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Abstract

Let G be a random graph with n labelled vertices in which the edges are
chosen independently with a fixed probability p, 0 < p < 1. In this note we
prove that, with the probability tending to 1 as n → ∞, the binding number
of a random graph G satisfies:

(i) b(G) = (n− 1)/(n− δ), where δ is the minimal degree of G;
(ii) 1/q−ε < b(G) < 1/q, where ε is any fixed positive number and q = 1−p;
(iii) b(G) is realized on a unique set X = V (G)\N(x), where deg(x) =

δ(G), and the induced subgraph 〈X〉 contains exactly one isolated vertex x.
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All graphs will be finite and undirected, without loops or multiple edges. If G is
a graph, V (G) denotes the set of vertices in G, and n =| V (G) |. We shall denote
the neighborhood of a vertex x by N(x). More generally, N(X) =

⋃
x∈X N(x) for

X ⊆ V (G). The minimal degree of vertices and the vertex connectivity of G are
denoted by δ = δ(G) and κ(G), respectively. For a set X of vertices, 〈X〉 denotes the
subgraph of G induced by X.

Woodall [5] defined the binding number b(G) of a graph G as follows:

b(G) = min
X∈F

| N(X) |
| X |

,

where F = {X : ∅ 6= X ⊆ V (G), N(X) 6= V (G)}. We say that b(G) is realized on a
set X if X ∈ F and b(G) =| N(X) | / | X |, and the set X is called a realizing set
for b(G).

Proposition 1 For any graph G,

δ

n− δ
≤ b(G) ≤ n− 1

n− δ
.
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Proof. The upper bound is proved by Woodall in [5]. Let us prove the lower bound.
Let X ∈ F and | N(X) | / | X |= b(G), i.e., X is a realizing set. We have
| N(X) |≥ δ, since the set X is not empty. Suppose that | X |≥ n − δ + 1. Then
any vertex of G is adjacent to some vertex of X, i.e. N(X) = V (G), a contradiction.
Therefore | X |≤ n−δ and b(G) =| N(X) | / | X |≥ δ/(n−δ). The proof is complete.

Note that the difference between the upper and lower bounds on b(G) in Propo-
sition 1 is less than 1. In the sequel we shall see that the binding number of almost
every graph is equal to the upper bound in Proposition 1.

Let 0 < p < 1 be fixed and put q = 1 − p. Denote by G(n,P(edge) = p) the
discrete probability space consisting of all graphs with n fixed and labelled vertices,

in which the probability of each graph with M edges is pMqN−M , where N =
(

n
2

)
.

Equivalently, the edges of a labelled random graph are chosen independently and
with the same probability p. We say that a random graph G satisfies a property Q if

P(G has Q) → 1 as n →∞.

We shall need the following results.

Theorem 1 (Bollobás [1]) A random graph G satisfies κ(G) = δ(G).

Theorem 2 (Bollobás [1]) A random graph G satisfies

| δ(G)− pn + (2pqn log n)1/2 −
( pqn

8 log n

)1/2

log log n | ≤ C(n)
( n

log n

)1/2

,

where C(n) →∞ arbitrarily slowly.

Theorem 3 (Erdös and Wilson [3]) A random graph has a unique vertex of min-
imal degree.

Now we can state the main result of the paper.

Theorem 4 The binding number of a random graph G satisfies

b(G) =
n− 1

n− δ
.

Proof. Taking into account Proposition 1, it is sufficient to prove that

| N(X) |
| X |

≥ n− 1

n− δ

for any set X ∈ F . Let Y = N(X)\X and consider three cases.
(i) The induced subgraph 〈X〉 does not contain an isolated vertex. The set

V (G)\N(X) is not empty, since X ∈ F . Hence the set Y is a cutset of the graph G.
By Theorem 1, κ(G) = δ(G). Therefore | Y |≥ δ and | X |< n− δ. We have

| N(X) |
| X |

=
| Y | + | X |

| X |
=
| Y |
| X |

+ 1 ≥ n

n− δ
>

n− 1

n− δ
.
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(ii) The induced subgraph 〈X〉 contains exactly one isolated vertex. Obviously
| Y |≥ δ and | X |≤ n− δ. Then, taking into account that δ(G) > 0, we obtain

| N(X) |
| X |

=
| Y | + | X | −1

| X |
=
| Y | −1

| X |
+ 1 ≥ n− 1

n− δ
.

(iii) The induced subgraph 〈X〉 contains more than one isolated vertex. If x and
y are different vertices of G, then deg(x, y) denotes the pair degree of the vertices x
and y, i.e., the cardinality | N({x, y})\{x, y} |. Define µ = µ(G) = min deg(x, y),
where the minimum is taken over all pairs of different vertices x, y ∈ V (G). Now
introduce a random variable ξ on G(n,P(edge) = p). The random variable ξ is equal
to the number of pairs of different vertices in G such that

deg(x, y) ≤ (1− q2 − ε)(n− 2),

where ε is fixed and 0 < ε < 1 − q2. We need to estimate the expectation Eξ. Let
the vertices x and y be fixed. Then

Π = P(deg(x, y) ≤ k) =
∑
t≤k

(
n− 2

t

)
(1− q2)t(q2)n−2−t,

where k = (n− 2)(1− q2 − ε). We now use the Chernoff formula [2]:

∑
t≤k

(
m
t

)
P tQm−t ≤ exp

(
k log

mP

k
+ (m− k) log

mQ

m− k

)

whenever k ≤ mP , P > 0, Q > 0 and P +Q = 1. Taking m = n−2, k = m(1−q2−ε),
P = 1− q2 and Q = q2, and noting that log x < x− 1 if x 6= 1, we find that

Π ≤ exp{(n− 2)Θ}

where

Θ = (1− q2 − ε) log
1− q2

1− q2 − ε
+ (q2 + ε) log

q2

q2 + ε

< (1− q2)− (1− q2 − ε) + q2 − (q2 + ε) = 0.

Thus Π < e−Cn, where C > 0 is a constant. At last, we get

Eξ ≤
(

n
2

)
e−Cn = o(1).

If ξ is a non-negative random variable with expectation Eξ > 0 and r > 0, then
from the Markov inequality it follows that

P(ξ ≥ rEξ) ≤ 1/r.

Taking r = 1/Eξ, we have P(ξ ≥ 1) ≤ Eξ = o(1), i.e. P(ξ = 0) = 1− o(1). Thus

µ > (1− q2 − ε)(n− 2).
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Denote by m the number of isolated vertices in the graph 〈X〉. Clearly m ≤ α,
where α = α(G) is the independence number of G. It is well-known [4] that for a
random graph G, α(G) = o(n), so that µ > α. Furthermore, |Y | ≥ µ and |X| ≤ n−µ,
since m ≥ 2, and so |Y | −m ≥ µ− α > 0. We obtain

| N(X) |
| X |

=
| Y | + | X | −m

| X |
=
| Y | −m

| X |
+ 1 ≥ µ− α

n− µ
+ 1 =

n− α

n− µ
>

n− o(n)

n− (1− q2 − ε)(n− 2)
=

1

ε + q2
(1− o(1)).

On the other hand, by Theorem 2,

n− 1

n− δ
=

n− 1

n− pn(1− o(1))
=

1

q
(1− o(1)).

Now, if we take ε < q − q2, then we have

| N(X) |
| X |

>
n− 1

n− δ
.

This completes the proof of Theorem 4.

Using Theorems 2-4, the following corollaries are obtained.

Corollary 1 If C(n) →∞ arbitrarily slowly, then the binding number of a random
graph G satisfies

n− 1

K + C(n)(n/ log n)1/2
≤ b(G) ≤ n− 1

K − C(n)(n/ log n)1/2
,

where

K = qn + (2pqn log n)1/2 −
( pqn

8 log n

)1/2

log log n.

The proof follows immediately from Theorems 2 and 4.

It may be pointed out that the bounds in Corollary 1 are essentially best possible,
since the result of Theorem 2 is best possible (see [1]).

Corollary 2 If ε > 0 is fixed, then the binding number of a random graph G satisfies

1/q − ε < b(G) < 1/q.

The proof follows immediately from Corollary 1.

Corollary 3 The binding number of a random graph G is realized on a unique set
X = V (G)\N(x), where deg(x) = δ(G), and the graph 〈X〉 contains exactly one
isolated vertex x.

Proof. One may see from the proof of Theorem 4 that the equality

| N(X) | / | X |= (n− 1)/(n− δ)

for a random graph G is possible only if the graph 〈X〉 contains exactly one isolated
vertex x and | X |= n− δ. Thus deg(x) = δ(G) and X = V (G)\N(x). By Theorem
3, the set X is unique.
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