The Binding Number of a Random Graph

Vadim E. Zverovich*

Department II of Mathematics
RWTH Aachen, Aachen 52056, Germany

Abstract

Let G be a random graph with n labelled vertices in which the edges are
chosen independently with a fixed probability p, 0 < p < 1. In this note we
prove that, with the probability tending to 1 as n — oo, the binding number
of a random graph G satisfies:

(i) B(G) = (n—1)/(n — J), where 0 is the minimal degree of G;

(ii) 1/g—e < b(G) < 1/q, where € is any fixed positive number and g = 1—pj;

(iii) b(G) is realized on a unique set X = V(G)\N(z), where deg(z) =
0(G), and the induced subgraph (X) contains exactly one isolated vertex x.
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All graphs will be finite and undirected, without loops or multiple edges. If G is
a graph, V(G) denotes the set of vertices in G, and n =| V(G) |. We shall denote
the neighborhood of a vertex x by N(x). More generally, N(X) = U,cy N(z) for
X C V(G). The minimal degree of vertices and the vertex connectivity of G are
denoted by 6 = §(G) and k(G), respectively. For a set X of vertices, (X) denotes the
subgraph of G induced by X.

Woodall [5] defined the binding number b(G) of a graph G as follows:

where F = {X : ) # X C V(G), N(X) # V(G)}. We say that b(G) is realized on a
set X if X € Fand b(G) =| N(X) | /| X |, and the set X is called a realizing set
for b(G).

Proposition 1 For any graph G,

o <b(G)§n_1

n—a n—ao
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Proof. The upper bound is proved by Woodall in [5]. Let us prove the lower bound.
Let X € Fand | N(X) | /| X |= b(G), i.e., X is a realizing set. We have
| N(X) |> ¢, since the set X is not empty. Suppose that | X |> n — 0 + 1. Then
any vertex of G is adjacent to some vertex of X, i.e. N(X) = V(G), a contradiction.
Therefore | X [<n—§ and b(G) =| N(X) | /| X |> d/(n—4¢). The proof is complete.
]

Note that the difference between the upper and lower bounds on b(G) in Propo-
sition 1 is less than 1. In the sequel we shall see that the binding number of almost
every graph is equal to the upper bound in Proposition 1.

Let 0 < p < 1 be fixed and put ¢ = 1 — p. Denote by G(n,P(edge) = p) the
discrete probability space consisting of all graphs with n fixed and labelled vertices,

in which the probability of each graph with M edges is p™¢¥ =™, where N = (g)

Equivalently, the edges of a labelled random graph are chosen independently and
with the same probability p. We say that a random graph G satisfies a property Q) if

P(G has Q) — 1 as n — oc.
We shall need the following results.
Theorem 1 (Bollobas [1]) A random graph G satisfies kK(G) = §(G).
Theorem 2 (Bollobas [1]) A random graph G satisfies

pgn 1/2

_ 2 n 1/2
| 6(G) — pn+ (2pgnlogn)'* — ( logn) :
where C'(n) — oo arbitrarily slowly.

Theorem 3 (Erdés and Wilson [3]) A random graph has a unique vertex of min-
1mal degree.

Now we can state the main result of the paper.

Theorem 4 The binding number of a random graph G satisfies

n—1
b(G) = .
(G)="—5
Proof. Taking into account Proposition 1, it is sufficient to prove that
[NX)| _n-1
| X|] “n-=9¢

for any set X € F. Let Y = N(X)\X and consider three cases.

(i) The induced subgraph (X) does not contain an isolated vertex. The set
V(G)\NV(X) is not empty, since X € F. Hence the set Y is a cutset of the graph G.
By Theorem 1, x(G) = 0(G). Therefore | Y |> ¢ and | X |<n —J. We have

[ N _[Y [+ [X] Y] n__n-1

= = 1> > .
X X | x| T s =g
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(ii) The induced subgraph (X) contains exactly one isolated vertex. Obviously
| Y |>dand | X |<n—¢. Then, taking into account that 6(G) > 0, we obtain

[NX) | _|Y+[ X1 _|Y]-1, n-1
X X X =

(iii) The induced subgraph (X) contains more than one isolated vertex. If x and
y are different vertices of G, then deg(z,y) denotes the pair degree of the vertices x
and y, i.e., the cardinality | N({z,y})\{z,y} |. Define p = p(G) = mindeg(z,y),
where the minimum is taken over all pairs of different vertices z,y € V(G). Now
introduce a random variable £ on G(n, P(edge) = p). The random variable £ is equal
to the number of pairs of different vertices in G such that

deg(z,y) < (1 —¢* —€)(n—2),

where € is fixed and 0 < € < 1 — ¢?. We need to estimate the expectation E¢. Let
the vertices x and y be fixed. Then

11 = P(deg(e,y) <) =30 (") 7)) =)

t<k

where k = (n — 2)(1 — ¢*> — €). We now use the Chernoff formula [2]:

5 ()0t < o (ke 5+ 105 2%

< m—k

whenever k <mP, P >0,Q > 0and P+Q = 1. Takingm =n—2, k = m(1—q¢*>—e),
P =1—¢% and Q = ¢°, and noting that logz < v — 1 if  # 1, we find that

II <exp{(n—2)0}

where
O=(1-¢—el 'y +(¢* +e)l i
=(1l—qg° —¢€)log ——— €)lo
q S S Z e

<(1-A)-0-¢ - +¢—(¢*+¢) =0.
Thus II < e~ ¢, where C' > 0 is a constant. At last, we get

E¢ < (g) e = o(1).

If ¢ is a non-negative random variable with expectation E{ > 0 and r > 0, then
from the Markov inequality it follows that

P >rES) <1/r.
Taking r = 1/EE, we have P(§ > 1) < E{ = o(1), i.e. P(€ =0) =1 —0(1). Thus
p>(1—q¢°—e)(n—2).
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Denote by m the number of isolated vertices in the graph (X). Clearly m < a,
where a@ = «(G) is the independence number of G. It is well-known [4] that for a
random graph G, a(G) = o(n), so that u > a. Furthermore, |Y| > pand | X| < n—p,
since m > 2, and so |Y| —m >y — a > 0. We obtain

INCO| Y 41X =m |V [=m -
| X | | X | | X | n—p
n—a n —o(n) 1
> = 1—o0(1)).
n—pu n—(1—-q¢*—¢€(n—2) e—i—q2( o(b))
On the other hand, by Theorem 2,
n—1 n—1 1
- = ~(1-o0(1)).
n—0 n—pn(l—o(l)) q( o(1))
Now, if we take € < ¢ — ¢2, then we have
N |-t
| X | n—2o

This completes the proof of Theorem 4. n

Using Theorems 2-4, the following corollaries are obtained.

Corollary 1 If C(n) — oo arbitrarily slowly, then the binding number of a random
graph G satisfies

n—1 <(G) < n—1
K+ C(n)(n/logn)'/? = ~ K = C(n)(n/logn)'?’
where 12
K = qn + (2pgnlogn)'/? — (8zl?ggnn) log logn.

The proof follows immediately from Theorems 2 and 4.

It may be pointed out that the bounds in Corollary 1 are essentially best possible,
since the result of Theorem 2 is best possible (see [1]).

Corollary 2 Ife > 0 is fized, then the binding number of a random graph G satisfies
1/g—e<b(G) < 1/q.
The proof follows immediately from Corollary 1. u

Corollary 3 The binding number of a random graph G is realized on a unique set
X = V(G)\N(z), where deg(z) = §(G), and the graph (X) contains exactly one
1solated verter x.

Proof. One may see from the proof of Theorem 4 that the equality
| N(X) [/ X |=(n—=1)/(n—0)

for a random graph G is possible only if the graph (X) contains exactly one isolated
vertex z and | X |=n —J. Thus deg(z) = §(G) and X = V(G)\N(z). By Theorem
3, the set X is unique.
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