used materials. An attempt was also made 5 

to modify interface of the aluminium and glass in the GLARE laminate using the PES film. However, 6 

the PES prevented the glass and aluminium from achieving adhesion, despite efforts in trying 7 

different surface preparation techniques for the aluminium plate and different curing temperatures. 8 

 

Figure 1. Layup configuration for the investigated samples. Not to scale. 

 

Table 1: Utilised materials and their thickness. 9 

Material Thickness (mm) 

Aluminium 2024-T3 0.45 

Axiom 3180 Glass fibre/epoxy 0.25 

Axiom 5180 Carbon fibre/epoxy 0.25 

PES membrane 0.02 

 10 

The plates were made to be 300 x 300 mm², and then were cut in to 6 pieces of 150 x 100 mm² test 11 

samples, in accordance to ASTM D7136 standards [57], in which the laminates with zero angles are 12 

oriented along the short edge direction of the sample. Table 2 summarizes the nominal thicknesses 13 

and mass for the investigated samples. 14 

 15 
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Table 2. Mass and thickness of the investigated samples. 1 

Material  
Measured cured 

thickness (mm) 
Mass (g) (±0.01) Mass/m2 (kg/m2) 

Hybrid composite 2.28 56.64 3.776 

Modified hybrid composite 2.51 60.03 4.002 

GLARE 2.24 74.43 4.962 

 2 

3. Testing 3 

The test rig, clamp and the set up were designed based on the ASTM standard D7136 [57] and are 4 

illustrated in Figure 2. After centring and clamping the sample, the impactor was raised to the desired 5 

height, which was calculated using the gravitational potential energy equation (Energy = mgh, where 6 

m = Impactor’s mass, h = drop height and g = acceleration due to gravity). Five kinetic energy levels 7 

were chosen for a range of impacts, 6 J, 12 J, 18 J, 24 J and 32 J. The 150 x 100 mm² sample was 8 

secured over a 125 x 75 mm² hole with four rubber tipped toggle clamps, ensuring no lateral 9 

movement. Three samples of each configuration were tested at each energy level with good 10 

repeatability. A load cell was positioned underneath the clamped down samples, and consisted of 11 

strain gauges. The signal from the gauges was received at 10 kHz and processed through the 12 

Strainsmart software. The impactor had a hemispherical tip made from a 12.7 mm ball bearing and 13 

is shown in Figure 2-d, preventing sharp edges puncturing the sample and causing additional damage. 14 

The total mass of the impactor was 2.82 kg, found by taking ten measurements and averaging the 15 

results.  16 

The change in momentum or impulse was calculated by integrating the area under the force time 17 

curve. Generating a parabolic trend line to integrate led to a large integration and a less accurate area, 18 

so the method was not used, instead, the trapezium rule between each data point gave more accurate 19 

area, i.e. Equation 1.  20 

∫ 𝑓(𝓍) 𝑑𝓍
𝒳𝑛

𝒳0
=  

1

2
ℎ[(𝑦0 + 𝑦𝑛) + 2(𝑦1 + 𝑦2+. . . +𝑦𝑛−1)]                                      [1] 21 

Where y0 = f(x0) and y1 = f(x1) etc. 22 
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The impact velocity was calculated using the nominal kinetic energy level of each drop, i.e. Equation 1 

2. Calculating the change in momentum, the velocity after impact was calculated using Equation 3, 2 

where v is the velocity of the impactor, v’ is the velocity after impact and m is the impactor’s mass.  3 

𝑣 = √
2𝐾𝐸

𝑚
                                                                          [2] 4 

𝑣′ =
∆𝑝

𝑚
+ 𝑣                                                                        [3] 5 

Where v, KE, m and p refer to the impactor’s velocity, kinetic energy, mass, and potential energy, 6 

respectively.  7 

Finally, having both the initial and final velocities, the change in energy can be calculated using 8 

Equation 4. This determines the energy lost in the impact in which most is absorbed by the material. 9 

Other energy losses are assumed to be negligible.  10 

𝐸1 =
1

2
𝑚(𝑣2 − 𝑣′2

)                                                                   [4] 11 

Where E1, m and v refer to the energy lost, impactor’s mass and velocity, respectively. 12 
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Figure 2. a) Diagram of a low-velocity test rig, b) Low-velocity test rig (impact tower), d) Clamped sample 

and impactor, and c) ASTM standard clamp and test set up.   

 1 

4. Results and discussion 2 

Initially, each impact energy level is individually assessed to analyse how the contact force differs 3 

for each sample with complementary analysis of cross-sectional micrographic photographs for each 4 

impact. Following this, the total impact energy loss is plotted and impact damage area is assessed. 5 

The damage assessment of impacted specimens was evaluated by cross-sectional photography 6 

analysis, absorbed energy and visual inspection of the surface of the impacted and non-impacted side. 7 

The results are summarized as follows.  8 
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 1 

4.1 Load-time plots and cross-sectional images 2 

Figure 3 shows load-time curves for the impacted samples at different energy levels. Considering the 3 

shape of the curves for the force-time results, all the samples demonstrate a linear behaviour in the 4 

early stages of the loading process as an elastic response. This is followed by a drop in the contact 5 

force owing to the damage caused by the impact. As can be seen from Figure 3, there are some 6 

observable differences in the shape of the curves owing to the nature of the damage mechanisms for 7 

the investigated samples. There is a secondary peak for the laminates that were penetrated by the 8 

impactor for the high impact energy levels tests (24 J and 32 J). The three main quantitative areas for 9 

analysis on these graphs are the maximum contact force, the initial gradient and the total impact time. 10 

These give key evidence to the materials properties and how the materials behave during impact. As 11 

can be seen in Table 2, the GLARE laminate is 31% and 24% heavier than the hybrid composite and 12 

the modified hybrid composite, respectively. However, as illustrated in figure 3, all the investigated 13 

samples have similar gradients in the force-time plots. The modified hybrid composite and the hybrid 14 

composite are slightly steeper initially which is to be expected as the carbon layers add stiffness to 15 

the hybrid composites. The investigated samples have identical in-plane dimensions, but the 16 

thickness of the modified C/G/C Hybrid laminate (2.51 mm) is 10% and 12% higher than that of the 17 

C/G/C Hybrid laminate (2.28 mm) and the GLARE (2.24 mm), respectively. Therefore, in order to 18 

have a fair comparison between the impact behaviours, the results were normalized by a thickness 19 

scaling rule. Previous publications [58-59] on scaling the low-velocity impact behaviour of 20 

composites, with the same in-plane dimensions and different thicknesses, suggest that the load should 21 

be scaled as 𝑅1.5 with the resulting plate time (deflection) remaining the same, where 𝑅 is the 22 

thickness ratio.  23 

Table 3 reports values of the maximum contact force and total impact time for the investigated 24 

laminates. The values with an asterisks are the scaled load values, where the thicknesses are scaled 25 

to the GLARE thickness (2.28 mm). Comparing the scaled results, the modified hybrid and hybrid 26 

composites have higher contact force than the GLARE composite for the low-energy levels (i.e. 6 J 27 

and 12 J). However, by increasing the energy level (i.e. to 18J, 24J and 32 J), the GLARE composite 28 
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had a higher contact force. Higher contact force means higher load bearing capabilities and high 1 

stiffness. 2 

 

Figure 3. Time development of force for the samples impacted at 6J, 12 J, 18J, 24 J and 36 J. 

 3 

 4 
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Table 3. Values of maximum contact force and the total impact time for the impacted samples. 1 

Impact energy level (J): 6 12 18 24 32 

Maximum 

contact 

force (kN) 

Hybrid 

composite 
3.00 2.92* 4.37 4.25* 4.08 3.97* 3.77 4.07* 3.31 3.22* 

Modified hybrid 

composite 
3.42 2.88* 4.44 3.75* 4.60 3.88* 3.90  3.29* 3.27 2.75* 

GLARE 2.55 3.75 4.34 4.52 4.38 

Total 

impact 

time (ms) 

Hybrid 

composite 
6.5 6.2 6.5 9.5 6.2 

Modified hybrid 

composite 
6.8 6.3 6.9 9.9 6.3 

GLARE 6.9 6.3 6.1 6.4 8.6 

* The multiplied quantity of the hybrid and modified hybrid composites with scaling factor. 2 

 3 

4.2 Damage analysis  4 

Figures 4-6 show the cross-sectional side view (Fig. 4.), the bottom side view of the non-impacted 5 

side (Fig. 5.) and the front side view of the impacted side (Fig. 6) for the different impact energies. 6 

For the 6J energy level, bending can be seen on the GLARE sample but no delamination between the 7 

aluminium and the glass layers can be observed. Only minor fibre breaks are visible on the back side 8 

of the hybrid composite, while no visible damage occurred to the modified hybrid composite. BVID 9 

is likely to have occurred in all these three samples, however, the main aim of the cross-sectional 10 

photographs is to see visible damage and delamination between the dissimilar interfaces, i.e. the 11 

carbon/glass interface and the aluminium/glass interface. At 12 J, damage of the modified hybrid 12 

composite and hybrid composite appear very similar, where no apparent delamination has occurred, 13 

only fibre fracture on the non-impacted side. The GLARE sample has some delamination between 14 

the upper aluminium plate and the glass/epoxy laminates, with visible yielding of the aluminium 15 

observable on the impacted and non-impacted faces at the impact point. 16 

At 18J, larger scale damage occurred, compared with 6 J and 12 J, with fibres failing throughout the 17 

thickness of the modified hybrid composite and hybrid composite. The GLARE composite 18 

experiences significant delamination between the aluminium and the glass in the lower side, but the 19 

aluminium layers underwent yielding and denting without rupture. The higher drop in the contact 20 

force of the hybrid composites, compared with the GLARE composite (see Figure 3), is attributed to 21 
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the observable damage mechanisms with the impact energy being absorbed by these damage 1 

mechanisms for the hybrid composites. The damage in the hybrid composite is greater than that in 2 

the modified hybrid composite with clear fibre break and disruption on the back face.  3 

At 24 J, both the modified hybrid composite and hybrid composite curves have a second peak in their 4 

force-time curves (see Figure 3). This is due to the penetration of the impactor in the composites that 5 

causes initial impact breaks through the layers. There is a second increase in the contact force as the 6 

lower side fibres stop further penetration of the impactor. Even if there is significant delamination in 7 

the GLARE laminate, the contact force in this laminate is still higher than the hybrid composites 8 

owing the aluminium that has not completely ruptured. However, on the non-impacted side, the 9 

aluminium cracked with a small petaling effect in addition to delamination propagating further from 10 

the impact point than during the previous impact. The damage for the hybrid composite samples was 11 

more localized than in the GLARE sample.  12 

At 32 J, the impactor fully penetrated both the modified hybrid composite and hybrid composite, 13 

becoming impregnated within the sample after the impact. In Figure 3, the curves for the modified 14 

hybrid composite and hybrid composite show little initial resistance to the impactor with less than 15 

3.5 kN contact force breaking through the sample. Following this, both curves spike sharply due to 16 

the widening of the impactor after the ball bearing, preventing it from passing through the sample 17 

completely. The high contact force indicates the high amount of residual energy in the impactor even 18 

after it has penetrated the sample. The GLARE sample was also penetrated, but with a higher contact 19 

force and lower subsequent spike. The modified hybrid composite and hybrid composite fail 20 

catastrophically with fibre failure throughout the impact and some delamination around the impact 21 

area. The GLARE however failed in a different way; it cracked with petaling and some fibre failure, 22 

but there were substantial amounts of delamination between the aluminium and glass fibre interfaces. 23 

The time taken during the impact is also much longer for GLARE, showing more ductility of the 24 

aluminium layers. 25 
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Figure 4. Cross-sectional image of the damaged specimens for different impact energy levels. 

 1 
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Figure 5. Bottom surface (non-impacted side) view of the investigated samples subjected to different energy 

levels. 

 1 

 

Figure 6. Front surface (impacted side) view of the investigated samples subjected to different energy levels. 
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 1 

4.3 Damage size and absorbed energy 2 

The damage size was assessed through visual inspection of the surface damage illustrated in 3 

Figures 5 and 6. To measure the areas, a circle or square was drawn around the damaged area and the 4 

diameter or diagonal length measured. To aid comparison, the size of the observable damaged area 5 

(measured from both impacted and non-impacted sides) for each impact energy level are presented 6 

graphically in Figures 7-8 and are summarized in Table 4. Error lines were applied to the graphs to 7 

allow for inaccuracies in the measuring of the areas and irregularities in the shapes i.e. not being a 8 

perfect circle or square. Comparing the results in Figures 7 and 8, the damage on the impact side was 9 

relatively small and circular, compared with the non-impacted side, where shear band failure and 10 

fibre failure resulted in the rhombus pattern. The higher damaged area on the non-impacted side is 11 

due to the combination of tension and shear stresses that generated shear dominated damage at the 12 

interfaces (delamination) and tension dominated damage (fibre breakage). This observation was 13 

similar to previous studies [44, 60], where larger damage was observed in the lowerhalf compared to 14 

the upper half, for the polymer fibre composite laminates. 15 

Referring to the four non-penetrative impacts of 6, 12, 18 and 24 J, there are clear patterns in the 16 

impacts with the area of damage rising linearly with impact energy. From Table 4, the modified 17 

hybrid composite consistently sustained less damage than the hybrid composite in the non-impacted 18 

side, with the area being reduced by 100, 65, 35, 19 and 0% for impact energy levels of 6, 12, 18, 24 19 

and 32 J, respectively. In the lowest two impact energies, the damage sustained by the GLARE 20 

sample remained almost the same owing to the majority of the damage resulting from the protrusion 21 

of the aluminium. The damage then rises linearly, but at a lower rate than both the hybrid samples 22 

demonstrating improved impact performance of the GLARE. The penetration during the 32 J impact 23 

meant the effect of the PES became negligible leading to the modified hybrid and the hybrid samples 24 

sustaining the same area of damage, while the GLARE sample’s damage still rose linearly compared 25 

to the previous impacts. 26 

Comparing the induced damage in the impacted side, the hybrid sample had more damage in all the 27 

energy levels except 12 J. The improvements made by PES are clear in reducing the area of damage 28 

by 47, 28, 6 and 5% for 6, 18, 24 and 32 J, respectively. 29 
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 1 

 

Figure 7. Comparison of the bottom surface damaged area for the investigated samples at different energy 

levels. 

 2 

 

Figure 8. Comparison of the front surface damaged area for the investigated samples at different energy levels. 

 3 
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The impact energy loss was calculated using Equation 4. The obtained results are illustrated in Figure 1 

9 and are summarized in Table 4. A direct relationship exists between the damage size and energy 2 

loss. As can be seen from the results, for all the energy levels except 24 J (i.e. 6, 12, 18 and 32 J), the 3 

energy loss for the investigated samples is similar, even if there is a minor variation. With reference 4 

to Figures 4, 5 and 6, at 24 J the GLARE had considerably more energy loss than the modified hybrid 5 

composite and hybrid composite - the GLARE sample sustained much less catastrophic damage in 6 

this energy level while withstanding a higher contact force. The non-impacted side created a high 7 

energy absorbing failure mode. 8 

 

Figure 9. Comparison of the energy loss at different energy levels. 

 9 

Table 4. Calculated damaged area and energy loss for the investigated samples at different energy levels. 10 

Impact energy level (J): 6 12 18 24 32 

Energy loss (J) 

Hybrid composite 4.20 9.98 16.74 18.27 31.67 

Modified hybrid composite 4.12 10.06 15.50 18.74 31.67 

GLARE 4.20 9.98 16.35 22.90 31.85 

Damaged area 

(mm2), impacted 

side. 

Hybrid composite 23.76 28.27 78.54 165.13 213.82 

Modified hybrid composite 12.57 38.48 56.74 122.72 201.06 

GLARE 15.9 28.27 50.26 122.72 213.82 
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Damaged area 

(mm2), Non-

impacted side. 

Hybrid composite 63.62 201.10 330.06 471.43 480.50 

Modified hybrid composite 0.00 70.88 213.82 380.13 480.50 

GLARE 63.62 70.88 132.73 226.98 288.00 

 1 

5. Conclusion  2 

This paper studied the effect of PES interleaving as a novel toughening mechanism for carbon/glass 3 

hybrid composites when subjected to low-velocity impact. The modified hybrid composites were 4 

compared with the unmodified hybrid composite and the GLARE laminate with regards to the load 5 

bearing capacity and the associated damage mechanisms. The experimental results showed that for 6 

low impact energy levels (6 J, 12 J and 18 J), the addition of the PES membrane reduced the damaged 7 

area compared to the unmodified hybrid composite by an average of 67%. However, by increasing 8 

the impact energy level (24 J and 32 J), the PES membrane did not have a significant effect on the 9 

impact performance. This is a result of observable localized fibre breakage and penetration as 10 

dominant damage mechanisms. For the low energy levels (6 J, 12 J and 18 J), a comparable load 11 

bearing capacity performance was observed for the hybrid composites and the GLARE laminate. The 12 

GLARE laminate had a better performance in the high impact energy levels (24 J and 32 J) owing to 13 

ductile and gradual failure of the aluminium plates. It can be concluded that PES interleaving is an 14 

efficient way to improve low-velocity impact resistant of hybrid laminated composites by improving 15 

delamination resistance between dissimilar interfaces. 16 

 17 
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