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The one-dimensional cellular automaton Rule 110 shows a very ample and
diversified glider dynamics. The huge number of collision-based reactions
presented in its evolution space are useful to implement some specific
(conventional and unconventional) computable process, hence Rule 110
may be used to implement any desired simulation. Therefore there is nece-
ssity of defining some interesting objects as: solitons, eaters, black holes,
flip-flops, fuses and more. For example, this work explains the construction
of meta-gliders; for these constructions, we specify a regular language in
Rule 110 to code in detail initial conditions with a required behavior. The
paper depicts as well several experimental collision-based constructions.

1 INTRODUCTION

The present manuscript constitutes a continuation from our previous results
explained at “Gliders in Rule 110” [6]. In this way, we continue utilizing
Cook’s notation to identify gliders and we use as well our regular language
[7] to code phase-based initial conditions.1

1 An explanation of the regular language and electronic file is available from
http://uncomp.uwe.ac.uk/genaro/Rule110.html
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Using the above conventions, the construction of objects in Rule 110
will be discussed and explained. The objects are formed by two or more
collision-based gliders, where their multiple reactions yield the production
of a specific object in the evolution space of Rule 110.

Applying this paradigm, some base objects will be constructed to show
both their utility in procedures explored in our previous work and their
possible potential applications. For example, the objects can be seen as
components whose eventual synchronization realizes a particular task.

One special case in Rule 110 is the presence of soliton reactions [8];
they are relevant to preserve information and for conserving operators in
the implementation of a cyclic tag system [3, 17]. We shall analyze this
phenomenon in binary reactions.

The paper is organized in the following way: Section 2 describes the
construction of meta-gliders, Section 3 explains the composition of large
triangles, Section 4 exposes the definition of solitons and Section 5 studies
the production of several Rule 110 objects. The codification of the regular
expressions (using phases fi i ) defining the whole set of constructions
proposed in this work is given at a final appendix.

2 CONSTRUCTING META-GLIDERS

Several gliders in Rule 110 are able to form meta-gliders by means of a
careful synchronization of different reactions in the evolution space, as a
large lattice in Rule 110.

With de Bruijn diagrams we can find distinct lattices with diverse tiles
(see Figure 8 of [6]). But now the constructions are more complicated
because we need to synchronize various reactions at the same time.

Two examples of meta-gliders are displayed in Figure 1. Figure 1a
shows a triple collision between A, D1 and C1 gliders. The A glider crosses
as soliton and the collision produces the D1 and C1 gliders, something
interesting is that the A glider helps to maintain the other collisions in a
suitable phase adjusting each production.

Figure 1b is more simple, it uses many glider gun’s so to cancel B
gliders by A gliders emitted periodically.

Now we show the construction of three meta-gliders with long period
(Figure 2). Each meta-glider has two evolutions. The first picture (left
evolution) has an evolution with a small initial condition in order to
determine the phenomenon with boundary properties, the following picture
(right evolution) displayed the construction for a space of arbitrary size.

Our first construction is in Figure 2a showing a reaction between a
B glider and an E glider which is almost a soliton, because A and B
gliders are cancelled and the E glider goes on with an extra B glider (left
evolution). In the second picture (right evolution), the regular expression



JCA_0010_MARTINEZ Journal of Cellular Automata January 13, 2007 14:56

RULE 110 OBJECTS AND OTHER COLLISION-BASED CONSTRUCTIONS 3

FIGURE 1
Meta-gliders in Rule 110.

constructs a meta-glider with almost the same soliton effect. Here it is
important to introduce a sequence of ether to establish a suitable distance
for conserving the synchronization. The B glider may just interact in two
ways with the E glider for producing the same result, which facilitates the
construction of this meta-glider using any phase in both gliders.

The second construction in Figure 2b shows a cycle defined by F and
B gliders, producing again a B glider and a F glider. Then the B glider
collides the new F glider yielding another B glider cancelled by an A
glider. In this example it is more difficult to see these collisions but all
of them are conserved, one can see a best reaction-structure giving more
distance mod 4 (by tiles) or mod 14 (by cells) between F and B gliders.

Our third example in Figure 2c is a little bit different and is realized
with A’s, B and F gliders. The phenomenon is particularly interesting
because it can simulate a square-potential wall taking adequate initial
conditions [12]. A particle bounces in the wall without crossing it, then
having the correct phase and distance parameters, the particle crosses the
wall simulating a “tunnel effect.” The B glider may cross one F glider
at least in one collision, this phenomenon is obtained working with the
distances among gliders for controlling the final result.

The production begins with a collision between a F and B gliders,
producing a D1 and a package of A2 gliders, then these gliders collide
regenerating the F and B gliders. In the meta-glider it is clear to see how
the A’s and B gliders oscillate in their central parts, like a membrane
configuration [9].
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FIGURE 2
Meta-gliders with long period.
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FIGURE 3
Periodic and non-periodic meta-glider

Another interesting example is displayed in Figure 3 illustrating a
periodic or non-periodic meta-glider in its construction. The first picture
(left evolution) depicts the periodic behavior with boundary properties and
four reactions. The second picture (right evolution), depicts its non-periodic
behavior with multiple reactions. This example requires a really laborious
codification for the initial condition and it is a good example of synchronizing
collisions for a number of gliders in the evolution space of Rule 110. Thus
we have two parts: the first one by two separated A gliders and a package
of A4 gliders; the second is formed by a B , a package of B2 gliders and
an E glider merged with an E glider.

The production begins with the A and B gliders which should produce
two merged E gliders. But the second A glider coming from the left,
transforms the E into an E glider, and the B2 gliders arriving from the
right yield the A4 and E gliders, leaving the E merged with the E glider.
The package of A4 gliders collide with the E and E gliders returning
to the sequence of B , A, A and B2 gliders, starting a new cycle of
reactions.
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We observe as well that the cycle can be interpreted as a soliton-reaction
because the package of A4 gliders crosses in each collision as two A
gliders, conversely the two A gliders cross as a package of A4 gliders (each
with double period). On the other hand the B and B2 gliders cross like a
soliton the E and E gliders after each collision of double period, and the
E and E gliders return to the B and B2 gliders, i.e., the opposite case.

3 CONSTRUCTING LARGE TRIANGLES

McIntosh has appointed two relevant problems to Rule 110. The first is
characterizing the covering of the evolution space with tiles and the second
is to determine the largest tile produced by collisions in Rule 110 [11].

Brute-force computations looking for ancestors establish initial conditions
to construct the T43, T44 and T45 tiles, and a careful revision of the de
Bruijn diagram for several generations determined that it is not possible
construct tiles greater than T45 after 9 generations; this limit was established
in August 2001 [11]. Later, at December 2002, Cook constructed tiles
with size Tn for 27 ≤ n ≤ 33 through non-periodic sequences in the initial
conditions. Every sequence determines a particular tile and in some cases
the change of one or two bits in the sequence produces an equal or
smaller tile.

We have analyzed this problem an finding that tiles T24, T25, T26, T28, T29

y T30 can be generated by glider collisions. Tiles with a size smaller than
21 appears with more frequency in the evolution space and they easily rise
from random initial conditions. Figure 4 presents a production for each tile.

In order to obtain a tile T26 we need a C1, a F , and an E3 glider
specified by an E and two B gliders, and finally a package of 6B gliders.
In this case, as in other problems in Rule 110, the change of one structure
in only one index induces a complete variation in the final production. For
instance, if the C1 glider is replaced by a C2 or C3 glider, the tile T26

is not composed; only in a very few cases this kind of change yields a
larger tile. To bear a tile T28 we need four spaced C1 gliders, an E and a
B glider for controlling the right chaotic region and generate the tile. In
this case the absence of the B glider in the required phase determines the
full disappearance of T28, not even creating a closer tile.

For getting a tile T29 we require a package of A5 gliders colliding with
two joined F gliders, but a few steps before a B glider interacts with the
second F and a G glider determines the right margin building the T29.

The tile T29 was calculated in 276 generations and when the initial
condition was formulated, an out-of-phase glider produced accidently a tile
T30. Thus the sequence reproducing the T30 is the same that the one for
the T29; just an extra A glider at the left is demanded. Some variations of
this expression may produce tiles T16, T20 and T22.
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FIGURE 4
Producing large collision-based triangles.

However, we can say that in the formation of tiles T29 and T30 there
is a non-proper collision, because there exists a B glider between a pair
of slower F and G glider. In this way we must determine if there is
a production providing the B and G glider for harmonizing a proper
collision.

Open problems are the generation of tiles T27, and T31,...,42 by means
of collisions.
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8 MARTÍNEZ et al.

4 SOLITONS IN RULE 110

Rule 110 can be able of simulating the soliton phenomenon in a natural
way. This one was observed by a systematic analysis making all binary
collisions between gliders [5].

Solitons and collisions in general are applied to realize conventional
or unconventional computation transmitting information [2]. For example,
Cook uses several soliton-reactions in Rule 110 for constructing the cyclic
tag system [3].2

A soliton is characterized by two arbitrary constants determining speed
and amplitude, a variable defines the soliton coordinate in a given time
and the unitary vector determines its polarization (or phase). The special
meaning of solitons is that in a certain way they determine the asymptotic
state of an arbitrary solution. Thus, solitons are stable in the sense that small
changes in its initial conditions yield small changes in its parameters [8].

Different types of soliton-reactions can be constructed in Rule 110 [5].
Packages of solitons can be interpreted as meta-gliders, because we may have
several different gliders interacting as solitons; although the synchronization
is really complicated in many cases. All binary soliton-reactions between
gliders are enumerated in our appendix and they will be discussed in a
next paper.

In this subject we have a special case that we call pseudo-soliton
originated by the reaction F ← B = B ∧ F and F ← B = B ∧ F . Then
B glider is transformed into a B glider which even if conserves its speed,
it does not have the same form. The transformation is possible because B
glider has 1/11 possibilities of returning into a B colliding against a F
glider as Figure 5 shows.

But, we have a limitation in this example because is not possible to
insert other F glider to the left and continue the pseudo-soliton-reaction,
because the second B cannot produce another B glider in any possible
case, thus the restriction is that we have not periodic productions after of
two solitons.

Let us remember that the models until now known in cellular automata
theory, do not have any direct relation with solutions of non-integrated
partial differential equations. Some important results trying to establish
such a relation can be consulted by Kenneth Steiglitz [13, 8]. For example,
multiple collisions of the soliton type between several gliders can help to
construct computable systems, like the Manakov’s model [8] or excitable
models [1]. In the next section we discussed some applications of solitons
for the cyclic tag system.

2 You can see a full simulation of the cyclic tag system in the evolution space of Rule 110 from
http://uncomp.uwe.ac.uk/genaro/Rule110.html section “ cyclic tag system .”
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FIGURE 5
Pseudo-soliton with F , B and B gliders

5 RULE 110 OBJECTS

Many years of research in Life have been dedicated for the search and
construction of different objects, some of them simple and others very
complicated [2, 4]. Several objects found by different investigators in a
number of years allowed finally the specification of a Turing machine
in Life [2] (by Paul Rendell). Therefore the exploration and definition
of simple and complex objects will help to solve open problems in
Rule 110. For example, implementing a Turing machine, self-reproducing
components, intrinsic universal systems and an universal constructor
between others.

The representation in the one-dimensional case is significantly different
that in two or three dimension because we have an auxiliary two-dimensional
evolution space. Nevertheless, the constructions are equally exhibited.
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You can see an ingenious representation by Andrew Wuensche with
animation of rings for the one-dimensional case applying the DDLAB
system.3 All reactions like reflections, eaters, annihilations, solitons, black
holes, fuses and more are totally identifiable (although it is necessary a
previous experience in the operation of one-dimensional cellular automata).

5.1 Black holes
Now we present gliders which periodically absorb gliders, better known
as black holes. In these constructions distances can vary, but the important
thing is to conserve the collision absorbing gliders from left to right.
Figure 6 show six examples, all of them absorbing only A and B gliders.

The first case in Figure 6a illustrates the collision among C3 and
B gliders producing an E glider, the E receives an A glider returning
it into a C3 glider. The distance between A gliders is always mod 3
(according to the ether background) and for the B glider only a phase is
necessary.

The second black hole in Figure 6b is produced between a D1 against a
B glider yielding an E glider, this in turn collides against an A producing
again the D1 glider similar to the previous example. The difference is the
C3 glider instead of the D1.

The third case in Figure 6c is a mixture of the two previous examples.
This black hole oscillates in its central part between C3, E and D1 gliders.

The fourth example in Figure 6d is a more elaborated collision and we
must take care about a suitable distance to obtain the desire construction.
A C2 glider collides against a B producing a D1 glider. Next, an A
collides the D1 producing a small chaotic region that should produce a C2

glider. But a B arriving from the right before time does not allow it and
produces a D1 glider, absorbing the A and B gliders beginning a new cycle
of reactions.4

The fifth black hole in Figure 6e is a collision among C1 gliders against
B gliders producing a C2 that will be quickly transformed. In this case the
arriving A eliminates the C2 glider immediately returning to a C1. In a long
way the sequence of collisions should be: C1 ← B = C2 ∧ A → C2 = C1.

The last black hole in Figure 6f absorbs pairs of A and B gliders. A
package of A2 gliders colliding against a C2 produces a F glider, then a
package of B2 collides with the F returning to the C2.

Up to now, we have not found other black holes absorbing another type
of gliders; suggesting that they will be more rare or sophisticated with a
very long period.

3http://www.ddlab.org/
4 The original cycle must be among C2 and D1 gliders, but with a B glider we avoid the

existence of C2, thus the original production is: C2 ← B = D1 and A → D1 = C2.
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FIGURE 6
Six black holes patterns in Rule 110.
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5.2 Eaters
Rule 110 has gliders which eat other gliders without leaving any rest. For
example, at the cyclic tag system, we can find an object eating gliders.5

In the first case a D1 and a package of A3 gliders delete E gliders in
each collision (Figure 7a). The same phenomenon can be reproduced with
a D2 and A2 gliders as it is seen in Figure 7b.

The third case deletes as well E gliders but now with a C1 and a package
of A5 gliders (Figure 7c). The fourth case in Figure 7d is between a pair
of E’s and an A glider, this one deletes both E gliders and continues its
trajectory with a delay.

Our fifth example in Figure 7e eliminates a pair of C gliders, they are
a C3 and a C2 hitting an E glider. The first collision between C3 and
E generates five B gliders (that will be deleted quickly), besides the C2

produces a D1 after colliding against the B3 gliders returning into the E .
This production is repeated for each pair of C’s forming an E with a
minimal distance of 3e configurations (mod 42) between C gliders.

The sixth eater in Figure 7f is significantly different from the previous
ones because there is an interval needed to synchronize a triple collision
between D1, C2 and E gliders (p+, p0 and p− slopes, see [6]) with an
interval constant growing in an exponential factor of 3ne (for all n > 0)
between each D1 and C2 gliders. Then they are eliminated by an E glider at
each collision. The evolution shows three different collisions, nevertheless,
the final reaction is the same one.

The last eater in Figure 7g is even more complicated. The elimination
of gliders was yielded by a glider of positive slope p+. Thus a D1 eats a
C3 with a F and two B gliders, showing a four-tuple reaction!

Some collisions among gliders cause an annihilation reaction [5]. The
simplest case is the collision between A against B gliders where both
disappear. The same phenomenon may be observed in one of the three
possible collisions between an A against a B glider. Another example is a
pair of C2’s eliminated by a B or a B glider.

5.3 Fuses
Rule 110 has fuse configurations as well, they are produced by consecutive
collisions and some of them are very interesting as Figure 8 illustrates.
One can extract several examples of fuse configurations from de Bruijn
diagrams for 10 generations (see full patterns in Figure 8 from [6]). The
phenomenon is generated when a periodic sequence into a cycle change
to another cycle (or more), then the evolution space is composed by two
different patterns.

5 Seehttp://uncomp.uwe.ac.uk/genaro/Rule110.html, sectioncyclic tagsystem
or [3, 17].
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FIGURE 7
Seven eater patterns in Rule 110.

The first example in Figure 8a is constructed between an A against
a B glider. The collision produces two merged C3 gliders; the important
thing is that the A gliders survival and continue, thus we can always repeat
this process (describing a path among two or more cycles into de Bruijn
diagram; this path has a direct correspondence with a regular expression
of our regular language L R110 [7]).
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FIGURE 8
Seven fuse patterns in Rule 110.

The second fuse in Figure 8b is with an A glider colliding with a
package of two E’s producing a D1 glider and a very small chaotic region.
Later the intervention of other A glider in the right contact point allows to
return to the two E gliders. The A glider arrives at two different phases
with a constant distance of 2e and e configurations, producing in the
process a package of A2 gliders merged by the collision among the D1 and
E gliders.

The third fuse Figure 8c is with a E glider and B gliders arriving from
the right. The first collision produces a package of B3 gliders. The second
B glider produces a C1 glider hitting at the same time against a package of
A4 gliders and with the third B glider we return to the original E glider.
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The fourth example in Figure 8d also produces packages of B3 but now
with C2 and G gliders.

The fifth case in Figure 8e begins with a D1 against a G glider. The
result are a G and a C3 glider. As the G glider is preserved after the
collision, we just added more D1 gliders to obtain this same change. The
distance between each D1 glider is the minimum needed to conserve the
structure. Nevertheless, it is possible to extend the distance to obtain a
clearer presentation of G.

The sixth fuse in Figure 8f is more complicated because we need a
triple reaction with three different slopes, producing a pair of merged C3’s
as in the first fuse. But in this construction, the intervals among F and
E gliders grow by an exponential factor of 2ne (for all n ≥ 0) for each
collision. The reactions may be stopped with the same gliders changing
the phase of the last E without producing other gliders.

The seventh fuse in Figure 8g is another triple collision among D1,
C2 and E gliders producing a C2 with a C3 glider. Again, the important
problem is to adjust the interval among the D1 and the C2 glider.

5.4 Flip-flop
A flip-flop configuration in Life is a stationary periodic structure oscillating
with period two (period three or superior are knowing as blinkers [14]).
This patterns represent as well the value of signals in the design of
circuits.

In order to represent a flip-flop pattern in Rule 110 we need several
interacting gliders, i.e., the implementation is not realized by a unique glider
(as the case of Life with a line of three live cells). For example, Figure 9
displays evolutions that may be interpreted as flip-flop configurations.

In the first example of Figure 9a we initiated with an E2 colliding
a C2 producing an E glider. In order to return into E2 the E collides
against two C2 gliders. In this production there is an exceeding C1. Thus
the flip-flop construction is between E2 → E gliders; although the device
is not reusable.

The second example in Figure 9b illustrates the oscillation between E
and F gliders. To obtain the result we have the E glider colliding with two
C3 producing a F with two stationary C1 and C2 gliders. The C1 hit the
previous F producing a C2 glider. In order to return to E the F must collide
against a C1 glider. Again, the device is not reusable to future reactions.

5.5 Applying some useful Rule 110 objects
In Rule 110 we have some periodic objects that can be useful to construct
a desired process; nevertheless, a search for obtaining additional valuable
objects must be done. Rule 110 offers a wide variety of these objects. An
immediate application of Rule 110 objects was realized by Cook in several
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FIGURE 9
Two flip-flop patterns in Rule 110.

stages for developing the cyclic tag system [3]. Next we displayed some
of them illustrating their constructions.

Figure 10 illustrates two important reactions of the cyclic tag system.
There is a reaction with A4 gliders which are preserved as solitons crossing
an E (other soliton); they maybe will not be immediately taking part of



JCA_0010_MARTINEZ Journal of Cellular Automata January 13, 2007 14:56

RULE 110 OBJECTS AND OTHER COLLISION-BASED CONSTRUCTIONS 17

FIGURE 10
Some Rule 110 objects of the cyclic tag system representing operators and data.
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18 MARTÍNEZ et al.

FIGURE 11
Some Rule 110 objects of the cyclic tag system deleting signals and preparing new data.
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the system and will be subsequently used. A second reaction packing A4

gliders transform each E into C2 gliders, they are interpreted like data
on the tape. The central part is very important to simulate the cyclic tag
system in Rule 110 because it represents the interaction among operators
and data arriving from the right transformed previously by blocks of E’s.

The second evolution (Figure 11), packages E gliders periodically
transformed by a C3 and a pair of C1 gliders. The blocks of E gliders
are converted into other data blocks (consisting of only four E gliders)
representing values in the tape on colliding with the package of A4 gliders.
All reactions begin with a D1 arriving from left.

In both examples we can identify collisions controlled in different stages.
Local or general synchronization is determined by distances and phases.
Although the implementation in Rule 110 is impressive, many details must
be discussed to suitably reproduce the cyclic tag system (you can analyze
the full simulation and multiple details for each stage, see footnote 2).

FIGURE 12
Simulating a simple NOT gate with Rule 110.
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20 MARTÍNEZ et al.

In Figure 11 the first evolution is another example of the cyclic tag
system illustrating that a simple construction can be combined with others to
elaborate a specific operation. It starts with a group of four C2’s representing
data and they are erased by an E yielding two A’s used in other collisions.
In the figure, two blocks of C2 gliders are erased.

The second evolution constructs a cycle between E and a pair of C2 gliders,
producing periodically one A glider. The third evolution is similar but here
there are two different C’s gliders for returning into an E in each collision.

The last example is constructed with two previous knowing reactions.
Figure 12 shows a set of collisions that can be interpreted as a logic not
gate; although the device cannot be employed again.

To modify data on the type with 0’s and 1’s, we utilize the collision of
two pairs of E’s and an A glider. Thus a collision with the A deletes a
pair of E’s representing a 1 → 0 transformation other possibility is that
the pair of E’s crosses as a soliton indicating a 0 → 1 conversion.

6 CONCLUSIONS

Rule 110 have an incredible number of reactions into the evolution space. We
can think about an infinity number of collisions in two ways: with packages
of gliders (g1 → ng2) or with extensible gliders (g1 → gn

2 ). The diversity of
reactions allows to investigate the simulation of several complicated process,
for instance conventional or unconventional computing procedures [1],
solitons (particle machines) [8], self-reproduction [15] and artificial life [14].
In this sense, we have developed an useful computational tool for specifying
any reaction by coding initial conditions with regular expressions [7].

De Bruijn diagrams have been analyzed [10, 16] to calculate some
simple objects, but eventually a new way implementing specialized searches
must be formulated. Another further work is to investigate the potential
applications of the Rule 110 objects on unconventional computing.
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A APPENDIX

A.1 Table 1 – Meta-gliders
Relation of productions constructing meta gliders.

1. {A(f3 1)-3e-A(f2 1)-3e-A(f1 1)}*-e-D1(A,f1 1)-C2(A,f1 1)-{e-
A(f1 1)-e-D1(A,f1 1)-C2(A,f1 1)}*

2. {gun(A,f1 1)-e}*
3. (a) E(A,f1 1)-e-B(f1 1)

(b) {E(A,f1 1)-B(f1 1)-e}*
4. (a) F(A,f1 1)-e-B(f1 1)
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(b) {F(A,f1 1)-e-B(f1 1)-e}*
5. (a) F(H,f1 1)-e-B(f1 1)

(b) {F(H,f1 1)-e-B(f1 1)-e}*
6. (a) A(f3 1)-e-A(f1 1)-e-B(C,f1 1)-e-2B(f4 1)

(b) A4(f3 1)-8e-A(f3 1)-e-A(f1 1)-8e- A4(f1 1)-7e-A(f1 1)-e-A(f2 1)-
2e- B(A,f1 1)-e-B(f1 1)-B(f4 1)-E(B, f2 1)-E(G,f1 1)-5e-
B(C,f1 1)-e- B(f1 1)-B(f4 1)-e-E(A,f2 1)-E(A, f4 1)

A.2 Table 2 – Solitons
Relation ofproductionsgeneratingall thepossible solitonsbybinarycollisions.

Solitons

1. A ↔ E gliders
(a) A(f1 1)-e-E(C,f1 1)
(b) A(f1 1)-e-E(D,f1 1)
(c) A(f1 1)-e-E(E,f1 1)
(d) A(f1 1)-e-E(H,f1 1)

2. A ↔ G gliders
(a) A(f1 1)-e-G(A2,f1 1)

3. C1 ← E and C1 ← F gliders
(a) C1(A,f1 1)-e-Er(A,f1 1)
(b) C1(A,f1 1)-e-E(D,f1 1)
(c) C1(A,f1 1)-e-F(A,f1 1)

4. C2 ← E and C2 ← F gliders
(a) C2(A,f1 1)-e-E(A,f1 1)
(b) C2(A,f1 1)-e-F(B,f1 1)

5. F ↔ B gliders
(a) F(A2,f1 1)-e-B(f1 1)

6. F ↔ E gliders
(a) F(A,f1 1)-e-E(A,f1 1)
(b) F(A,f1 1)-e-E(C,f1 1)
(c) F(A,f1 1)-e-E(D,f1 1)
(d) F(A,f1 1)-e-E(E,f1 1)
(e) F(G,f1 1)-e-E(A,f1 1)
(f) F(G,f1 1)-e-E(B,f1 1)
(g) F(G,f1 1)-e-E(H,f1 1)

Pseudo-soliton

1. F ← B ← B gliders
(a) F(G,f3 1)-2e-F(A,f1 1)-e-B(f1 1)-5e-B(B,f4 1)
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A.3 Table 3 – Large triangles
Relation of productions yielding large tiles by collisions. Tiles Tn<20 are
found in the list of all the binary collisions between gliders [5].

T20: D1(A,f1 1)-e-C2(A,f1 1)-e-E(C,f1 1)-2e-2B(f3 1)
T21: A(f3 1)-4e-D2(C,f1 1)-C2(B,f1 1)-2e-B(f1 1)-4B(f2 1)
T22: D1(A,f1 1)-e-C2(A,f1 1)-e-E(C,f1 1)-2e-4B(f3 1)
T23: D2(B,f2 1)-D2(A,f4 1)-8e-E(B,f1 1)-10B(f4 1)
T24: C3(B,f1 1)-C2(A,f1 1)-C2(A,f1 1)-e-G(A,f1 1)-G(C2,f1 1)
T25: D2(B,f2 1)-D2(A,f4 1)-5e-E(B,f1 1)-11B(f1 1)
T26: C1(A,f1 1)-2e-F(A,f1 1)-e-E(D,f1 1)-2B(f1 1)-2e-6B(f4 1)
T28: C1(B,f1 1)-C1(A,f4 1)-C1(A,f1 1)-C1(B,f1 1)-e-E(D,f1 1)-2e-B(f3 1)
T29: A5(f1 1)-6e-F(B,f1 1)-F(G,f1 1)-B(f4 1)-G(F,f4 1)
T30: A(f1 1)-e-A5(f1 1)-6e-F(B,f1 1)-F(G,f1 1)-B(f4 1)-G(F,f4 1)

A.4 Table 4 – Objects
Relation of productions specifying Rule 110 objects.

Black holes

1. {A(f2 1)-3e-A(f2 1)-3e-A(f3 1)-3e-A(f1 1)-3e-A(f2 1)-3e-A(f1 1)-
3e}*-C3(A,f2 1)-B(f3 1)*

2. {A(f2 1)-2e-A(f3 1)-2e-A(f1 1)-2e}*-D1(A,f1 1)-{e-B(f1 1)}*
3. {A(f1 1)-3e}*-C3(f1 1)-B(f3 1)*
4. {A(f1 1)-3e}*-C2(A,f1 1)-B(f1 1)-e-{2e-B(f1 1)-2e-B(f3 1)}*
5. {A(f1 1)-e}*-e-C1(A,f2 1)-{B(f2 1)}*
6. {8e-A2(f1 1)}*-e-C2(A,f1 1)-3e-B2(f4 1)-3e-B2(f3 1)-4e-B2(f2 1)

Eaters

1. D1(B,f2 1)-e-E(A,f1 1)-E(A,f3 1)-E(B,f1 1)-E(A,f1 1)-E(A,f3 1)-
E(B,f1 1)-E(A,f3 1)-E(A,f2 1)

2. D2(A,f1 1)-E(A,f1 1)-E(C,f3 1)-E(A,f3 1)-{E(B,f3 1)-E(A,f2 1)}*
3. C1(A,f1 1)-e-{E(C,f1 1)-E(D,f1 1)-E(B,f1 1)-E(C,f1 1)-E(E,f1 1)-

E(D,f3 1)}*
4. A(f1 1)-{2e-E(A,f1 1)-E(G,f4 1)}*
5. {3e-C2(A,f1 1)-C3(A,f1 1)}*-e-E(B,f1 1)
6. D1(A,f1 1)-9e-C2(A,f1 1)-D1(B,f2 1)-3e-C2(A,f1 1)-D1(B,f2 1)-e-

C2(A,f1 1)-e-E(A,f2 1)
7. D1(A,f3 1)-e-C3(A,f2 1)-F(A,f1 1)-2e-2B(f1 1)-C3(B,f1 1)-3e-

F(D,f3 1)-13e-2B(f4 1)

Fuses

1. A(f1 1)-{3e-B(A,f1 1)-3e-B(B,f1 1)-3e-B(C,f1 1)}*
2. {A(f3 1)-2e-A(f1 1)-e}*-E(C,f3 1)-E(D,f4 1)
3. E(A,f1 1)-{B(f3 1)-B(f2 1)-e-B(f1 1)-e-B(f4 1)}*
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4. C2(A,f1 1)-G(F,f1 1)-G(C,f2 1)-G(E,f4 1)-G(A,f2 1)-G(A2,f1 1)-
G(A,f1 1)-G(E,f2 1)-G(B,f3 1)-G(E,f1 1)

5. {D1(A,f1 1)-e}*-G(H,f1 1)
6. A(f1 1)-4e-F(H,f1 1)-e-E(G,f3 1)-F(A,f1 1)-2e-E(C,f3 1)-e-

F(E,f1 1)-4e-E(H,f1 1)
7. D1(A,f3 1)-5e-C2(A,f1 1)-D1(B,f3 1)-2e-C2(B,f1 1)-D1(A,f1 1)-e-

C2(A,f1 1)-e-E(A,f1 1)

Flip-flop

1. {3e-C2(B,f1 1)-C2(A,f4 1)-3e-C2(A,f1 1)}*-e-E(A,f1 1)-B(f1 1)
2. {e-C1(A,f1 1)-2e-C1(B,f3 1)-C3(A,f1 1)}*-e-E(A,f1 1)

Computational objects

1. A4(f3 1)-13e-A4(f2 1)-13e-A4(f1 1)-e-E(B,f1 1)-e-E(D,f3 1)-2e-
E(C,f1 1)-2e-E(H,f2 1)-2e-E(E,f1 1)-2e-E(C,f1 1)

2. D1(C,f3 1)-e-E(B,f1 1)-E(C,f1 1)-E(D,f1 1)-e-E(B,f1 1)-E(D,f1 1)-e-
E(B,f1 1)-e-E(H,f1 1)-E(B,f1 1)-e-E(D,f1 1)-e-E(B,f1 1)-E(D,f1 1)-
e-E(B,f1 1)-e-E(H,f1 1)

3. {4e-C2(A,f1 1)-e-C2(B,f1 1)-e-C2(A,f1 1)-e-C2(A,f1 1)}*-e-E(C,f1 1)
4. {2e-C2(A,f1 1)-e-C2(B,f1 1)}*-e-E(A,f1 1)
5. {3e-C2(B,f1 1)-C1(A,f1 1)}*-e-E(B,f1 1)
6. A(f1 1)-2e-E(A,f1 1)-E(G,f4 1)-2e-E(A,f1 1)-E(H,f1 1)-2e-

E(H,f1 1)-E(G,f1 1)-2e-E(D,f1 1)-E(B,f4 1)-2e-E(D,f1 1)-E(C,f1 1)-
2e-E(B,f1 1)-E(H,f4 1)-2e-E(A,f1 1)-E(G,f4 1)


