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Abstract

Let v(G) and ir(G) denote the domination number and the irredundance number
of a graph G, respectively. Allan and Laskar [1] and Bollobds and Cockayne [2] proved
independently that v(G) < 2ir(G) for any graph G. For a tree T, Damaschke [4]
obtained the sharper estimation 2v(7) < 3ir(T). Extending Damaschke’s result,
Volkmann [11] proved that 2v(G) < 3ir(G) for any block graph G and for any
graph G with cyclomatic number ©(G) < 2. Volkmann [11] also conjectured that
5v(G) < 8ir(G) for any cactus graph. In this article we show that if G is a block-
cactus graph having 7(G) induced cycles of length 2 (mod4), then v(G)(57(G)+4) <
ir(G)(8m(G) + 6). This result implies the inequality 5y(G) < 8ir(G) for a block-
cactus graph G, thus proving the above conjecture. J. Graph Theory 29 (1998), 139-149
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1 Introduction and Preliminary Results

All graphs will be finite and undirected, without loops and multiple edges. If G is a graph,
V(G) denotes the set of vertices in G. The edge set of G is denoted by E(G). Let N(x)
denote the neighborhood of a vertex x, and let (X) denote the subgraph of G induced by
X CV(G). Also let N(X) = UzexN(x) and N[X] = N(X)U X. A connected graph with
no cut vertex is called a block. A block of a graph G is a subgraph of G which is itself a
block and which is maximal with respect to that property. A block H of G is called an end
block of G if H has at most one cut vertex of G. A graph G is a block graph if every block
of G is complete, and G is a block-cactus graph if every block of G is either a complete
graph or a cycle. Block-cactus graphs generalize the known class of cactus graphs. Recall
that G is a cactus graph if each edge of G belongs to at most one cycle. If k(G) denotes
the number of components of G, then u(G) = |E(G)| — |V(G)| + k(G) is the cyclomatic
number of G.

A set X is called a dominating set if N[X] = V(G). The domination number v(G) is
the cardinality of a minimum dominating set of G. A set X C V(G) is irredundant if for
every vertex x € X,

Pg(z,X) = P(z,X) = N[z] — N[ X — {z}] #0.
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The minimum cardinality taken over all maximal irredundant sets of G is the irredundance
number ir(G).
It is well known [3] that for any graph G,

ir(G) <~(GQ).

Allan and Laskar [1] and Bollobés and Cockayne [2] proved independently that v(G) <
2ir(G) for any graph G. For a tree T, Damaschke [4] obtained the sharper estimation
29(T) < 3ir(T). Extending Damaschke’s result, Volkmann [11] proved that 2v(G) <
3ir(G) for any block graph G and for any graph G with cyclomatic number p(G) < 2.
Volkmann [11] also posed the following conjecture.

Conjecture 1 (Volkmann [11]) If G is a cactus graph, then
(G) < 8ir(G).

In this article, we find the strict ratio of the irredundance and domination numbers for
block-cactus graphs having m(G) induced cycles of length 2 (mod 4). This result implies
the above conjecture. The ratio of related parameters was studied in [5, 7]. Interesting
results for block-cactus graphs can be found in [6, 8, 9, 10].

Proposition 1 (Bollobas and Cockayne [2]) Let I be a maximal irredundant set of the
graph G. Suppose that the vertex u is not dominated by I. Then for some x € I,

a) P(x,I) C N(u), and

b) for xy,xe € P(x,I) such that xy # xa, either x1xo € E(G) or there exist yi,ys €
I —{x} such that x is adjacent to each vertex of P(yy,I) and x4 is adjacent to each
vertex of P(ys, ).

Let G be a block-cactus graph, F' C V(G) and W = V(G) — F. A cycle C in G is
called alternating if the sets F' and W do not contain edges of C'. An alternating path is
defined analogously.

Lemma 1 Let G be a block-cactus graph and F C V(G) such that |N(w) N F| > 2 for
alweW =V(G)— F. If G does not contain an alternating cycle Cyio as an induced
subgraph, then there exists a subset F' C F such that W C N(F") and 2|F'| < |F]|.

Proof. Without loss of generality we may assume that G is a connected graph and W = ().
We prove the lemma by induction on the number of vertices in G. The lemma is obvious
if G contains few vertices. Suppose that G consists of one block. If G is a complete graph,

then the lemma is obvious. Suppose that GG is a cycle and consider a maximal alternating
path P between F' and W in G. Let (P) be a path. We have

P = fiwifowy... fiqwe1fy, t>2,
where f; € F, 1 <i<t, and w; € W, 1<i<t—1. The set
D:{f27f4af67“'}
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dominates the set P N W and |D| < ¢/2. The maximal alternating paths in the cycle G
are vertex disjoint and hence it is easy to construct the set F’. Now suppose that (P) is a
cycle. We have (P) = G and there are two possibilities. If

P = fiw fowy ... ficqwiife, t2>2,

where f1f; € E(G), fy € F, 1 <i <t and w; € W, 1 <i<t—1, then the set

F'={fs, fu, f6, -}

satisfies the necessary properties. If
P = fiwi fows ... frwy, t2>2,

where fiw; € E(G), f; € F and w; € W, 1 <i <t, then (P) is an alternating cycle. Since
2t = |P| # 4k + 2, it follows that ¢ is even and the set

Fr={fi, fss s fr}

gives the desired result.

Suppose now that the statement of Lemma 1 holds for any block-cactus graph having
fewer vertices than (G, and let G consist of at least two blocks. Then there exists an end
block B of G with only one cut vertex v of G.

Case 1. The block B is a complete graph.

Subcase 1.1. The cut vertex v is an element of F. Assume that V(B) C F. If
we consider the block-cactus graph G' = G — (V(B) — {v}), then |V(G)| < |[V(G)], and
|Nev(w) N F| > 2 for all w € V(G') — F. Hence, by the induction hypothesis, the desired
result easily follows.

Let V(B)NW # (. Now G' = G — (V(B) U (Ng(v) N W)) # () is a block-cactus graph
such that |Ng (w) N F| > 2 for all w € V(G') — F. Again, by the induction hypothesis we
obtain the statement of the lemma.

Subcase 1.2. The cut vertex v is an element of W. If |[FFNV(B)| > 2, then the
block-cactus graph G = G — V(B) together with the induction hypothesis (as well as
using v) yields the desired result.

If [FNV(B)| <1, then |[FNV(B)|=1solet FNV(B) = {b}. Since |[N(v) N F| > 2,
it follows that there exists a further neighbor a € F of v in G — V(B). Now we define
G'=G—(V(B)U{a} U (Ng(a)NW)). If G" =0, then F’ = {a} fulfills the statement
of Lemma 1. Finally, if G’ # (), then by the induction hypothesis there exists a set
F* C F —{a,b} with WNV(G') C Ne/(F*) and 2|F*| < |F| — 2. Consequently, for
F' = F*U{a} C F, we deduce that W C Ng(F”) and 2|F'| < |F.

Case 2. The block B is a cycle.

Subcase 2.1. Suppose that v € F. If Ng(v) N W = (), then the graphs B — {v} and
G—(V(B)—{v}) together with the induction hypothesis yield the desired result. Therefore
we can assume that there is wy € Ng(v) N W. Let P’ be the maximal alternating path in
the graph B — {v} such that wy; € P’. Consider the path P = P’ U {v}. Suppose firstly
that P has the following form:

P:lefl---wtfta tZL
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where f; € F and w; € W, 1 <14 <t. The graph (P) is either a path or a cycle depending
on the existence of the edge v f;. If ¢ is even, then the set { f1, f3, ..., fi_1} dominates P"NW
and the graph G — P’ together with the induction hypothesis gives the desired result. If ¢
is odd, then the set {v, fo, f4, ..., fr—1} dominates the set (PUN(v))NW. By the induction
hypothesis, the statement of Lemma 1 holds for the graph G — P — (N(v) N W), and the
result easily follows.

Now suppose that

P=vwi fi.. wfrwer, t2>1,
where f; € F; 1 <i<t,and w; € W, 1<i<t+1. We have vw;; € E(G), i.e., (P) is
an alternating cycle and (P) = B. Now 2t + 2 = |P| # 4k + 2 and hence ¢ is odd. The set
{v, fa, fa, ..., fi—1} dominates (PUN(v)) "W and the graph G — P — (N (v) "N W) together
with the induction hypothesis gives the desired result.

Subcase 2.2. Suppose that v € W. The set V(B) N W does not contain edges of G
and therefore |N(v) NV(B) N F| > 2. The graphs B and G — B satisfy the conditions of
Lemma 1. By the induction hypothesis, there are corresponding dominating sets and the
union of these sets yields the set F’. The proof is complete. ]

2 Main Result

Let 7(G) denote the number of induced cycles of length 2 (mod 4) in a graph G. The
following theorem gives the ratio of the irredundance and domination numbers for block-
cactus graphs in terms of 7(G). We will see later that this ratio is strict.

Theorem 1 If G is a block-cactus graph, then

ir(G) - 5m(G) + 4
Y(G) ~ 81(G) +6

Proof. Let I be an ir-set of G, i.e., I is a maximal irredundant set and |I| = ir(G), and
denote U = V(G) — N|[I].

We say that G contains an S-subgraph if there exist sets {vy,vy,v3} C I and S =
{u,vi,v!,1=1,2,3} satisfying the following conditions:

y Yo Yo

P(ug, I) = {vj,vi}, i = 1,23, {v}, 01} © N(vy), {vg, 05} S N(vg),

1) 1

and
{vg, 05} € N(u)

for u € U. Note that the vertices vy, v, v3 are not isolated in the graph (I), since v; &
P(v;, I) fori=1,2,3.

Now suppose that G contains an S-subgraph. Remove from G the vertices of S together
with incident edges, and add the set S’ = {wq, wq, p;, us, i = 1,2,3} together with edges
W11, W1Vg, Wala, wovy and v;p;, piu;, 1 = 1,2,3. Denote the resulting graph by G’. The
vertices vy, v9,v3 belong to different connected components of the graph G — S, since
otherwise GG is not a block-cactus graph. Therefore G’ is a block-cactus graph and G’ does
not contain new cycles, i.e., 7(G’) < 7(G). Furthermore,

Po(x,I) = Pg(x,I) #0 for each x €I — {vy,v9,03},
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and
Per(vi, I) ={p;} for i=1,23.

Consequently, the set I is irredundant in G’. Let z be a vertex of V(G) — I — S. The set
T'U{z} is redundant in G, since I is a maximal irredundant set in G. By definition, either

Nglz] € Ngl[l]

PG(yvj) - NG['Z]

for some vertex y € I. Note that y ¢ {v;, vs,v3}, since otherwise G is not a block-cactus
graph. Therefore I U {z} is a redundant set in G'. If z € S’, then it is straightforward to
see that I U{z} is a redundant set in G’. Thus [ is a maximal irredundant set in G’. Now
let D denote a minimum dominating set in G’. We have | DN (S"U{vy,va,v3})| > 4 and the
set (D — (S"U{wvy,v9,v3})) U{u,vi,ve,v3} is a dominating set of G. Hence v(G’) > v(G).
Applying the above construction to G we can obtain a block-cactus graph H such that
I is a maximal irredundant set in H and H does not contain S-subgraphs with respect to
1. Moreover,
#(H) < 7(G) and ~(H) = 1(G). 1)

Consider now the graph H and denote U = V(H) — N[I]. By Proposition 1, for any
vertex u € U there is a vertex f(u) € I such that P(f(u),I) C N(u). Put

A={f(u):ueU}U{vel:|PwI)=1andv & P(v,I)}.

Form the set B choosing for each vertex a € A one vertex from P(a,I) by the following
rule. If P(a,I) = {p}, then we add p into B. If |P(a, )| > 1, then there is a vertex u € U
such that P(a,l) € N(u). Since H is a block-cactus graph, we have P(a,l) = {p1,p2} and
pmpe € E(H). By Proposition 1, p; dominates P(y;, I), where y; € I — {a}, i = 1,2. Tt is
evident that y; & P(y;, ). We have y; # yo and |P(y;, )| < 2, since otherwise H is not
a block-cactus graph. The graph H has no S-subgraph, and so without loss of generality
|P(y1,1)] = 1. Now add p, into B. Note that y; € A. Therefore P(y;,I) € B and the
vertex p; is dominated by B.

Thus the set B dominates AUUU{P(a,I):a € A} and |B| = |A|. Let C = (I—-A)UB
and let C' dominate V(H) — W. We have |C| = |I| = ir(G) and for each w € W,

| Npr(w) N Al > 2.

Denote

D = {u cel: N<[>(u) 7& @}
Clearly, for each vertex d € D,

By the definitions of A and D,

and therefore for each w € W,



|Ny(w) N D| > 2. (3)

Suppose that the graph (D U W) has no D-W-alternating cycle of length 2 (mod 4).
Then, by Lemma 1,

3 3.
1(G) <A(H) < 5|1 = S ir(G)

which implies the desired inequality. Define now the graph F' with the vertex set D as
follows. Replace in the graph (D U W) all alternating cycles C',C?,...,C* (k > 1) of
length 2 (mod 4) by complete graphs and denote the resulting graph by H;. Let F' be the
subgraph of H; induced by D. It is obvious that H; and F are block-cactus graphs and
the sets K* = C*'N D, 1 < i < k, induce complete subgraphs in F. Moreover, the K are
blocks in F and |K?| > 3 for all i = 1,2, ..., k. Call the blocks K" special.

We will add a set of extra edges in the set D of the graph H; in such a way that the
resulting graph H* possesses Property A.

Property A. For any vertex w € W in the graph H* there exist vertices u,v € N(w)N D
such that either
degipyu >2 and degp v > 2,

N<D>(’LL) = {U}

Construct the sequence of block-cactus graphs
Hy,H,,....H,,

in accordance with the following rule. Suppose that we have the block-cactus graph H;
and it contains the vertex w; € W NV/(H;) and the vertices u;, v; € Ng,(w;) N D satisfying

degpyu; =1 and wv; & E(H;).

If the vertices u; and v; belong to different connected components of the graph H; — {w;},
then
Hi+1 = (H,L — {U)Z}) U u;v,

is a block-cactus graph. If the vertices u; and v; belong to one connected component of
the graph H; — {w;}, then the vertices u;, w;, v; in the graph H; belong to a block which is
a cycle. Again, the graph H;,; is a block-cactus graph.

Thus, the graph H,, is a block-cactus graph. Taking into account (2) and (3) we see
that for any vertex w € W N V(H,,) there exist vertices u,v € Np, (w) N D such that
either deg pyu > 2 and degp,v > 2, or Nipy(u) = {v}. Moreover, in the graph H,,
deg pyu; > 2 and degpyv; > 2 for all i = 1,2,...,m — 1. Put

“=F U?;_ll U;V; and H* = H1 U;l—ll U;V;.
The graph F* is a block-cactus graph, since it is an induced subgraph of H,,. Furthermore,
H* — U™ 'w; = H,,, and therefore the graph H* satisfies Property A.

For the above alternating cycles O, the sets C; N D, i = 1,2, .., k, do not contain edges

in the graph H. By the definitions of the set D and the graph F*, we obtain the following

property.



Property B. For any vertex u € V(F*) there is the edge uwv € E(F*) not belonging to
any block K%, 1 < i < k.

Let the graph F* contain r € {0,1,...,k} special blocks K* satisfying Property C.
Without loss of generality we may assume that the following blocks possess this property:

K' K2, .. K"

Property C. The block K* contains the vertex v; such that
Np«(v;) — K'={p;} and degp.p; = 1.
Lemma 2 For the graph F*,
|[V(F*)| = |D| > 5k — 3r + 4. (4)

Proof. We prove (4) by induction on the number k of special blocks. Let k = 1. Taking
into account Properties B and C, we obtain |V (F*)| > 3|K'| > 9if r = 0, and |V (F*)| >
2|K*'| > 6 if r = 1. Now suppose that (4) holds for any block-cactus graph having fewer
special blocks K* with |K?| > 3 and satisfying Property B. If F™* is not a connected graph,
then the result easily follows. Let F™* be a connected graph and denote

K=U K*

For the vertex u € K denote by B, all connected components of the graph F* — {u} which
do not contain vertices of the set K. The graph

F* - UuEKBu

has an end block K*! with only one cut vertex x. By Property B, there is the edge xy €
E(F*) such that zy ¢ K* for any i = 1,2, ..., k. Consider the graph

F/ = F" — UueK’ff{m}(Bu U {u})

It is evident that F” is a block cactus graph having & — 1 special blocks and satisfying
Property B. Suppose that some block K%, r < i < k, satisfies Property C in the graph
F’. The first possibility is that degm 2 = 1 and y € K*. The second possibility is that
degmy =1 and z € K'. In either of these two cases we add to F” the new vertex z and
the edge xz. The block K® does not satisfy Property C in the resulting graph, and this
operation evidently does not produce new special blocks satisfying Property C. Thus, if
i€ {r+1,7+2,..,k}, then the block K’ does not satisfy Property C in the graph I’ and

V(F") = Unert—{a} (Bu U{u}) UV (F') = {z}.

Case 1. If t < r, then F’ contains exactly r — 1 special blocks satisfying Property C.
Using the induction hypothesis, Property B and the inequality |K*| > 3, we see that

VIEI)] = [Uuert—op Bu U {ut| + [V(F)] -1
> 2K —1)+5(k—1)=3(r—1)+3
> 5k —3r +5.



Case 2. If t > r, then F’ contains exactly r special blocks satisfying Property C. The
block K* does not satisfy Property C and hence |B,| > 2 for each u € K — {z}. We obtain

VIE) > [Userr oy Ba U {ud] + V() — 1
> 3(|K'-1)+5(k—-1)—3r+3
> bk — 3r + 4.
The proof of Lemma 2 is complete. 1

Now consider the sets
V =A{vy, v, ..., 0}

and
P = {plap27 "'>pr}7

where v; and p; are the vertices defined in Property C if ¢ < r, and v; is some vertex of
K% if i > r. We have, v;p; € E(F*) and deg. p; = 1 for i = 1,2, ....r. Note that the set
{v1, ..., v} contains different vertices by Property C, while the set {v,,1,...,vx} does not
necessarily contain different vertices. Therefore,

|V| - |P| = |{UT‘+17 "'7Uk}| S k—r. (5)

Denote

X=D—(VUP).
Lemma 3 For each vertex w € W — Ny (V') in the graph H,

Proof. Denote by H' the induced subgraph (D U W) in the graph H. By definitions, the
graph H* is obtained from H’ by adding edges in the sets C',C?,...,C* and the set D.
Therefore, Ng/(w) C Ng«(w) if w € C*NW, and Ng(w) = Ng«(w) if w € W — UE_,C%
Now assume that w € W — Ng/(V') and

| Ny (w) N X < 1.

Consider the case w € C* N W where i € {1,2,...,k}. Since C* is an alternating cycle and
w & Ng/(V), it follows that there are vertices ¢, ¢’ € Ng/(w) N C*N D and ¢, ¢ V.
In the graph H* we have ¢,¢” € K' and therefore ¢/,¢” ¢ P. Thus, ¢,¢" € X and
|Ng(w) N X| > 2, a contradiction. Now consider the case w € W — U C?  Since
Ny(w) = Ng+(w), we have Ny+(w) NV = . Thus, in the graph H* the vertex w is
adjacent only to vertices of P and to at most one vertex of X, contrary to Property A.
The proof of Lemma 3 is complete. 1

In the graph H consider the induced subgraph X UW’, where W’ = W — Ng (V). This
graph is a block-cactus graph having no alternating cycles of length 2 (mod 4) as induced
subgraphs. By Lemma 3, | N xuwn(w) N X| > 2 for each vertex w € W’. By Lemma 1,
there exists X’ C X such that X’ dominates W’ and 2| X’| < |X|. Thus, theset T'=VUX’



dominates W in the graph H, and C'UT is a dominating set of H. Using (4), (5), and the
inequality £ > r > 0, we obtain

1
T] = VI+ X< [VI+5 (|D| VI=1Pl) = (D[ +[V] = |P])

|D| + k — I\ 3k — 27’—|—2|‘ 3k +2
= 2|D| S Sh—sra S5y

Using (1) and the inequality k& < m(H), we finish the proof of Theorem 1

|1].

8k + 6 7(G)+6

1(G) <y(H) < [C1+1T) < o= 1 |_W

r(G).

The following corollaries follow directly from Theorem 1.
Corollary 1 If G is a block-cactus graph, then ir(G)/v(G) > 5/8.

Since any cactus graph is a block-cactus graph, Corollary 1 proves Conjecture 1. The
example below shows that the bound 5/8 is best possible for cactus graphs and, conse-
quently, for block-cactus graphs.

Corollary 2 (Volkmann [11]) If G is a block graph, then ir(G)/v(G) > 2/3.

The bound 2/3 is best possible for block graphs (see [11]).

In conclusion we show that the bounds in Theorem 1 and Corollary 1 are sharp. Let
O = a;bicidie; fia;, 1 = 1,2, ...,k be simple cycles of length 6 and let T% = 21,2, i =
0,1,...,k + 1 be cycles of length 3. Add the edges

{e;aip1: 1<i<k—1}, {gz;: 1<i<k}, and {zoa,erTri1}-

Put
I={a,ce;: 1<i<k}U{r,y: 0<i<k+1}.

Also add the paths P, = uu/u” for each vertex u € I. Denote the resulting graph by G.
The graph G is both a block-cactus graph and a cactus graph.

Every maximal irredundant set of the graph G contains at least one vertex of the set
{u,v',v" : w € I}. Therefore, ir(G) > |I| = 5k + 4. On the other hand, I is a maximal
irredundant set of G and hence ir(G) = 5k + 4. It is not difficult to see that

{': v eP,ueltU{a,c: 1<i<k}U{z: 0<i<k+1}
is a minimum dominating set and therefore v(G) = 8k + 6. Thus,

ir(G)/1(G) = (5K +4)/(8k +6) and  lim (5k +4)/(8k + 6) = 5/5.
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