
Simulating Self-Replicating Machines

William M. Stevens

Department of Physics and Astronomy, Open University, Milton Keynes, MK7 6AA,
UK

william@stevens93.fsnet.co.uk,
WWW home page: http://www.srm.org.uk

Abstract. A simulation framework is described in which sliding tiles
moving in a discrete two-dimensional grid can be put together to build
machines. The tiles can perform logical and mechanical functions, and
can be connected to each other. A self-replicating machine has been
designed in this environment and its operation is summarised. Observa-
tions are made about the usefulness and the limitations of the machine
and its environment, and several ways in which the limitations could be
addressed are described. A justification of the simulation approach for
modelling self-replicating systems is given.

Key words:
self-replication, self-organisation, simulation, mechatronics

1 Introduction

It has been proposed that self-replicating manufacturing systems will find ap-
plications ranging from the exploration of the galaxy [6] to the molecular-scale
assembly of macroscale objects [5]. The problem of designing a system capable
of constructing a range of useful objects as well as a replica of itself from a
feedstock of raw materials is complex, and because of this some researchers have
restricted their attention to the problem of designing self-replicating systems that
work by assembling simpler subsystems. To date, only a handful of very simple
physical self-replicating systems have been demonstrated (see section 4.1). All
rely on a supply of pre-fabricated parts, some require rather complex parts,
and some cannot construct anything other than replicas. This paper presents a
simulation environment designed to assist exploration of the design space for self-
replicating systems made from simple pre-fabricated parts. A specific example of
a self-replicating programmable constructor within the simulation environment
is given.

The possibilities that cellular automata offer for research into self-replicating
systems have been widely explored. Von Neumann [15] developed a program-
mable constructing automaton embedded in a cellular automaton in the late
1940s and used it to prove the existence of a self-replicating automaton capable
of constructing any other automaton within its domain of operation.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UWE Bristol Research Repository

https://core.ac.uk/display/323901285?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Since then several researchers have devised self-replicating systems embedded
in cellular automata arrays. These have ranged from programmable constructors
in the pattern of von Neumann’s example [15, 4] to simple self-replicating loops
that can do nothing but produce copies of themselves [10, 2]. Sipper gives an
overview of these and other self-replicating systems [17, 18].

Research into the design and construction of physical self-replicating ma-
chines may benefit from simulation environments that offer a greater degree of
physical realism than cellular automata. The simulation framework described
in this paper is one such environment. In addition to devising a self-replicating
structure embedded in a cellular automaton array, von Neumann also proposed
what is now called his ‘kinematic model’ for studying the constructional capabili-
ties of machines [15]. The system described in this paper bears some resemblance
to von Neumann’s proposal. The precise way in which the system described here
is more physically realistic than cellular automaton environments is explained
in section 4.

There are two main strands of research into self-replication using prefabri-
cated parts. One strand is characterised by von Neumann’s kinematic program-
mable constructor model and seeks to build program-controlled constructors
capable of constructing replicas of themselves from a set of simple parts. The
other strand is characterised by Penrose’s replicating plywood shape system [16],
in which a sequence of parts serves as a template upon which a replica sequence
is built up. A more recent example of this strand of research can be found in
[8]. These two strands of research may turn out to be complementary to each
other. In nature we find that a template-based process underlies the replication
of DNA and the construction of cellular components. Cellular components then
cooperate together in a well-ordered way following a definite plan of development
to construct a replica cell.

The CBlocks system is introduced in the rest of this section, and described
more fully in section 2. In section 3 a self-replicating programmable constructor
in the CBlocks system is presented. Section 4 places this work in the context of
other work on physical self-replicating systems, and points out the advantages
that it offers.

1.1 The CBlocks System

CBlocks is a system in which square tiles move and interact with each other on
a two-dimensional discrete grid.

There are several different types of tile. Each type performs a specific func-
tion. There are types that perform logical functions, types that join tiles together,
types that move in response to a signal and types that move other tiles. Tiles
can send and receive signals to and from neighbouring tiles.

Tiles occupy one cell in the two-dimensional grid in which they exist, and
can move either north, south, east or west in a single time unit. When a tile
moves into a neighbouring cell that is already occupied, the occupying tile gets
pushed away. There are rules that determine how signals pass between tiles,

how tiles can be connected together and how they should behave when they are
connected.

Machines can be constructed from collections of tiles connected up in an
appropriate way.

1.2 An Example

A simple example is presented before giving a more formal description of the
system.

Fig. 1. A not tile.

Figure 1 shows a not tile with an input at the bottom and an output at the
top. At the next time step, the output will be zero if the input is non-zero, or
one otherwise.

Fig. 2. A thrust tile.

Figure 2 shows a thrust tile. When the input is non-zero, the tile moves down
by one cell every time step

In figure 3, four successive time steps showing the behaviour of an arrange-
ment of tiles is shown. The thrust tile is activated by the not tile connected to
it. It moves one cell to the right every time step until the not tile on the right
turns off the output of the not tile connected to the thrust tile. Note that the
thrust tile continues moving to the right until one time step after the two not
tiles come into contact because it takes one time step for the signal from the
right-most not tile to propagate to the thrust tile.

2 A Concise Description of CBlocks

In CBlocks, time is discrete, and moves forward in steps of one unit. In one
time unit a tile may move one cell to the north, south, east or west. Tiles can

Fig. 3. A simple example.

be connected together along their edges. When two or more tiles are connected
together, they move together when pushed. Rules exist to avoid conflicts that
might arise when, for example, an attempt is made to push two tiles into the
same cell. Since this kind of conflict does not arise in the systems described in
this paper, a description of these rules is not necessary. A full discussion of the
kinds of conflicts that can arise is given by Arbib in [1].

2.1 Tile Types and Signals

Two tile types have already been introduced: these were the not and thrust
types. Signals were mentioned in the informal descriptions of these tiles.

The edges of tiles can be regarded as terminals through which signals can be
passed between neighbouring tiles. Tiles do not need to be connected in order
for signals to pass between them. Each terminal of a tile acts either as an input
or as an output. If a terminal has no explicit definition, it is effectively an output
producing no signal.

Signals are 32-bit integer values. The absence of a signal corresponds to a
value of zero. It takes one time unit for a signal to propagate from a tile’s inputs
to its outputs, or for a tile to respond to signals at its inputs.

A tile’s type determines how it responds to input signals, and whether it pro-
duces any output signals. A tile can be in any one of four possible orientations.
The CBlocks environment is rotation symmetric, so that two structures that dif-
fer only in their orientation can be regarded as being logically and kinematically
equivalent.

Table 1 describes 24 tile types, of which 23 are used in section 3. (The RUn-
Fuse tile is not used, but is included in table 1 for completeness). In table 1
the letters N,S,E and W (for North, South, East and West) are used to refer
to terminals and also to indicate directions. The context should indicate which
usage is meant. Note that terminal labels and directions are given relative to the
orientation of the tile.

1 Wire 2 Cross 3 Delta

N=S N=S,E=W N,E,W=S

4 Not 5 And 6 Or

N=!S N=min(E,W) N=max(E,W)

7 Nand 8 Nor 9 Insulator

N=!(E&&W) N=!(E||W)

10 Push 12 Thrust 13 RFuse

When S!=0, push on When S!=0, push on When S!=0, connect
tile that lies N, self in the S the tiles that lie

in the N direction direction N and NE

14 LFuse 15 RUnFuse 16 LUnFuse

When S!=0, connect When S!=0, disconnect When S!=0, disconnect
the tiles that the tiles that the tiles that
lie N and NW lie N and NE lie N and NW

19 RSlide 20 LSlide 21 Equal

When S!=0, apply a When S!=0, apply a N=(E==W)
force on tile that lies N, force on tile that lies N,

in the E direction in the W direction

22 Pulse 24 Creator 25 Multiplier

N=1 only when S changes When S is non-zero, N=E*W
from 0 to non-zero create a tile in the

N direction

26 Adder 27 Store 32 Toggle

N=E+W If S!=0 and output N==0, set If S!=0, toggle the value
output N to S. If E!=0 or of output N
W!=0, set output N to 0

Table 1. Tile types used for the SRM in section 3

The notation used for expressions in table 1 is that used by the C program-
ming language, summarized in table 2.

Operator Name and meaning

+ Plus
Sum of operands

* Times
Product of operands

== Equals
1 if operands are equal, zero otherwise

!= Not Equals
zero if operands are equal, 1 otherwise

! Logical Not
1 if operand is zero, zero otherwise

&& Logical And
1 if both operands are non-zero, zero otherwise

|| Logical Or
1 if any operand is non-zero, zero otherwise
Table 2. Operators used in table 1

3 A Self-Replicating Machine in CBlocks

The tile types described in the previous section have been used to make a self-
replicating machine (SRM). An outline description of the machine is given in this
section. There is not space in this paper to give a detailed description. Interested
readers are referred to the author’s website given at the top of this paper.

The SRM would be far more complex were it not for the creator tile type.
This type allows new tiles to appear from nowhere in response to a signal.

Figure 4 illustrates the geometrical structure of the SRM, the four main parts
are labelled. The instruction hopper contains a block of store tiles which encode
a sequence that directs the SRM to move around the universe and to create tiles
in such a way as to duplicate itself. This sequence of store tiles is referred to as
the instruction tape. The instruction tape can encode instructions for building
any configuration of tiles, limited only by the length of the instruction tape. To
illustrate this, figure 5 shows a relatively simple configuration of tiles and table
3 gives the instruction sequence (with integer instruction codes in brackets)
required to make this configuration. Notice that the orientation of tiles specified
in this instruction sequence is the orientation relative to the orientation of the
creator tile in the reader.

Self-replication is the special case where the instruction tape encodes a se-
quence of actions that results in a duplicate machine. In the description of the
SRM that follows, the terms parent and child are used to refer to machines in a

Fig. 4. The geometrical structure of the srm.

Fig. 5. An example construction.

DELTA NORTH (14) MOVE NORTH (1004) MOVE SOUTH (1002)
MOVE SOUTH (1002) MOVE NORTH (1004) ORGATE EAST (25)
DELTA WEST (15)
MOVE SOUTH (1002) DELTA NORTH (14) MOVE NORTH (1004)
DELTA WEST (15) MOVE NORTH (1004) MOVE EAST (1001)
MOVE SOUTH (1002) MOVE SOUTH (1002) MOVE NORTH (1004)
DELTA WEST (15) MOVE SOUTH (1002) PULSER SOUTH (88)

MOVE SOUTH (1002) MOVE NORTH (1004)
MOVE EAST (1001) MOVE SOUTH (1002) MOVE SOUTH (1002)
MOVE NORTH (1004) DELTA SOUTH (12) MOVE EAST (1001)
MOVE NORTH (1004) THRUSTER SOUTH (48)
MOVE NORTH (1004) MOVE NORTH (1004) MOVE NORTH (1004)

MOVE EAST (1001) MOVE SOUTH (1002)
DELTA NORTH (14) MOVE NORTH (1004)
MOVE NORTH (1004) MOVE NORTH (1004) MOVE SOUTH (1002)
MOVE SOUTH (1002) MOVE SOUTH (1002)
MOVE SOUTH (1002) DELTA EAST (13) MOVE SOUTH (1002)
MOVE SOUTH (1002) MOVE NORTH (1004) MOVE SOUTH (1002)
MOVE SOUTH (1002) MOVE SOUTH (1002)
DELTA SOUTH (12) MOVE SOUTH (1002) MOVE WEST (1003)

DELTA EAST (13) MOVE WEST (1003)
MOVE NORTH (1004) MOVE SOUTH (1002)
MOVE EAST (1001) DELTA EAST (13)

Table 3. Instructions required for constructing figure 5

relationship where one instance of the machine has constructed or is constructing
another.

Figure 6 shows how the instruction tape is arranged in the machine. The
arrows show the direction in which store tiles move as the tape is advanced. The
tape-advancing mechanism ensures that the tape advances one tile at a time and
that the arrangement shown in Figure 6 is maintained.

The reader contains logic that interprets signals from the instruction tape
and acts upon them. Figure 7 shows the logical structure of the reader.

The SRM uses a creator tile to create new tiles as they are needed. This
tile creates a new tile whose type and orientation (i.e. orientation relative to the
creator tile in the reader) are dependant on the value of the input signal that it
receives. A signal value of 4T + D encodes a tile of type T and orientation D.
Values of T for each tile type are given in table 1. The mapping between values
of D and possible orientations is {(0, N), (1, E), (2, S), (3,W)}.

Fig. 6. The arrangement of the instruction tape.

Fig. 7. The logical structure of the reader.

Some of the store tiles in the instruction tape encode values which tell the
SRM to perform an action. The values used are as follows:

1001 = move east
1002 = move south
1003 = move west
1004 = move north
1005 = switch between read and copy phases
1006 = do nothing

No explicit instruction is needed in order to tell the reader to fuse newly
created tiles together, since the reader contains fuser tiles that are always active
and which fuse together any tiles that pass in front of them.

The copier is responsible for creating a duplicate instruction tape in a child
SRM. Figure 8 shows the logical structure of the copier.

The replication cycle has two phases: the reading phase and the copying
phase. During the reading phase the instruction tape is interpreted by the reader.
The last instruction in the instruction sequence (code 1005) causes the machine
to toggle between the reading and copying phases. During the copying phase,
the parent sends signals to the child which cause a copy of the instruction tape
to be created in the child SRM. The child machine is then complete and can be-
gin constructing its own child. The parent machine switches back to the reading

Fig. 8. The logical structure of the copier.

phase and the replication cycle begins again. Figures 9 and 10 show two snap-
shots of the SRM in action, showing which phase it is in and what it is doing at
each snapshot.

Figure 11 shows a parent SRM and the child SRM that it has produced.
Notice that the child is constructed so as to be oriented 90 degrees anticlockwise
with respect to the parent. This is done so that successive generations of SRMs
will fill up the two-dimensional universe. It might be argued that because of
this difference in orientation the child is not an exact replica of the parent.
However, since the CBlocks environment is rotationally symmetric the logical
and kinematical behaviour of parent and child can reasonably be regarded as
equivalent.

Figure 12 shows the state of the universe after the initial SRM has produced
two child SRMs, the first of which has produced a child of its own.

3.1 Part counts

The SRM is made from 2311 tiles, including the 1777 store tiles in the instruction
tape. 23 different types of tile are used (see table 1). The number of each type
used is given in table 4.

4 CBlocks and Physical Self-Replicating Machines

In the introduction it was asserted that the CBlocks environment is more phys-
ically realistic than cellular automaton environments. This statement needs jus-
tification. Cellular automaton environments can of course be made from arrays
of discrete parts, with each physical part corresponding directly to a cell in the
abstract environment. A self-replicating system in such an environment would be
able to alter the internal state of a discrete part in the array, but this would be
the limit of its effect on the physical environment. Such a system does not harness
the mechanics of the physical environment for the purpose of self-replication.

Fig. 9. The parent SRM is in the reading phase and is part way through constructing
a child SRM.

Fig. 10. The parent SRM has finished the reading phase and is part way through the
copying phase.

Fig. 11. A parent SRM has produced a child

Store 1777+5
Delta 172
Wire 124
Insulator 108
Pusher 32
Left-slider 18
Right-slider 15
Toggle 12
15 Others 48 (less than 6 of each, four tile types only used once)

Table 4. Count of the types of tile used in the SRM.

Fig. 12. SRMs after two generations

A physical self-replicating system capable of building itself from component
parts would have to make use of the mechanics of the environment in which
the component parts function in order to replicate itself. The self-replicating
system described in this paper does this within the CBlocks environment. This
environment has rules of motion and interaction loosely based upon the laws of
motion and the mechanical interactions of physical machines. In this sense, the
CBlocks environment can be said to be more physically realistic than cellular
automaton environments.

Matter is not conserved in the CBlocks environment, since a creator tile can
create other tiles from nowhere. At first sight it seems that a creator tile is not
at all physically realistic. However, it is possible to envisage physical systems
in which something like a creator tile can be made. For example, if a physical
model based on CBlocks existed on a two-dimensional surface and a second
surface were placed just above this surface, the second surface could contain a
disorganised collection of tiles, moving about at random. A creator tile on the
lower surface needing to create a tile could wait for a tile of the correct type and
in the correct orientation to pass above it on the upper surface, and then cause
it to be transferred from the upper to the lower surface.

It may be possible to devise an SRM in CBlocks which is not dependant on
a creator tile. This SRM could fetch the tiles needed to build a copy of itself
from a known location, or alternatively it could forage for tiles in a disorganised
collection.

4.1 Other Work on Physical Self-Replicating Machines

Other work related to physical self-replication is summarised below in chrono-
logical order.

Penrose devised a set of plywood shapes that could be placed into a container
and agitated. The shapes would remain in a disordered state, unless seeded by
a particular configuration of two shapes, in which case other shapes would tend
to pair up and adopt the same configuration [16].

A NASA summer study in 1980 investigated the possibility of building a
self-replicating factory on the moon [6].

More recently, Chirikjian et al devised LEGO robots that could put together
other robots from three complex parts [3].

Moses developed a set of plastic blocks that could be used to make a three-
dimensional constructor, capable of building another constructor under the con-
trol of a computer or a human operator [13].

Zykov et al. built a system in which robots made from identical subunits
containing power sources, motors and processors could build other robots from
the same subunits, including copies of themselves [20].

Malone and Lipson developed a compact free-form fabrication system capable
of making various components including batteries, wires and flexible joints [11].

Freitas and Merkle published a comprehensive work which describes propos-
als for and implementations of physical self-replication, along with some of the
engineering issues surrounding physical self-replication [7].

Griffith et al. built a system for investigating physical template-based self-
replication. This system consists of a programmable unit which can communicate
with and connect to neighbouring units. Behaviour required for self-replication
can be programmed into a large number of units, which will form replicas when
seeded with a template structure [8].

The works described above can be categorised as follows: [16], [3] and [8] are
systems made from a small number of parts, designed for the purpose of self-
replication but with little ability to do anything else. [13] and [20] are systems
made from a larger number of parts, taken from a small set of pre-fabricated part
types. These systems are program-controlled and are therefore able to construct
a wide range of machines made from the pre-fabricated parts. [6] and [11] are
systems which make their own parts from raw material feedstock. These systems
offer a great deal of flexibility: not only can the arrangement of parts be specified
by a program, the structure of the parts themselves can also be specified by a
program. [6] is a long way from being realised. [11] can make a small number of
component parts and is some way from being able to make the same set of parts
from which it is made and then assemble those parts into a replica.

4.2 The Value of a Simulation Approach

Within this categorisation scheme, the systems described in [13] and [20] are the
most similar to the programmable SRM described in this paper so it is worth
examining these in more detail to see what advantages a simulation approach
offers to this class of system.

The plastic blocks in Moses’s system [13] are of 11 different types and are
designed to permit the construction of a constructing machine based around a
controllable manipulator that can pick up blocks one at a time, position them in
three dimensions and then slot them into a structure being built. Moses’s system
is controlled by an external program: blocks containing motors are fed signals
from a computer or from a human operator that lies outside the environment.

The system of Zykov et al. [20]. is based around a single type of block that
combines processing, connective and motor functions into a single unit. Four of
these units can be put together to make a machine capable of manipulating other
units and arranging them into a replica configuration. In contrast to Moses’s
approach of using a set of simple parts to build a more complex structure under
external control, Zykov’s system is made from complex parts, each of which is
capable of containing a description of the steps required to replicate the whole
system.

Both systems can be regarded as steps towards the goal of making a fully
autonomous self-replicating system with a low component-part complexity and
high constructional capability, which will be referred to as goal G. [13] has a low
part complexity and a constructional capability limited only by the 11 part types
available and the size of the domain that the constructor operates in, but is not
fully autonomous. [20] is fully autonomous and also has a wide constructional
capability, but has a very high part complexity.

Building physical prototypes is expensive and time-consuming. To make
headway towards goal G starting from a system like [13] it would be necessary
to design a control unit from the set of available part types, perhaps augmented
with several more to facilitate the processing of digital information. Simulation
would greatly help the design process. [13] has a deliberately restricted set of
possible mechanical interactions between parts, and could therefore be simulated
by a CBlocks type model, which simulates only logical, geometrical and kinemat-
ical interactions between parts and between subsystems. By omitting detailed
simulation of mechanical interactions from a simulation model, simulation time
is greatly reduced.

The designers of system [20] had both simulation and physical construction in
mind when designing their system. A simulation model that models the geomet-
rical and logical constraints of the system was used to come up with manually
designed and automatically evolved self-replicating structures [14]. In the phys-
ical prototype, a microcontroller was used to implement the controlling logic
for the parts, and the logical communication that takes place between parts is
complex.

One way to progress towards G starting from [20] would be to separate out
the different functions of the single part used in this system into perhaps three
or four different types of part. One part for logical processing, one for movement,
and one or two for connecting/disconnecting other parts. An attractive feature
of the system in [20] is that the swiveling half-cube method for moving parts
around can be used both for translation and rotation of parts.

Implementing a controller for such a system derived from [20] using logical
processing parts containing a simple logical element such as a boolean logic gate
would be challenging without the aid of a simulation model.

4.3 Computation and Construction

Several researchers have attempted to establish criteria that can be used to
distinguish between trivial self-replicating systems such as crystals growing in
solution and fire in a flammable medium and non-trivial systems such as living
cells and von Neumanns self-replicating automaton.

Starting with Burks [15], some researchers have used the capability for univer-
sal computation as the sole distinguishing criterion. Both Herman [9] and Lang-
ton [10] criticise Burks on different grounds. Herman presents a self-replicating
automaton capable of universal computation that seems intuitively trivial, and
Langton argues that the simplest living cells are not capable of universal com-
putation and yet seem intuitively non-trivial.

McMullin [12] gives a detailed critique of Burks criterion and clears up some
of the confusion surrounding the issue of trivial versus non-trivial self-replication
by pointing out that von Neumann’s self-replicating automaton was not designed
as an end in itself, but was part of the answer to a question that von Neumann
posed about the ability of a machine to create other machines more complex
than itself. Therefore, von Neumann was concerned about the class of objects
that his automaton could be programmed to construct.

Researchers interested in the applications of physical self-replication share
the same concern, and in addition are concerned with the complexity of the
component parts of a machine, and the complexity of a machine relative to the
complexity of its component parts.

Logical universality and the capability for universal computation enter this
scene almost incidentally for the following reasons: Firstly a replicator that is
controlled by a universal computer is likely to have a larger constructional capa-
bility than one that is not. Secondly a replicator may not itself contain a universal
computer, but may be capable of constructing one (the SRM described in this
paper is an example of this).

At the present time, a machine’s constructional capability is not so easy to
quantify and hold up for comparison with other machines as its computational
capability, since constructional capability depends on the environment that the
machine operates in. Computational capability depends only on the logical struc-
ture of a system, where as constructional capability can depend on the logical,
kinematical, mechanical and physical structure of a system (i.e. how flexibly a
system can be programmed, the range of its movements, how its parts interact
with each other mechanically, and what materials its parts are made from).

5 Conclusion

A simulation environment has been developed in which a self-replicating machine
has been constructed.

The SRM is a moving programmable constructor made from 23 different
types of part. It is controlled by a looping sequence of instructions contained
within the body of the machine. The SRM uses a special creator part that can
create other parts out of nowhere.

There is some redundancy in the set of parts used by the machine. For ex-
ample, there are 4 types of tile which exert forces, 12 types of tile which perform
arithmetic or combinational logic operations and 3 types of tile that connect or
disconnect other tiles. In choosing the set of tiles used in this paper, a trade-off
had to be made between SRM size (and simulation time requirements) on the
one hand, and tile complexity/redundancy on the other.

The system could be extended to three dimensions, with the advantage that
in three dimensions it is possible to access unit parts (cubes) from six directions
instead of four, and the routing of signals around machines becomes easier. From
the perspective of physical implementation, a three dimensional model poses
some problems. How should parts that are not in contact with the ground be
supported? How can power be routed to parts that are surrounded on all sides
by other parts?

Future work is expected to result in an SRM that uses a greatly reduced
part set, with only one type of tile for each different class of function. The need
for a creator tile will be removed by having the machine forage for parts in a
disorganised collection and testing each part that is found to determine its type.

CBlocks was developed with the aim of creating an environment with a
greater degree of physical realism than cellular automata environments and in
which an SRM made from simple component parts could be constructed. This
aim has been met. An environment called Nodes which uses Newtonian laws of
motion was developed side-by-side with CBlocks in order to explore this aim
further. This is described in [19].

6 Obtaining CBlocks

Software and C++ source code for the CBlocks environment are available at the
following the URL:

http://www.srm.org.uk

The website also contains files needed to simulate the SRM described in this
paper and a more detailed description of the structure of the SRM.

References

1. Arbib, M.A.: Theories of Abstract Automata. Prentice-Hall, Englewood Cliffs, New
Jersey 355–361 (1969)

2. Byl, J.: Self-Reproduction in Small Cellular Automata. Physica D 34 295–299
(1989)

3. Chirikjian, G.S., Zhou, Y., Suthakorn, J.: Self-replicating Robots for Lunar Devel-
opment. IEEE/ASME Transactions on Mechatronics 7(4) 462–472 (2002)

4. Codd, E.F.: Cellular Automata. Academic Press, New York (1968)

5. Drexler, K.E.: Engines of Creation: The Coming Era of Nanotechnology Anchor
Press/Doubleday, New York (1986)
http://www.foresight.org/EOC/
Cited on 25 November 2006

6. Freitas, R.A. Jr.: Report on the NASA/ASEE summer study on advanced automa-
tion for space missions. Journal of the British Interplanetary Society 34 407–408
(1981)

7. Freitas, R.A. Jr., Merkle, R.C.: Kinematic Self-Replicating Machines. Landes Bio-
science, Georgetown Texas (2004)
http://www.molecularassembler.com/KSRM.htm
Cited on 25 November 2006

8. Griffith, S., Goldwater, D. Jacobson, J.M.: Robotics: Self-replication from random
parts. Nature 437 636 (2005)

9. Herman, G.T.: On Universal Computer Constructors. Information Processing Let-
ters 2 61–64 (1973)

10. Langton, C.G.: Self-reproduction in cellular automata. Physica D 10 135–144
(1984)

11. Malone, E., Lipson, H.: Functional Freeform Fabrication for Physical Artificial
Life. Proc. 9th International Conference on the Simulation and Synthesis of Living
Systems. MIT Press, Boston Massachusetts 100–105 (2004)

12. McMullin, B.: John von Neumann and the Evolutionary Growth of Complexity:
Looking Backwards, Looking Forwards... Artificial Life VII: Proceedings of the Sev-
enth International Conference. MIT Press, Boston Massachusetts 467–476 (2000)
http://www.eeng.dcu.ie/ alife/bmcm-2000-01/
Cited on 25 November 2006

13. Moses, M.: A Physical Prototype of a Self-Replicating Universal Constructor. Mas-
ters Thesis, Department of Mechanical Engineering, University of New Mexico
(2001).
http://www.home.earthlink.net/˜mmoses152/SelfRep.doc
Cited on 25 November 2006

14. Mytilinaios, E., Desnoyer, M., Marcus, D., Lipson, H.: Designed and Evolved Blue-
prints For Physical Self-Replicating Machines. Proc. 9th International Conference
on the Simulation and Synthesis of Living Systems. MIT Press, Boston Massa-
chusetts 15–20 (2004)

15. Von Neumann, F.: Theory of Self-Reproducing Automata. Edited and completed
by A.W. Burks. University of Illinois Press, Urbana Illinois 81–82 (1966)

16. Penrose, L.S.: Self-reproducing machines. Scientific American 200(6) 105–114
(1959)

17. Sipper, M.: Fifty years of research on self-replication: An overview. Artificial Life
4(3) 237–257 (1998)

18. Sipper, M.: The Artificial Self-Replication Page (1998-Present).
http://www.cs.bgu.ac.il/˜sipper/selfrep
Cited on 25 November 2006

19. Stevens, W.M.: Nodes: An Environment for Simulating Kinematic Self-Replicating
Machines. Proc. 9th International Conference on the Simulation and Synthesis of
Living Systems. MIT Press, Boston Massachusetts 39–44 (2004)
http://www.srm.org.uk/papers/nodespaper.pdf
Cited on 25 November 2006

20. Zykov, V., Mytilinaios, E., Adams, B., Lipson, H.: Self-Reproducing Machines.
Nature 435 163–164 (2005)

