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E-mail: mcintosh@servidor.unam.mx

Received: March 17, 2005. In Final Form: May 12, 2005.

Reversible cellular automata are discrete dynamical systems based on
local interactions which are able to produce an invertible global behavior.
Reversible automata have been carefully analyzed by means of graph
and matrix tools, in particular the extensions of the ancestors in these
systems have a complete representation by Welch diagrams. This paper
illustrates how the whole information of a reversible one-dimensional
cellular automaton is conserved at both sides of the ancestors for
sequences with an adequate length. We give this result implementing a
procedure to obtain the inverse behavior by means of calculating and
studying a single Welch diagram corresponding with the extensions of
only one side of the ancestors. This work is a continuation of our
study about reversible automata both in the local [15] and global [16]
sense. An illustrative example is also presented.

Keywords:Cellular automata, reversibility, welch indices.

1 INTRODUCTION

Cellular automata are discrete dynamical systems which are able to yield
complex behaviours by means of simple interactions. The concept began
with John von Neumann and his work on self-reproducing systems which
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can be consulted in reference [20]. Other relevant works in this field can
be consulted in reference [1] and [23].

Reversible cellular automata are a special case of cellular automata where
the global mapping is invertible, that is, every global state of the automaton
has one and only one successor and the dynamics is deterministic in both
directions of time [13]. Reversible one-dimensional cellular automata have
been used for modeling and understanding reversible physical and chemical
phenomena [18, 22], as well as for implementing data coding systems
[3,19,22]. The study of reversible automata was first treated in references [8]
and [10], and the main reference for the one-dimensional case is provided
in [4] studying reversible automata as automorphisms of the full shift,
presenting the topological properties of these systems. Another important
work about reversible one-dimensional cellular automata and their graph
presentations is provided in [11] and [12]. These papers have inspired other
studies about reversible automata based on graph presentations: [6,7,17],
and matrix tools: [9,21].

One of the problems about reversible one-dimensional cellular automata
is how the information of the system is conserved and how we can use the
same to find the inverse behavior, in this sense there is a procedure provided
by Nasu using both Welch diagrams associated with the extensions of the
ancestors at both sides for obtaining the inverse local rule of a reversible
automaton [11]. In this paper we treat and resolve this question showing
that we can select any side of the ancestors in a reversible automaton and
get its information using a single Welch diagram corresponding with the
extensions of the ancestors at this side. In this sense we establish a symbolic
and matrix approach for calculating the Welch diagram and obtaining the
inverse local rule.

The results described in this work represent an extension of our study
for implementing a set of computational procedures which can be used
for illustrating specific properties of a given reversible cellular automaton,
for instance to obtain the properties of connectivity matrices [15], for
calculating the features of the transitive behavior in these systems [16] and
now for describing how the same information can be obtained in any side
of the ancestors.

The paper is organized as follows: Section 2 provides the basic
definitions of one-dimensional cellular automata; it also shows a procedure
for transforming any one-dimensional cellular automaton into another of
neighborhood size 2 to simplify the analysis. The properties of reversible
one-dimensional cellular automata are presented as well. Section 3 describes
how the extensions of the ancestors in a reversible automaton are represented
by Welch diagrams and the properties of such diagrams. Section 4 develops
matrix procedures for obtaining the right Welch diagram associated with
a particular reversible automaton, these procedures are also useful to get
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important features of this diagram and for calculating the inverse local
rule of the automaton by means of symbolic matrix products. Section 5
illustrates the previous results using a reversible automaton of 4 states.
Finally, Section 6 provides the concluding remarks of the paper.

2 PROPERTIES OF REVERSIBLE ONE-DIMENSIONAL
CELLULAR AUTOMATA

A one-dimensional cellular automaton consists of a one-dimensional array
of cells where each cell initially takes a single state from a finite set
K; the initial array of states is the initial configuration of the automaton.
Let k be the cardinality ofK and for n ∈ Z+, let Kn be the set of
words with n states. LetK∗ be the whole set of finite words and
for w ∈ K∗, let w∗ be the word formed by the undefined (but finite)
repetition ofw. For m, n ∈ Z+, w ∈ Km and v ∈ Kn, wv ∈ Km+n is an
extension ofw of length n, and forw, v ∈ K∗, wv ∈ K∗ is just a finite
extension ofw.

The dynamics of the cellular automaton is defined by local interactions
of the cells in the initial array. Form ∈ Z+ there is a mappingϕ : Km → K

where eachw ∈ Km is a neighborhood,m is the size of the neighborhood
and ϕ is the local rule of the automaton. Every neighborhood yields
a single state ofK and ϕ is applied over each neighborhood in the
initial configuration, where every neighborhood sharesm − 1 cells with the
contiguous neighborhoods at both sides. In this way the initial configuration
produces a new one by the action of the local ruleϕ, and the global behavior
of the automaton depends on the properties of this rule. LetA = (k,m, ϕ)
represent a one-dimensional cellular automaton ofk states, neighborhood
sizem and local ruleϕ.

Take a cellular automatonA = (k,m, ϕ), for a ∈ K and w ∈ Km, if
ϕ(w) = a thenw is an ancestor ofa while a is the descendant ofw. We can
note thatw hasm − 1 more states thana. We extend this concept for larger
words, forn ∈ Z+, n ≥ m andv ∈ Kn, letϕ(v) be word yielded by the local
rule ϕ applied over each one of then − m + 1 overlapping neighborhoods
forming v, henceϕ(v) = w ∈ Kn−m+1 and v is an ancestor ofw.

We can use this property for transforming any cellular automaton
A = (k,m, ϕ) into a new cellular automatonA′ = (km−1,2, τ ). This
transformation was independently explained by Boykett and Kari; a
description of this process can be consulted in [2] and [5]. The relevance
of this result is that we need to study only cellular automata of the type
A = (k,2, ϕ) for understanding all the other cases, hence in the rest of
this paper we shall only treat these automata. In this case the local ruleϕ

is represented by a matrixMϕ where the row and column indices are the
elements ofK and the entry (i, j ) = a in Mϕ if ϕ(i, j ) = a ∈ K.
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TABLE 1
Ordered pairs of states defining the nodes of the pair diagram.

(0,0) (0,1) (0,2) · · · (0,k − 1)

(1,0) (1,1) · · ·
...

...
... (2,2)

...
...

...
...

(k − 1,0) · · · · · · · · · (k − 1,k − 1)

A cellular automatonA = (k,2, ϕ) is reversible if there exists a local
rule ϕ−1 (possibly with neighborhood sizem �= 2) such that it makes
invertible the global behavior ofA. Reversible automata have been widely
studied by their theoretical relevance and their practical applications, one
of the most detailed works being developed in [4] using a topological
and a combinatorial approach. In particular, Hedlund proves two important
properties of these systems; letA = (k,2, ϕ) be a reversible automaton
and letϕ−1 be its inverse local rule of neighborhood sizem, thenA has
the following properties:

Property 1 (Uniform multiplicity of ancestors)Every wordw ∈ K∗ has
k ancestors.

Property 2 (Welch indices)Forn ≥ m, theancestors of everywordw ∈ Kn

haveL possible states in the lefmost position, converge into a unique state
and from this one, the ancestors haveR possible states in the rightmost
position fulfilling thatLR = k.

The valueL is the left Welch index andR is the right Welch index of
the automaton, thus there is a unique way in which every wordw ∈ Kn

returns in the evolution of the automaton, and its ancestors haveL initial
states, a common central part andR final states. One way of knowing
if a cellular automatonA = (k,2, ϕ) is reversible is constructing its pair
diagram. In this diagram, nodes are all the ordered pairs of states, these
nodes can be arranged as Table 1 indicates.

For two ordered pairs (a, b) and (a′, b′), there is directed edge from
(a, b) to (a′, b′) if ϕ(a, a′) = ϕ(b, b′). We can detect if the automatonA is
reversible reviewing the cycles of the pair diagram. If there exists a cycle
of lengthm formed by ordered pairs outside of the main diagonal in Table
1, then this cycle contains an ordered pair (a, b) with a �= b. Hence for
a, b ∈ K and u, v ∈ Km−1, there is a wordw ∈ Km with two ancestors;
one with formaua ∈ Km+1 and another with formbvb ∈ Km+1. Thus for
any n ∈ Z+, the wordwn formed byn repetitions ofw has two possible
ancestors, ((au)n)a and ((bv)n)b; but this implies that the automaton cannot
be reversible. In this way,A is reversible if the cycles of the pair diagram
are only formed by the nodes from the main diagonal of Table 1.
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For a reversible automatonA = (k,2, ϕ), let m ∈ Z+ be the minimum
length such that the ancestors of eachw ∈ Km have Welch indicesLR = k.
Different words inKm have different ancestors, thus for the ancestors of
every word inKm, the set ofL initial states defines a left Welch subset
and the set ofR final states establishes a right Welch subset.

Another relevant paper about reversible cellular automata is presented by
Nasu applying graph theory [11]. In particular, Nasu proves the following
property:

Property 3 (Intersection property)For a reversible automatonA = (k,
2, ϕ), every left Welch subset has one and only one common state with
any right Welch subset.

Property 3 defines a unique way to return in the evolution of the
reversible automaton when we take finite configurations with periodic
boundary conditions, this will be illustrated in the example of Section 5.

Nasu defines two graphs using Welch subsets, the first is the left Welch
diagram formed by all the left Welch subsets and the second is the right
Welch diagram composed by all the right Welch subsets. In the next section
we briefly explain these definitions, a complete exposition of them can
be consulted in [11]. Nasu also provides a complete characterization for
Welch diagrams; based on these results we shall prove that a single Welch
diagram is enough to obtain the inverse rule of a reversible automaton.

3 WELCH DIAGRAMS

Let m be the minimum length such that the ancestors of everyw ∈ Km

haveL initial states,R final states fulfilling thatLR = k and a central
common state. For the ancestors of everyw ∈ Km, the set ofL initial
states defines a left Welch subsetWL ⊆ K and the set ofR final states
specifies a right Welch subsetWR ⊆ K. Take the whole set of left Welch
subsets associated with a reversible automatonA = (k,2, ϕ), with them
we shall define a new diagram as follows:

• The nodes of the diagram are the left Welch subsets inA.
• For two nodesWL1 andWL2, there is a directed link labeled bya ∈ K

going fromWL1 to WL2 if for each elementj ∈ WL2 there is another
elementi ∈ WL1 such that (j, i) = a in Mϕ .

The previous diagram is the left Welch diagramWL of the reversible
automatonA; in a similar way the right Welch diagramWR is defined:

• The nodes ofWR are the right Welch subsets inA.
• For two nodesWR1 andWR2, there is a directed link labeled bya ∈ K

going fromWR1 to WR2 if for each elementj ∈ WR2 there is another
elementi ∈ WR1 such that the entry (i, j ) = a in Mϕ .
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Welch diagrams provide a graph representation for the extensions
associated with the ancestors of a given word. Using the theory of definite
automata [14], Nasu proves four main properties of these diagrams:

Property 4 (Well-defined diagram)For every a ∈ K, every nodeWL in
WL has a single outgoing edge labeled bya. This is analogous forWR.

Property 5 (Strongly-connected diagram)WL is strongly connected. This
is analogous forWR.

Property 6 (Mergible diagram)There existsp ∈ Z+ such that, for all
n ≥ p, each path of lengthn inWL begins from a unique state of the initial
left Welch subset. In this caseWL is p-mergible, this is analogous forWR.

Property 7 (Definite diagram)There existsq ∈ Z+ such that, for alln ≥ q

and all w ∈ Kn, all the paths labeled byw in WL have a single final left
Welch subset. ThusWL is q-definite, this is analogous forWR.

In the following section we shall present a set of procedures for detecting
the valuesp and q for a reversible automaton such that the right Welch
diagram is p-mergible andq-definite. These procedures are based on
the matrixMϕ and p, q will be used for specifying another process for
calculating the inverse ruleϕ−1 by means of the right Welch diagram.
Therefore the next results just discuss right Welch diagrams, but they are
also analogous for left Welch diagrams. For simplicity, in the following
sections every right Welch subset is represented byW and the right Welch
diagram is referred byW.

4 PROCEDURES FOR OBTAINING THE INVERSE LOCAL RULE

For a reversible automatonA = (k,2, ϕ), the right Welch diagramW has
a matrix representationMW where the row and column indices are the
nodes of the diagram, and every entry (i, j ) in MW shows the label of
the edges from nodei to nodej in W; the entry may have no element,
one, or several elements depending on the edges joining both nodes. Let
us define a procedure for obtaining the matrixMW usingMϕ .

Procedure 1 (Transition fromMϕ to MW )

1 For every rowa in Mϕ and every stateb ∈ K, take the subsetC ⊆ K

such that for eachc ∈ C the entry (a, c) = b in Mϕ . The distinct
subsetsCi are indexed byi ∈ Z+.

2 Form a new matrixA0 where the row indices are the elements ofK

and the column indices are the subsetsCi formed in the previous step.
Each entry inA0 has the form(a, Ci) and (a, Ci) = b if (a, c) = b in
Mϕ for all c ∈ Ci . Otherwise, there is no element in the entry(a, Ci).
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3 For every subsetCi and every stateb ∈ K, take the subsetD ⊆ K

such that for alld ∈ D, there existsc ∈ Ci such that(c, d) = b in Mϕ .
The distinct subsetsDj are indexed byj ∈ Z+.

4 Form a new matrixA1 where the row indices are the subsetsCi and
the column indices are the subsetsDj formed in the previous step.
Each entry inA1 has the form(Ci,Dj ) and (Ci,Dj ) = b if (c, d) = b

in Mϕ for c ∈ Ci and d ∈ Dj . Otherwise there is no element in the
entry (Ci,Dj ).

5 If the subsetsCi are equal to the subsetsDj then stop the procedure
and A1 = MW , otherwise repeat Step 3 for the subsetsDj to form a
new matrixA2.

With Procedure 1 we can prove the following result:

Theorem 1 For a reversible automatonA = (k,2, ϕ), if Procedure 1 yields
the sequence of matricesA0 . . . Ap+1 for p ∈ Z+ such thatAp+1 = MW ,
thenW is p-mergible.

Proof: The previous procedure keeps the right extensions of the ancestors as
subsets of states. These extensions form a sequence of matricesA0 . . . Ap+1

for p ∈ Z+, whereMW = Ap+1. The sequenceA0 . . . Ap+1 can be used
to show how a particular state is connected with a given right Welch
subset; if the entry (a, Ci) = b in A0 and the entry (Ci,Dj ) = c in A1,
then some of the ancestors of the wordbc ∈ K2 begin from a ∈ K and
finish with the states in the subsetDj . We can represent these ancestors
by the symbolic productA0A1, where “ symbolic ” means that the product
(a, Ci)(Ci,Dj ) = bc and the entry (a,Dj ) in A0A1 is equal to the whole
list of distinct products (a, Ci)(Ci,Dj ) for all the subsetsCi .
The symbolic productP = A0A1 · · ·Ap−1Ap yields a new matrix where

the row indices are the states ofK and the column indices are the right
Welch subsets. Each entry inP has the form (a,W ) = B ⊂ Kp, whereB
is the set of words inKp whose ancestors begin froma ∈ K and finish in
the right Welch subsetW ⊂ K. The same happens for all the words inKp.
Suppose that there existsa, b ∈ K andu ∈ Kp such that for the same right

Welch subsetW1, we have that (a,W1) = B1, (b,W1) = B2, B1 ∩ B2 = u

and a, b belong to the same right Welch subsetW2. By Property 5, there
exists another finite path labeled byv ∈ K∗ in W going fromW1 toW2, in
this way the path labeled byuv ∈ K∗ goes froma, b ∈ W2 to the whole
setW2, hence the path labeled by (uv)∗ goes froma, b ∈ W2 to the whole
setW2 any finite number of times, contradicting Property 6.
Therefore the automaton isp-mergible and every path of lengthp in

W starts from a single state for each right Welch subset. ✷

Theorem 1 provides a procedure for detectingp ∈ Z+ such that the
reversible automatonA is p-mergible. In the following, we shall explain
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how the right Welch diagram is useful to knowq ∈ Z+ such that the same
automaton is alsoq-definite. For each statea ∈ K, take fromMW a new
matrix Ma where the row and column indices are the ones ofMW and
each entry (i, j ) in Ma is defined as follows:

(i, j ) =


1 if (i, j ) = a in MW

0 in other case
(1)

For a ∈ K eachMa is the connectivity matrix ofa, hence we initially
have k connectivity matrices specified byMW , one for each state of
the automaton. We can define connectivity matrices for larger words, for
v ∈ K∗ the matrixMv is produced by the matrix product of the connectivity
matrices corresponding with the states formingv. For instance ifa, b, c ∈ K

thenMabc = MaMbMc . Using connectivity matrices, we shall prove the
following result.

Theorem 2 For a reversible automatonA = (k,2, ϕ) with a right Welch
diagram represented byMW , if there existsq ∈ Z+ such that for each word
v ∈ Kq we have thatMv has a single non-zero column where each entry
is 1, then the automaton isq-definite.

Proof: Each matrixMa represents the paths inW labeled bya ∈ K. If
there existsq ∈ Z+ such thatMv has a single non-zero column with entries
equal to 1 for eachv ∈ Kq , then all the paths inW labeled byv begin
from all the nodes and they end into a unique node ofW. Therefore all
the paths of lengthq with the same label converge into the same node
and the automaton isq-definite. ✷

Theorem 2 gives a procedure based on matrix products for detecting
q ∈ Z+ such that the automaton isq-definite.

Procedure 2 (Level q-definite)

1 Takeq = 1.
2 Taken = q and for each wordv ∈ Kn, form the connectivity matrix

Mv.
3 If each connectivity matrixMv has a single non-zero column with
each entry equal to1, then the automaton isq-definite and stop the
procedure. Otherwise, repeat step 2 taking nowq = n + 1.

With these results, we can define a procedure for obtaining the inverse
local rule of the automaton. This procedure is based on the matrices used
to calculateMW from Mϕ . Let A0 . . . Ap+1 be the sequence of matrices
defining the transition fromMϕ into MW . For 0≤ m ≤ p, the column
indices of the matrixAm are equal to the row indices of the matrixAm+1,
so we can get the symbolic productAmAm+1 which forms a matrix with
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the row indices ofAm and the column indices ofAm+1. Each entry (i, j )
in AmAm+1 is formed by all the words yielded by the concatenation of the
words in each entry of rowi in Am with all the words in the corresponding
entry in columnj of Am+1. Thus each entry inAmAm+1 may have several
words.

The symbolic productAmAm+1 produces all the words whose ancestors
begin from the subsets of states represented by the row indices ofAm to the
subsets of states presented by the column indices ofAm+1. Therefore each
entry in the symbolic productP = A0A1 · · ·Ap shows the words (which
are also labeled paths inW) going from particular states to right Welch
subsets. Using these symbolic products, we define the following procedure
for getting the inverse rule of the automaton:

Procedure 3 (Inverse local rule)

1 Apply Procedures 1 and 2 to obtainp and q respectively such that the
automaton isp-mergible andq-definite. Take the valuem = max{p, q}.

2 Obtain the symbolic productN = A0A1 · · ·Ap, if q > p then take
n = q − p and calculate also the symbolic productP = NB1B2 · · ·Bn

whereBi = Ap+1 for 1≤ i ≤ n; in other caseP = N .
3 For each wordw ∈ Km, take all the entries inP containingw; by
Properties 2 and 7,w appears inL rows and in a single column.

4 For w, v ∈ Km, take the right Welch subset representing the column
in P containingw and take the rows inP containingv, these rows
form a subset of states which is a left Welch subset.

5 By Property 3, the right Welch subset ofw and the left Welch subset ofv
have a single common statea ∈ K; thus forwv ∈ K2m, ϕ−1(wv) = a.

With the previous procedure we obtain the inverse local ruleϕ−1 for a
reversible automaton, where the size of the inverse neighborhood is 2m

and with a inverse centered evolution in every neighborhood.
Procedure 1 takes each state with every evolution in order to obtain the

subsetsCi , hence the first iteration has complexityk2. The second iteration
takes all the subsetsCi with every right extension, because everyCi may
have several elements and there are at mostk2 subsets, this iteration has
complexityk4. Thus using the same analysis, iterationn has complexityk2n

and if the automaton isq-mergible, the procedure will have a complexity
of k2q in the last iteration. Sinceq is in relation withk, then the procedure
is exponential. The other procedures depend of Procedure 1, therefore all
the procedures have exponential complexity with regard of the number of
states.

Although this way of calculating the inverse local rule for a reversible
automaton is exponential, this procedure demonstrates that the necessary
information for obtaining the inverse behavior of the automaton is in any
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FIGURE 1
Matrix Mϕ and one evolution of the automatonA = (4,2, EBEE4444).

TABLE 2
Matrix MW obtained by Procedure 1.

A0 =

(0,2) (1,3) (0,3) (1,2)
0 0 1
1 0 1
2 2 3
3 3 2

A1 =

(0,2) (1,3) (0,3) (1,2)
(0,2) 0,2 1,3
(1,3) 0 1 3 2
(0,3) 0 1 3 2
(1,2) 0,2 1,3

of the ending parts of the ancestors, whether we choose the right side
or the left one, because we can specify analogous procedures for the left
Welch diagram.

5 ILLUSTRATIVE EXAMPLE

We shall illustrate the previous results using a reversible automaton
A = (4,2, ϕ). We choose this example because this is not a trivial one
since the inverse local rule is larger than the original one, but its small
size allows to obtain a suitable presentation in the paper.

This type of automaton can be identified by a particular number base 16;
take the descendants from the neighborhoods from the neighborhoods 33
and 32, suppose thatϕ(33)= a andϕ(32)= b. Take nowx = (a ∗ 4)+ b,
then x identifies the evolution of 33 and 32, continuing with the next
neighborhoods we have other 7 pairs of descendants, and for each pair
we can assign a numberx base 16. Thus a sequence of 8 hexadecimal
digits identifies the local ruleϕ. In the example of Figure 1 we have that
ϕ(33)= 3 andϕ(32)= 2, therefore ((4∗ 3)+ 2)= 14 or E base 16.

This corresponds to automatonA = (4,2, EBEE4444), which rule’s
matrix representation and an example of evolution are shown in Figure 1.
The pair diagram and its cycles are presented in Figure 2. We can see
that the only cycle is composed by the diagonal elements, therefore the
automaton is reversible.

Using Procedure 1, we obtain the matrixMW from Mϕ in Table 2.



0026(seck) Journal of Cellular Automata January 24, 2006 12:23

One-Dimensional Cellular Automaton Obtained by a Single Welch Diagram 35

FIGURE 2
Cycles of the pair diagram for the automatonA = (4,2, EBEE4444).

TABLE 3
Connectivity matrices obtained fromMW .

M0 =

0 1 2 3

0 1 0 0 0

1 1 0 0 0

2 1 0 0 0

3 1 0 0 0

M1 =

0 1 2 3

0 0 1 0 0

1 0 1 0 0

2 0 1 0 0

3 0 1 0 0

M2 =

0 1 2 3

0 1 0 0 0

1 0 0 0 1

2 0 0 0 1

3 1 0 0 0

M3 =

0 1 2 3

0 0 1 0 0

1 0 0 1 0

2 0 0 1 0

3 0 1 0 0

The procedure needs two steps to yieldMW , therefore the automaton
is 1-mergible by Theorem 1. From the matrixMW we shall obtain the
connectivity matrix of each state (Table 3).

Matrices M2 and M3 do not show the expected form described in
Theorem 2, hence we shall apply Procedure 2 to get the desired connectivity
matrices. For this reason, we calculate the products of the matrices in
Table 3 to yield the connectivity matrices of larger words. There are four
distinct types of connectivity matrices for the words inK2, these matrices
are presented in Table 4.

Procedure 2 shows that the automaton is 2-definite. We shall apply
now Procedure 3 for obtaining the inverse local rule. Since the automaton
is 1-mergible and 2-definite, we have to calculate the symbolic product
P = A0A1 which is presented in Table 5.
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TABLE 4
Connectivity matricesMw for w ∈ K2.

Distinct connectivity matrices

B0 =

0 1 2 3

0 1 0 0 0

1 1 0 0 0

2 1 0 0 0

3 1 0 0 0

B1 =

0 1 2 3

0 0 1 0 0

1 0 1 0 0

2 0 1 0 0

3 0 1 0 0

B2 =

0 1 2 3

0 0 0 1 0

1 0 0 1 0

2 0 0 1 0

3 0 0 1 0

B3 =

0 1 2 3

0 0 0 0 1

1 0 0 0 1

2 0 0 0 1

3 0 0 0 1

M00 = B0 M01 = B1 M02 = B0 M03 = B1

M10 = B0 M11 = B1 M12 = B3 M13 = B2

M20 = B0 M21 = B1 M22 = B0 M23 = B1

M30 = B0 M31 = B1 M32 = B3 M33 = B2

TABLE 5
Symbolic productP = A0A1.

(0,2) (1,3) (0,3) (1,2)

0

00

02

10

01

03

11

13 12

1

00

02

10

01

03

11

13 12

2

20

22

30

21

23

31

33 32

3

30

20

22

31

21

23

33 32

From Table 5 we can finally obtain the inverse local rule following steps
4 and 5 in Procedure 3, for this example the inverse local rule shall be
represented by a matrix (Table 6), where the row and column indices are
the words inK2 and each entry (w, v) = a ∈ K in this matrix means that
ϕ−1(wv) = a.

An example of the invertible evolution with a finite configuration for
this automaton is given in Figure 3.
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TABLE 6
Inverse local rule for the automatonA = (4,2, EBEE4444).

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33

00 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2

01 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3

02 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2

03 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3

10 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2

11 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3

12 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2

13 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3

20 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2

21 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3

22 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2

23 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3

30 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2

31 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3

32 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2

33 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3

FIGURE 3
Evolution of A = (4,2, EBEE4444). The terminal cells in configurations 2 and 4 at both
sides are the same cell, we have duplicated these cells just for clarity.
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6 CONCLUDING REMARKS

The graph viewpoint and the matrix presentation have been useful for
analyzing and providing a set of computable procedures which calculate
and characterize the Welch diagrams of a reversible cellular automaton.
We use these diagrams for obtaining the inverse behavior.

However, these graphs and matrices have a significant size whether the
automaton has a small number of states or the inverse local rule is large.
Hence, such procedures are useful only for reversible one-dimensional
cellular automata with few states.

The main contribution of the procedures presented in this work is
that we just need the information at one side of the ancestors in a
reversible automaton for getting its inverse behavior. Therefore both sides
of the ancestors have all the needed information to produce the inverse
local rule.

A further work is to improve these procedures to obtain a polynomial
perfomance, and to apply an adaptation of them to other classes of cellular
automata, for instance to analyze the surjective case.

Another extension is to use more specific tools and results from graph
theory and symbolic dynamics in order to obtain their relation with the
theory of reversible cellular automata; with this we may establish deeper
properties for characterizing reversible automata.
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