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Abstract

The properties of oscillating cuspoid integrals whose phase functions are odd and
even polynomials are investigated. These integrals are called oddoids and evenoids
respectively (and collectively, oddenoids). We have studied in detail oddenoids
whose phase functions contain up to three real parameters. For each oddenoid,
we have obtained its Maclaurin series representation and investigated its relation
to Airy-Hardy integrals and Bessel functions of fractional orders. We have used
techniques from singularity theory to characterise the caustic (or bifurcation set)
associated with each oddenoid, including the occurrence of complex whiskers. Plots
and short tables of numerical values for the oddenoids are presented. The numerical
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Hobbs, Comput. Phys. Commun. 132 (2000) 142-165].
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1 Introduction

This paper is the third in a series [29,30] concerned with the numerical evalua-
tion and properties of oscillating integrals. In our first paper [29], we described
a FORTRAN 90 code, called cusPINT, which was written for the numerical
computation by quadrature of the cuspoid canonical integrals

n—2

Cnla) = /O:o expli(u™ + Zl a;u?)|du, n=3,4,5,... (1)

and their partial derivatives, where o = (a1, g, ..., ,_3) is a vector of real
numbers.

CUSPINT implements a novel adaptive algorithm, which chooses contours in
the complex u plane that avoid the violent oscillatory and exponential natures
of the integrand and modifies its choice as necessary [29]. This adaptive con-
tour algorithm has the advantage that it is relatively easy to implement on a
computer, is efficient, and provides highly accurate results.

Our second paper [30] showed how a modified version of CUSPINT could be
used for the numerical evaluation of other types of oscillating integrals; in
particular we studied the bessoid canonical integral

Ja,y) = [ dolywuexpli(u’ + ou?)ldu (2)

where Jy(e) denotes the Bessel function of order zero. The bessoid integral
arises in the theory of axially symmetric cusped focusing [4,30,31,38,40, p.402].
In reference [19], two of us (CAH and JNLC) have provided an overview
of the research reported in [29,30]. Gil et al. [22] have emphasised recently
that quadrature methods are of great importance for the evaluation of special
functions.

The purpose of this paper is to investigate the properties of two classes of
oscillating integrals, which we will call oddoids and evenoids. The (real) oddoid
integrals of order £ = 1,2, 3, ... are defined by
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o0 ) t2k:+1 k t2j—1
Ok(a):/ooexp S oy +jglaj2j7_1 dt (3)

00 t2k+1 k t2j71
:2/ cos —— | dt
0 2k+1+§aj2j—1

whereas the (complex) evenoid integrals of order k£ = 1,2, 3, ... are defined by

00 12k+2 koo 42
Ek(a):[wexp [i <2k+2 +j§:jlaj2—j>] dt (4)
00 12k+2 ko 42
:2/0 exp li(2k+2+]§aj2—j>]dt

where a = (ay, ag, ..., ag) is a vector of real numbers.

The “odd” and “even” parts of their names arise because the polynomial
phases in the exponential functions of the integrals Ok(a) and Ej(a) are odd
and even functions of ¢ respectively, whereas the “oid” indicates their con-
nection with the unfolding of a cuspoid singularity. When we need to refer to
both classes of integrals, we will use the noun oddenoids (not to be confused
with adenoids).

Although Oy (a) and Ej(a) are special cases of the cuspoid canonical integral
(see Section 2.1), it is often convenient to consider them as forming sepa-
rate classes of canonical integral, because the odd-ness or even-ness of their
integrand phases is usually enforced by symmetry in practical applications.

We will be particularly concerned with cases where the orders of Og(a) and
Ex(a) have the values £k = 1,2 and 3, since it is very difficult to visualise
integrals depending on more than three real parameters.

1.1 Oddenoids of order k =1

The definition (3) shows that the first oddoid integral
00 3
O1(a1) = / exp li <§ - aﬁ)] dt = 27 Ai(ay) (5)

is proportional to the regular Airy function, Ai(a;) — also sometimes called
the fold canonical integral when the terminology of elementary catastrophe



theory [43,51] is used for the phase of the integrand. The properties and many
applications of the Airy function are well known [1,39,47], and O;(a4) is only
briefly considered in this paper.

The leading evenoid integral is obtained from the definition (4)

Ei(a)) = /_ °:o exp li (% + aé)] dt (6)

which shows that Fj(a;) is related to the Pearcey integral (or cusp canonical
integral [51]), Cy(a1, o), as a special case. The integral (6) arises in the theory
of cusped focusing [2,5,9,10,12-14,21,27,40,41].

1.2 Oddenoids of order k = 2

The oddoid integral of order two is given by

oo £ t3
02(0,1,0,2) = / exp [1 (g + Cng + aﬂf)] dt (7)

-0

It is a special case of the swallowtail canonical integral [51], Cs(ay, ao, ai3).
The integral (7) arises in the semiclassical theory of bound-continuum Franck-
Condon factors [17,32] and in the theory of scattering processes in intense laser
fields [33,34].

The corresponding evenoid integral is

o0 16 t t2
Ey(a1,az) = / exp [i (g +G'QZ +01§)] dt (8)

—0o0

which is a special case of the butterfly canonical integral [51], Cg(ay, g, a3, ag).
Main [36] and Fab¢ié et al. [20] have shown that this integral arisies in the
semiclassical theory of quantum spectra.

1.3 Oddenoids of order k =3

The definition (3) shows that this oddoid integral has the representation



00 t7 t5 t3
Os(a1, as,a3) = / exp li <? + a3g + a2§ + aﬂf)] dt (9)

which is a special case of the wigwam canonical integral, C7 (a1, s, az, g, as)
[51].

Finally, the evenoid integral of order three is given by

00 t8 t6 t4 t2
Es(a1, a2, a3) =/ exXp li <§+a3€+a22+a15ﬂ dt (10)

It is a special case of the star canonical integral [51], Cs(ay, ag, a3, o, as, ap).
The integrals (9) and (10) arise in general theories of short wavelength scat-
tering, eg. [10,11,18,28,37].

Note: All the integrals (1)—(10) are conditionally convergent. Also, we do not
consider oddenoid integrals of order zero, since Oy is proportional to a Dirac
delta function of unit argument

O = / ” exp(it)dt = 276(1)

and the evenoid integral of order zero can be explicitly evaluated

Ey, = /O; exp (it2/2) dt = (2m)Y2 exp(ir/4)

In section 2, we derive some useful properties of the oddenoids for £ =1, 2, 3,
in particular their Maclaurin series expansions. We also show how the odd-
enoids, for special values of their parameters, can be related to Airy-Hardy
integrals and hence to Bessel functions of fractional orders. Section 3 derives
the (non-standard) caustics associated with the oddenoids using techniques
from singularity theory. We show that each oddoid and evenoid of the same
order has the same caustic. Our analysis allows for the coalescence of both real-
and complex-valued critical points, the latter giving rise to complex whiskers.
In section 4, we report plots and short tables of numerical values for odde-
noids with £ = 1, 2, 3, computed using CUSPINT. Our concluding remarks are
in section 5.



2 Properties of Oi(a) and E(a)

This section derives some properties of the oddenoids that are useful for their
numerical evaluation.

2.1 Relation of the oddenoids to the cuspoid canonical integrals

The Ok(a) and Ex(a) are special cases of the cuspoid oscillatory integral de-
fined by equation (1). The C,(«) have been studied in refs [8,11,16,18,29],
where many references to earlier research can be found.

To obtain the oddenoids, we first make the change of variable u = t/n'/" in
the integral (1). This gives

1 fo's) ) {n n—2 t]
‘]:

We then proceed as follows:

(a) To obtain the O(a) (where n = 2k + 1), multiply equation (11) by n'/™,
set all the ay; for j =1,2, ..., (n — 3)/2, to zero and put

(2i-1)/n

(b) To obtain the Ej(a) (where n = 2k + 2), multiply equation (11) by n'/?,
set all the ay;_; for j =1,2,..., (n — 2)/2, to zero and put

Q-1 = i=1,2,...,k

i=1,2,..k

2.2  Maclaurin series expansions for the oddenoids

The Maclaurin series for Og(a) and Ej(a), for specific values of k, can be
derived from the Maclaurin series for C,(«). This series has been given for
arbitrary n in [10]. The technique used in [10] is to write Cy,(«) as the sum of
two semi-infinite integrals. Then the two rays from 0 to co are replaced by two
rays in the complex u plane, with the help of Cauchy’s theorem and Jordan’s
Lemma, thereby producing two absolutely convergent integrals. The exponen-
tial integrands are next expanded in multiple power series, the summation and



integration signs can be safely interchanged and the resulting Maclaurin series
expressed in terms of gamma functions, I'(e) [46].

All the Maclaurin series given below converge for all values of ay, as, ...; they
provide an alternative way to compute numerically the oddenoids. Previously
such series representations were most useful for small |a;|, |ag|, -.., because of
cancellation and slow convergence when the computations were performed us-
ing single or double precision arithmetic. However, the availability of arbitrary
precision software means that Maclaurin series are now a useful computational
tool for a wider range of parameter values.

From equations (4.1)—(4.10) of [10] and the manipulations described in Section
2.1, we obtain the following Maclaurin series for the oddenoids after simplifi-
cation.

2.2.1 Qddenoids of order k =1

atl a1+ n T
O1(aq) 32/32 3/F( 3 )cos<g(1+4n)) (12)

Dividing the series (12) by 27 gives us a standard series representation [47,
p.11, equation (2.26)] for Ai(a;) — see also equation (5).

Ei(aq) 21/2 Z (1 + 2n> exp (%(1 + 6n)) (13)

2.2.2 Oddenoids of order k = 2

Os(a1, a2) = 54/5 Z Z 5

n=0m= nlm!
X €os (17T_0(1 +6n + 8m)> (14)

= = 07 a3 5(”+3m)/ F(1+n+3m>

61/6 > & af af 3mt2m)/3 1 4 9n 4+ 4m
Ey(a1,a9) = —— Z Z n! m! 2 2n+4m)/3r ( 6 )

X exp (%(1 +8n+ 10m)> (15)



2.2.8 Oddenoids of order k = 3

00 00 00 0’711 agn ag 7(n—|—3m+5p)/7 1+n+3m-+5p
Os(ay, ag,a3) = 76/7 Zo ZOZ%;@; gm5p ( 7 )
n=0 m=0 p=

X cos (1”—4(1 +8n + 10m + 12p)) (16)

Es(a1,a2,a3) =

o oo oo
ay ay' a3 1 1+2n+4m+ 6p

X exp (E(l +10n + 12m + 14p)) (17)
Note: an oddenoid of order k£ has a k-tuple series representation.

2.8  Value of the oddenoids at the origin

We can evaluate the oddenoids at the origin, a = 0, with the help of the result
[24,45]

o0 1 1
/ exp(fiv")du = =T (—) exp (:I:il) , n=234,.. (18)
0 n o \n 2n

We then obtain from the definitions (3) and (4)

O0) = G+ 1)22ic/<2k+1)F (2k1+ 1) co8 lm] (19)

and

9 1 ) ™
Ek(O) = (2k n 2)(2k+1)/(2k—|—2) r <2k + 2) P [12(2k7+2)] (20)

As a check on equations (19) and (20), we note that they reduce to the leading
terms of the Maclaurin series (12) — (17) for k£ = 1,2, 3.



2.4 Relation of the oddenoids to Airy-Hardy integrals

The oddenoids, for special values of their parameters, can be related to Airy-
Hardy integrals, which in turn can be expressed in terms of Bessel functions of
fractional orders [25,48,47, Chap. 6.1]. This provides an alternative numerical
procedure for the evaluation of the oddenoids in this special case.

We first need the following results given by Watson [48]. Define for positive
or negative a(# 0)

1 1 1 4a
Tn(t,a) :tn2F1 <—§n,§—§n,1—n,—t—2) a;éO

Evaluation of the hypergeometric function for n = 3,4, ..., 8 results in

Ts(t,a) = t* + 3at

)
t,a) = t* + 4at? + 242
t,a) = t° + 4at® + ba’t

b (21)
)
)
)

t,a) = t% + 6at* + 9a*t? + 2a®

t,a) = t7 + Tat® + 14a%t3 + 7a3t

(
(
(
(
(
(

Ty t® + 8at® + 20a’t* + 16a*t* + 2a* |

t,a

It can be seen that the polynomials in equation (21) are special cases of the
integrand phases for the oddenoids, as described in section 1. Airy-Hardy
integrals have the T,,(¢,a) as their integrand phases and can be evaluated in
terms of Bessel functions of fractional orders [48]. We will consider the cases
n = 2p+ 1 and n = 2p, for p a positive integer, separately.

(a) The case n = 3,5, 7, ....

The Airy-Hardy cosine integral for n = 2p 4 1, where p is a positive integer,
is given by [48]

Chy(a) = /Oo cos [Ty, (t,a)] dt

0
m|al*? y I 1 (2a"/2) — 11 (2@"/2) a>0

~2nsin(r/2n) | g (2la"?) + J1 (2a/™?) a <0 22)

1
n

where J, () is a Bessel function of the first kind and I, (z) is a modified Bessel



function of the first kind.

(b) The case n =4,6,8, ...

Watson [48] has derived the following results for the Airy-Hardy cosine and
sine integrals when n = 2p for p a positive integer (N.B. valid for both a > 0
and a < 0),

1/2

Cho(a) = — ™4

~ 2nsin(7/2n) [J_% (2‘a|n/2) — sign(a)J1 (Q‘G‘R/Z)] (23)

and

Shp(a) = /Ooo sin [T, (¢, a)] dt
la|\/?

™ 2n.cos(m/2n) [J_% (2‘a|n/2) + sign(a)J1 (2|a‘n/2)] (24)

from which it follows that

Ehn(a) = /0 ~ exp [iTh (¢, a)] dt

7T|a| [eiw/QnJ_% (2|a‘n/2) + Sign(a)efiw/%(]% (2|a|n/2)]

(25)

~ o sin(m/n)

Note: equations (22)—(25) in the limit @ — 0 become special cases of equation
(18), upon using the following results for n = 3,4, 5, ...

1 1
lim z'/2J_ (236"/2) =lim 2?1 . (Qx"/2) =-T (—) sin (z)
z—0 z—0 n s n n

lim 2/ (235”/2) = lim T (2:c"/2) =0

z—0

3=

We now use equations (22) and (25), together with the change of variables
described in section 2.1, to evaluate the oddenoids for £ = 1,2, 3 in terms of
Bessel functions.

10



2.4.1 Oddenoids of order k =1

Equation (22) expresses O;(a) in terms of Bessel functions of order +1/3,
which is simply related to a well-known result for the regular Airy integral,
since O1(a) = 2w Ai(a) (see [47], p.20, equations (2.79) and (2.80)).

For the k£ = 1 evenoid, we obtain from equation (25)

Ei(a) = %ﬂa|1/2 exp (—ia2/8) [ei“/Sin (a2/8) — sign(a)e‘i”/SJi (a2/8)(] |
26

E;(a) can also be written [13] in terms of a parabolic cylinder function, D, (z),
of order —1/2, namely

1 1 e~ i"/4q
Ei(a) = 2472 exp (—1§a2 + 1§7r) D_s ( 512 > (27)

where D_1 (z) has the integral representation

(2) = M /oo exp (—%82 — zs) s 1/2ds (28)

wi/2 0

D

1
2

which is a special case of [35, p.328].

Ny

D,(z) = % /OOO exp (—%SQ - zs) s7"7'ds Re(v) <0

Equations (26)—(28) provide two alternative schemes for the numerical compu-

tation of E(a). One by evaluation of Bessel functions of orders +1/4 [12,13];
the other by quadrature of the integral (28).

2.4.2 Oddenoids of order k = 2

Equations (22) and (25) respectively yield

20,5/2 2a5/2
02 <a:_2 a) _ 7T|CI,‘1/2 y {Ié (31/245) - I% (m) a>0 (29)
9’ 31/25 si 10 2|al?/? 2|a|5/
sin(7/10) J_s (31/245) +Ja (31/245) 0



and
3
Ey [ —a? ):
2(16“’“
1 1/2 —id’® in/12 |af? . —im/12 laf?
§7r|a\ exp (—192 et 199 — sign(a)e J1 192 (30)

2.4.8 Oddenoids of order k = 3

We obtain for £k = 3 the results

o’/ a?/
o <a3 6a2 a) 7r|a|1/2 y {I% (5%/27;5) —I% (5%/27;5) a>0
3| 755 o5 = :
1257 25" 51/27s 14 2|a|"/? 2|a|"/?
in(m/14) J_% (5172875) + J% (5172875) a<0

(31)

and

a® 5a®
E (L 2% ) =
3(54’ 18’“)

7la|'? exp (—ia*/5184) oI /16 1
6'/24 sin (7 /8) N

ool=

°) —sign@e 0, ()| )
5184 ) — DEMAC ATy

It can be checked that, in the limit a — 0, equations (26), (29)—(32) reduce
to the formulae reported in section 2.3 for the oddenoids evaluated at a = 0.
In addition, for the parabolic cylinder function representation (27) of Fi(a),
we can use [35, p.324].

F(%)?V/Q

PO=T0—0m

(33)

with v = —1/2 to obtain E;(0).
2.5  Differential equations for the oddenoids

O1(a1) satisfies the same linear differential equation as the regular Airy func-
tion, since O1(ay) = 2w Ai(a;). We have therefore

12



d201 (al)
Ta% = alOl(al) (34)
Thus another numerical method (see e.g., [15]) for evaluating O;(a;) would
be to integrate equation (34) from a; = 0 to the value of a; of interest, using
the Maclaurin series representation (12) to find the initial conditions, O;(0)
and O}(0), where the prime indicates differentiation with respect to a;.

In [16] it has been shown that this method can be generalised, i.e., a set of dif-
ferential equations can be written down satisfied by the Cy, (a1, ag, ..., a, 2),
using the Maclaurin series to give initial conditions. In particular, this ap-
proach has been used to evaluate the Pearcey [12,13,15,26] and swallowtail
[15] canonical integrals, Cy(y,z) and Cjs(z,y,x), respectively. For the odde-
noids, it is clear that the differential equations they satisfy can be derived
from the cuspoid equations as special cases. However, we do not derive the
oddenoid differential equations here (except for Ej(a;)), since we have not
used this approach to compute numerical values in the present paper.

The reasons we do derive the differential equation for Fi(a;) are (a) it is
easily obtained from the theory of Airy-Hardy integrals, already presented in
section 2.4, and (b) a useful identity for F;(a;) can be readily deduced from
the differential equation. In the remainder of this section, we will write a rather
than a; for notational simplicity.

From section 2.4, the relation between the evenoid, F1(a), and the Airy-Hardy
integral Fhy(a), is

Ei(a) = 2/ exp (-%) Eh, (%) (35)

Now, it is known [48] that for n = 4,6,8, ..., both Ch,(a) and Sh,(a) (and
hence also Eh,,(a)) are annihilated by the differential operator d?/da®+n?a"2.
Hence, Fhy(a/4), which we will temporarily write as ¢ (a), obeys

d*y(a)
da?

+ Ew(“) =0 (36)

Next we change the dependent variable in equation (36) from v (a) to E;(a)
using equation (35), to obtain

d?Ei(a) iadEi(a) i
= S ag T ZEl(a) =0 (37)

13



Equation (37) is the linear differential equation satisfied by the k£ = 1 evenoid.

Equation (36) will be recognised as a Schrodinger equation for a parabolic
potential energy barrier, with the total energy equal to the barrier maximum.
We now calculate the flux associated with this Schrédinger equation, which
will yield a useful identity for F;(a) and its first derivative.

First we multiply equation (36) by ¢*(a) giving

d*y(a)
da?

*(a) + g% (@v(a) =0 (38)

Second we subtract from equation (38) its complex conjugate, which leads to

d?y* N
v(a) D e DD (39)
or equivalently
d d¢*(a) . \do(a)] _
da ¥(a) da —¢*(a) da =0
which on integration gives the result
P(a) dwd*éa) —¥*(a) dﬁia) = constant (40)

Third we use equation (35) to change from v (a) = Fh4(a/4) to Ei(a) in
equation (40) obtaining

m K%é“) + %) El(a)] — constant (41)

Now, the identity (41) is true for all values of a. We can determine the con-
stant by evaluating the lhs at @ = 0 with the help of the Maclaurin series
representation for Ej(a). From the Maclaurin series (13), we find F;(0) =
['(1/4) exp(in/8)/2'/2 and E}(0) = I'(3/4) exp(i77/8)/2"/2. Hence, after sim-
plification, the constant is found to be —7r /2. Equation (41) then becomes

Im Kdiléa) + %) Ey (a)] - —g (42)

14



Equation (42) is an identity satisfied by E;(a) and its first derivative. It pro-
vides a useful check on any numerical method used to compute these quanti-
ties. Finally, we note that the derivation of the identity (42) given above using
Airy-Hardy integrals is completely different from that in [15] for the analogous
identity obeyed by Cy(y = 0, x).

3 Properties of the caustics for Oy(a) and Ei(a)

In this section we shall use techniques from singularity theory to derive re-
sults for the caustics (or bifurcation sets) of Oy(a) and Ej(a). We then ex-
amine the cases £k = 1, 2,3 in more detail. Caustics play an important role in
understanding structure in oscillating integrals such as the Oy (a) and Ej(a)
[11,28,37,42,44,50]. For general notation and basic results from singularity the-
ory we refer to [6].

3.1 Some concepts from singularity theory

The phase functions of the evenoids can be written in the form f(u?) for some
function germ f : K,0 — K,0 (where K denotes R or C as appropriate).
Similarly, functions consisting entirely of odd powers of u can be written in
the form uf(u?) for some function germ f : K,0 — K, 0. Such odd functions
are known as functions with Z,-symmetry [23, Chap. 6].

Note: A function germ is an equivalence class of functions, where two functions
are said to be equivalent if they are equal on a neighbourhood of the origin.
This allows us to concentrate on behaviour around the origin without being
distracted by behaviour further away. We can take any member of the equiv-
alence class to be a representative of that function germ, and in general think
of their representatives just like functions, but with the proviso that we are
only considering their local behaviour. From now on we will refer to functions
where strictly we should write function germs, as is usual in the literature [6].

The set of all functions of the form f(u?) is a ring, denoted O,2. Note that
a ring of functions is a set of functions which is closed under addition and
multiplication, obeys the usual rules of algebra for addition and multiplication,
has a zero element and additive inverses in the set. In the present case we are
just interested in the fact that the set of functions consisting of even powers of
u is closed under addition and multiplication by other functions which consist
of even powers of wu.

The set of all functions of the form wuf(u?), denoted by uQ,:, is a module

15



over the ring O,z [23, Chap. 6]. A module over a ring is a set which is closed
under addition and under scalar multiplication, where the scalars come from
the ring. In this case, the module is the set of all functions consisting of odd
powers of u, which is clearly closed under addition and under multiplication
by functions of the type f(u?).

We can now use standard classification results (see Chapter 3 of [6]) to classify
O,z and p.324 up to R-equivalence.

Note: Functions f,g € O, (respectively, uf,ug € uQ,2) are R-equivalent if
there exists a diffeomorphism ¢ : K,0 — K, 0 such that f(u?) = g(¢(u)?)
(respectively, uf(u?) = ¢(u)g(é(u)?)). That is, we consider two functions to
be equivalent if a smooth change of co-ordinates in the variable v can change
one into the other.

Using the standard classification results [6], in the even case we get the normal
form as u?**2 for k > 0, with miniversal unfolding in O,> given by

Fé(u,a) = v 4 qpu®* + - - + agu? + a1u? (43)

and in the odd case the normal form is u?¢+!

unfolding in uQ,2 given by

for £ > 0, with miniversal

F°(u,a) = v + qpu® ™t + -+ agud + aqu (44)

Note: An wunfolding of a function f is a family of functions containing f.
Certain unfoldings contain all functions close to f (in a precise sense — see
Chapter 6 of [6]), and we call these versal unfoldings. A versal unfolding with
the minimum number of parameters needed to contain all functions close to
f is called minwversal.

3.2 Properties of the caustic

We would like to understand the caustic, or bifurcation set, of F'(u,a), (where
F denotes F*° or F° as appropriate) given by

Bifg F = {a € R*: Ju € R with F,(u,a) = F,,(u,a) = 0} (45)

where the subscripts represent partial differentiation with respect to u. The
roots of the first equation, Fy(u,a) = 0, defines the (real or complex) critical
points, and the second equation, F,,(u,a) = 0, is the condition that two or
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more critical points are equal. Bifg F' is defined by eliminating v from the two
equations, subject to u being real. Bifg F' may be different from

Bif F = {a € RF : 3u € C with F,(u,a) = F,,(u,a) = 0} (46)

which allows for two or more complex critical points to be equal. Bif F' may
be easier to calculate than Bifgr F'; clearly Bifg F' C Bif F.

Remark: Poston and Stewart, in Chapter 4 of [42], denote as complezx whiskers
those parts of Bif ' coming from repeated complex critical points. In general,
complex whiskers are sets of higher codimension than the rest of the hypersur-
face Bif F', as being a repeated complex root of F,(u,a) = 0 imposes further
conditions on their real and imaginary parts (since complex roots must neces-
sarily appear in complex conjugate pairs for real a). However, in our examples
we have functions F' with a high symmetry, which forces their bifurcation sets
to be of higher codimension than one might generally expect for a polynomial
of degree 2k + 1 or 2k + 2. We find that the subsets of Bif F' corresponding to
real and complex repeated roots have the same codimension for our examples.

We will study the bifurcation sets for the even and odd cases by relating
the unfoldings (43) and (44) to a certain function, denoted G(z,a), whose
bifurcation set is already known. First we rescale the miniversal unfoldings
(43) and (44) to be consistent with the polynomial phases in the integrals (4)
and (3) respectively.

u2k:—|—2 u2k 4 2

U U
Fe = — —_— - — — 47
(u,a) 2k+2+ak2k+ +CL24+G12 (47)
2kt u2k—1 ud
F° = — 48
(u,a) 2]{:+1+ak2/€—1+ +a23+a1u (48)
Now consider the function
k+1 k 2
G(z,a) = kz+1 +ak%+...+a2%+a1z (49)

This is a versal unfolding of an Ay singularity (see Chapter 6 of [6]), but is not
a miniversal unfolding as it includes the term ay2*/k, and G(z,a) contains
the same k parameters aq, ag, ..., ax as do F(u,a) and F°(u, a).

Notice that in the even case, F¢(u,a) = uG,(u? a) (where we set z = u? after

differentiation) and so F¢, (u,a) = 2u?G,,(u? a) + G,(u?, a), whereas in the
odd case, F?(u,a) = G,(u? a) and F?, = 2uG,,(u?, a), so the bifurcation sets
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of F¢(u,a) and F°(u,a) are related to the bifurcation set of G(z,a). More
precisely, we have the following theorem.

Theorem 3.1(7) Bif F' = Bif; F UBify F C R*
(ii) Bifg F = Bif, F U Bif; F C R¥

where Bif; F = {(ay, ay, ..., a;) € R* : a; = 0}, Bify F = Bif G and
Bif; F' = {a € Bifg G with corresponding coalesced critical point z > 0}.

Proof In the even case, the defining equations for the bifurcation set are

F¢(u,a) = uG,(u*a) =0 (50)

and

F¢.(u,a) = 2u’G,,(v*,a) + G,(v*,a) =0 (51)

whereas in the odd case, the defining equations are

F?(u,a) = G,(u*,a) =0 (52)

and

F° (u,a) = 2uG,,(u*,a) = 0 (53)

In both cases, either u = 0 and G,(0,a) = 0, or G,.(z,a) = G,(z,a) = 0. In
the first situation we see that a; = 0, upon differentiation of equation (49),
yielding the hyperplane {(a,as, -..,a;) € R* : a; = 0}. In the second case,
by definition of the bifurcation set, we obtain Bif G upon elimination of z, or
Bifg G if we restrict to z € R. Note: for Bifg G, u will only be real if z > 0
since v = z'/2. Also note that Bif G is empty for k = 1. O

This theorem is useful as we already have descriptions of Bif G from standard
results in singularity theory. Since G(z, a) is a versal unfolding of 2**!/(k+1)
with k£ parameters, it is equivalent to the constant unfolding (i.e. with one pa-
rameter) of the standard k — 1 parameter miniversal unfolding of 25 /(k +1).
Two equivalent unfoldings with the same number of parameters have dif-
feomorphic bifurcation sets, so Bif G will be diffeomorphic to the Cartesian
product of the standard bifurcation set of 2¥*!/(k + 1) with R. However, this
does not necessarily help us understand how the hyperplane {(a1, as, ..., ax) €
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R : a; = 0} (which, for simplicity, we will henceforth write as {a; = 0}) and
Bif G are arranged in R¥ for k¥ > 1. We now prove the following:

Theorem 3.2 For k > 1, the two components of Bif F' intersect tangentially.

Proof =~ We have Bif; F' = {a; = 0}, which (trivially) has tangent plane

{0,1 = 0}

Now Bifj, F' is in general singular at the origin, a = 0, so consider the tangent
cone at the origin. For a hypersurface defined by the equation f = 0, the tan-
gent, cone is given by the vanishing of the non-zero homogeneous component
of f of smallest total degree (see Chapter 9, Section 7 of [7]). The hypersur-
face Bify ' = {G,(z,a) = G,.(2,a) = 0} is equivalently defined using the
resultant, f = Res(G,(z,a),G,,(2,a),z) = 0. Now for k > 1

Res(G,(z,a),G,.(2,a),2) = k*a" 1 + O(a¥), i=1,..,k (54)

This can be seen by considering the resultant as the determinant of the (2k —
1) x (2k — 1) Sylvester matrix of G,(z,a) and G,,(z,a) and noting that the
terms of smallest total degree in the determinant of this matrix are those
expanded about the maximum possible number of non-zero numerical entries
of the matrix. This maximum is obtained by expanding about the k entries
appearing on the diagonal of the bottom left £ x k submatrix, which are all
the number k. The remaining part of this term in the determinant comes from
the top right (k — 1) x (k — 1) submatrix which is lower triangular with a,
down the main diagonal.

The result (54) shows that the non-zero homogeneous component of smallest

total degree is proportional to a¥~!, so the tangent cone of Bify F is a¥~! = 0
and is thus also given by {a; = 0}. Therefore the two components of the
bifurcation set, Bif; F' and Bify F', are tangential. O

In summary, our approach is to define the appropriate G(z,a) for a given
phase function F'(u,a) (with all even or all odd power terms), then to find
the bifurcation set of G(z,a) and finally to relate it to the bifurcation set of
F(u,a) using Theorems 3.1 and 3.2.

3.8 Bifurcation sets for oddenoids of orders k =1,2,3

3.3.1 Oddenoids of order k =1

E;(ay) has the phase function
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and that for O;(ay) is

U3

F°(u,a1) = 3 +a1u

The corresponding G(z,a;) is

22
G(z,a1) = 5 + a1z

Now G,(z,a1) = 0 only has a single root, so Bif G and Bifg G are empty.
Then by Theorem 3.1, F¢(u,a;) and F°(u,a;) have a repeated root if and
only if a; = 0. Of course, this result that Bif ¥ = Bifg F' = {a; = 0} for
F(u,a,) = F¢(u,a,) or F°(u,a) is easily checked by direct analysis of their

phase functions.

3.3.2  Oddenoids of order k = 2

The phase function for Fs(aq,as) is

ub ut u?
Fe =Lt nt tas
(u, a1, as) 6 + as 1 + a; 9
whilst that for Os(ay, as) is given by
5 3
F(u,a1,a) = % + az% +a1u

Hence the corresponding G(z, a1, as) is

23 22
G(z,al, CLQ) = g + LLQE + a1z

(55)

In both cases, Bif; F' = {a; = 0} and Bif, F' = Bif G. We can calculate Bif G
by eliminating z from G,(z, a1, as) = G,,(2, a1,as) = 0, i.e. eliminating z from
2?2 +asz+a; = 0 and 2z + ay = 0, which yields a; = a3/4. The full bifurcation

set
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Bif F = {a; = 0} U {a; = a3 /4}

is shown in figure 1. (Note: the resultant Res(G,(z, a1, a2), G,.(2, a1, a2), 2) is
4a; — a2 in agreement with equation (54) for k¥ = 2). We observe that the
condition 2z + a; = 0 forces z to be real, since ay is real by definition, so in
fact Bif G = Bifg GG in this case.

But we showed in Section 3.1 that (ai,as) € Bifg F' only if z > 0, which
means that Bifg F' corresponds to ay < 0 in Bifg G. Thus we have

Bifg F = {a; =0} U {a1 = a2/4 : a3 < 0}

This semi-algebraic set is plotted in figure 2.

ol — - — _ _

a

Fig. 1. Bif F for Fy(a1,a2) and Oz(a1,a2) where F(u,a1,a2) = F¢(u,a1,a2) or
F°(u,ai,as2). The dashed line is a; = 0.

ol - - - __ ___ _ _____

a

Fig. 2. Bifg F for Fy(ai,as) and Os(a1,a2) where F(u,ai,as) = F¢(u,a1,a9) or
F°(u,a1,as2). The dashed line is a1 = 0.

It is worth noting that we can derive the same results by working parametri-
cally. In order to solve z? +asz+a; = 0 and 2z +ay = 0, we see that a, = —22
and so a; = 22. Thus Bifg G = {(2%, —2z) : z € R}. For Bifg F, we must have
z >0, so
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Bifg F = {a; = 0} U{(2? —22) : 2 > 0}

3.3.8 Oddenoids of order k =3

E3(a1, ag,a3) has phase function

u® u® u? u?
Fe(u, ai, CLQ,U,g) = g + a3€ + UIQZ + CLlE

with the phase function for O3(ay, as, az) being

7 5 3
u u u
FO(’LL, aq, ag,ag) = 7 =+ (1,33 —+ (1,23 + a1y

The corresponding G(z, a1, ag, az) is

24 23 22
G(z,a1,a9,a3) = T + a3§ + a23 + a1z

Then Bif; F = {a; = 0} and Bify F' = Bif G. To find Bif G we must eliminate
z from the equations

G.(z,a1,0a9,a3) =2° + a32® + agz +a; =0 (56)
Go.(2,a1,a9,03) =322 + 2a32 + a = 0 (57)

Using Maple 9.5 to eliminate z from equations (56) and (57), we obtain

27a% — 18a,aza3 — aza3 + 4a, a3 + 4ay = 0 (58)

The variety defined by equation (58) is a twisted cuspidal edge which meets
the plane a; = 0 in a3(a3 — 4ay) = 0.

Note: the resultant Res(G,(z, a1, as, a3), G,.(2, a1, as, a3), z) is the lhs of equa-
tion (58), and agrees with equation (54) for £ = 3. Again we observe that
G,(z,a1,a9,a3) = 0 has no repeated complex roots (in this case because
G,(z,a1, a9, a3) is a cubic in z, and we would need G,(z, a1, as, as) to be of at
least degree 4 in z in order to have repeated complex roots, which necessarily
come in complex conjugate pairs for real a1, as, az). So Bif G = Bifg G again.
We then have
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Fig. 3. Bif F for Es(a1,a9,as3) and Os(a1, a9, as3) where
F(u,a1,a9,a3) = F¢(u,a,as,a3) or F°(u,ay,as,as). The plane is a; = 0.

Bif F = {a; = 0} U {27a? — 18a,a0a3 — a3a3 + 4a,a} + 4a3 = 0}

which is plotted in figure 3. The twisted cuspidal edge and tangential plane
can be clearly seen.

To find Bifg F', we use the parametric approach since we need to restrict the
variety (58) to z > 0. Equations (57) and (56) give a; = —3z* — 2a3z and
a1 = 22° + a32? respectively, so the surface Bifg G is given parametrically by
Bifg G = {(22° +y2?%, =322 —2yz,y) : y, 2 € R}. To get Bifg F' we need z > 0.
Thus we have

Bifg F = {a; = 0} U{(22° +y2*, —32* — 2yz,y) 1y, 2 € R,z >0} (59)
Figure 4 shows that the semi-algebraic set Bifg F' is a ‘half-cuspidal edge’ plus
the tangential plane.

We also note that our calculations of Bif F' and Bifg F for F' = F°(u, a1, as, as)
are relevant to Problem 1992-4 in the book Arnold’s Problems [3].

4 Numerical results for Oy(a) and Fi(a) of orders k =1,2,3

In this section, we evaluate the oddenoids numerically. We have used the
adaptive contour code, CUSPINT, outlined in Section 1, which we have applied
to the oddenoids following the prescriptions of Section 2.1.

We show plots of the Og(a) and Eg(a) for k = 1,2,3 (with the exception of
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Fig. 4. Bifg F for E5(ay,a9,a3) and Os(ay,a9,a3) where
F(u,a1,a9,a3) = F¢(u,a1,as,a3) or F°(u,ay,as,as). The plane is a; = 0.

O1(a1))- Recall from Section 1 that the Og(a) are purely real, whereas the
Ex(a) are complex valued, so in this case we plot the modulus of Ei(a). Our
computer program can be used to calculate numerical values of the oddenoids
for £ > 3, but we do not do this here because the results are less easy to
visualise.

For each plot, we also display the corresponding caustic obtained by elimina-
tion of u subject to u being real from the defining equation (45). Each caustic
acts as a “skeleton” upon which is built the “wave flesh” of the corresponding
oddenoid. In addition, we have added to the caustic diagrams the number of
real critical points in each connected region of parameter space. In general we
expect the richest structure in the oddenoid plots to occur in the regions with
the largest number of real critical points. This is because there is a contribu-
tion from each real critical point when the simple stationary phase method [49]
is used to evaluate an oscillating integral; their contributions then interfere to
produce structure in an oddenoid. As we cross the caustic we expect an odd-
enoid to take large, but finite, values, rather than being infinite as predicted
by the simple stationary phase method [49].

Following previous practice [29,30], we also report a short table of numerical
values for each oddenoid (except for O;(a;)). The tabulated values are pro-
vided merely as test data so that readers can check the output from their own
computer programs — our code can easily evaluate thousands of numerical val-
ues for each integral. This is what has been done to generate the plots, but
tables of such size would be impractical to reproduce here.

For each oddenoid, the tabulated values have been checked using Maple 9.5 to
evaluate the integrals by summation of the Maclaurin series given in Section
2.2. Agreement, to as many significant figures as required, can be obtained
by increasing the number of terms in the Maclaurin series. Note that Maple
9.5 is significantly slower at performing the evaluations for our tables than
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a

Fig. 5. Plot of |Ej(a1)| for the grid a; = —16.0(0.001)16.0. The arrow indicates the
caustic at a1 =0

is cUSPINT. For example, the calculations in Table 4 took over 3 days using
Maple 9.5 on an Intel 3.4 GHz machine with 2 Gb memory to reach the same
accuracy as CUSPINT achieved in a matter of seconds on a similar machine.

4.1 Oddenoids of order k =1

The oddoid of order 1, O;(aq), is proportional to the regular Airy function,
as noted in Section 1.1. Since the properties and numerical values of Ai(a;)
are well known [1,39,47], we have neither tabulated nor plotted O;(a;) in this
paper. The caustic for this case is easily calculated as in Section 3.3.1 to be
a1 = 0; the phase has zero and two real critical points for ¢; > 0 and a; < 0
respectively.

However, we do tabulate and plot values for the evenoid of order 1, E;(aq).
Table 1 gives numerical values for a; = —8.0(2.0)8.0 and figure 5 is a plot of
|Ey(aq)| for a; = —16.0(0.001)16.0. Again, the caustic is a; = 0. When a; > 0,
the phase has one real critical point, whereas for a; < 0 there are three. The
oscillations associated with the three real critical points are clearly visible in
figure 5.

aj §RE1 (al) C\§E11 (al)
-8.0 | -0.4772053165 | -1.2393662938
-6.0 | 0.2252567447 | -2.0978736136
-4.0 | -0.9157889679 | -0.8621339148
-2.0 | 3.3738274073 | -1.5351408559
0.0 | 2.3685438156 | 0.9810829715
2.0 | 1.3067746514 | 1.0309715544
4.0 | 0.9149664373 | 0.8396116740
6.0 | 0.7365902279 | 0.7071827067
8.0 | 0.6334482647 | 0.6188848076

Table 1

Numerical values of E;(a;) for the grid a; = —8.0(2.0)8.0
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4.2 Oddenoids of order k = 2

Table 2 reports numerical values for Oy(ay, as) on the grid a; = —3.0(1.5)3.0
and a; = —3.0(1.5)3.0. We show in figure 6 a perspective plot of Os(ay, as)
using the grid a; = —9.0(0.09)9.0 and ay, = —9.0(0.09)9.0 (i.e. 40401 evalua-
tions of Oy(a1,as)), together with the caustic {a; = 0} U {(2%, —22) : z > 0},
derived in Section 3.3.2.

ay as Os(ay,az) | a1 as Os(ay,a9)
-3.0 | -3.0 | 1.1559094739 | 0.0 | 1.5 | 1.8257400430
-3.0 | -1.5 | -0.9343849134 | 0.0 | 3.0 | 1.5225522111
-3.0 | 0.0 | -1.0652024273 | 1.5 | -3.0 | 3.0388228258
-3.0 | 1.5 | 0.1821321070 | 1.5 | -1.5 | 1.0467343593
-3.0 | 3.0 | 0.9163784304 | 1.5 | 0.0 | 0.6730914803
-1.5 | -3.0 | -0.4054310830 | 1.5 | 1.5 | 0.6214013026

-1.5 | -1.5 | 0.4873744213 | 1.5 | 3.0 | 0.6062151325
-1.5 | 0.0 | 2.1321475334 | 3.0 | -3.0 | -0.9795776028
-1.5 | 1.5 | 2.2966206454 | 3.0 | -1.5 | -0.3557810576
-1.5 | 3.0 | 2.1167618309 | 3.0 | 0.0 | -0.0385774942
0.0 | -3.0 | 2.0391008331 | 3.0 | 1.5 | 0.0839471717
0.0 | -1.5 | 3.3406774822 | 3.0 | 3.0 | 0.1455363124
0.0 | 0.0 | 2.4096436732

Table 2
Numerical values of Oy (a1, az) for the grid a; = —3.0(1.5)3.0 and a2 = —3.0(1.5)3.0

The corresponding numerical values for the evenoid of order 2, Ey(ay, as), are
given in Table 3 for the grid a; = —4.0(2.0)4.0 and ay = —4.0(2.0)4.0. Figure
7 displays a perspective plot of |Fy(a,as)| for the grid a; = —12.0(0.08)12.0
and a; = 12.0(0.08)12.0 (90601 evaluations) together with the caustic {a; =
0} U {(22,—22) : z > 0}, which is the same as for Oy(a1, as).

There are 0,2,4 real critical points for Oy(a1,as) and 1,3,5 for Ey(ag,as). It
can be seen that the caustics, together with the number of real critical points
in different regions, help rationalise structure in the plots of Os(a1,as) and
|Ea(a1,a9)| in figures 6 and 7 respectively.
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a1 ag RE3(a1,a2) SEz(a1,a2) ay az REs(a1,a2) SEs(a1,a2)
-4.0 -4.0 1.3658400830 -1.2384695106 0.0 2.0 1.8879693402 0.6820688232
-4.0 -2.0 1.3579693482 0.0065532688 0.0 4.0 1.6425811883 0.6365965993
-4.0 0.0 0.5952741551 -2.0546457301 2.0 -4.0 3.3150050431 -1.0100166343
-4.0 2.0 2.0646075621 -1.5702447482 2.0 -2.0 2.0502198134 1.4809718645
-4.0 4.0 2.2462420225 -0.8292269526 2.0 0.0 1.4504429717 1.0400416223
-2.0 -4.0 0.6005254417 -1.2809521071 2.0 2.0 1.2981344718 0.8497648666
-2.0 -2.0 0.5584004295 -1.8616971086 2.0 4.0 1.2156705868 0.7503969035
-2.0 0.0 2.7376871800 -1.0988017846 4.0 -4.0 1.6631590653 2.6192314545
-2.0 2.0 2.4754389350 -0.1373334847 4.0 -2.0 0.8838268961 1.1412120618
-2.0 4.0 2.1289408597 0.1604374957 4.0 0.0 0.9459845200 0.8891553653
0.0 -4.0 1.5024596090 0.0778134359 4.0 2.0 0.9461574187 0.7847193584
0.0 -2.0 3.3715185925 -0.6021984749 4.0 4.0 0.9341284566 0.7198386013
0.0 0.0 2.4159183706 0.6473433764

Table 3

Numerical values of Ey(a1,az) for the grid a; = —4.0(2.0)4.0 and as = —4.0(2.0)4.0

Fig. 6. Plot of Oy(a1,a2) for the grid a; = —9.0(0.09)9.0 and ae = —9.0(0.09)9.0

0O5(a1,a)

7.5~

25

| Ex(@q,a2) |

4.

Fig. 7. Plot of |Es(a1,a2)| for the grid a; = —12.0(0.08)12.0 and

as = —12.0(0.08)12.0

4.8 Oddenoids of order k =3

Table 4 gives numerical values of O3(a1, az, ag) for the grid a,, as, a3 = —4.5(4.5)4.5

whilst numerical values of E3(ay, as, as) are reported in Table 5 using the grid
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a1, a9, 03 = —60(60)60

a1 | a2 | a3 | Osz(ar,a2,a3) | a1 | a2 | a3 | Os(a1,a2,a3)
-4.5 | -4.5 | -4.5 | 0.3860302679 | 0.0 | 0.0 | 4.5 | 1.7492490911
-4.5 | -4.5 | 0.0 | -0.5046555196 | 0.0 | 4.5 | -4.5 | 3.2092929414
-4.5 | -4.5 | 4.5 | -0.2104031324 | 0.0 | 4.5 | 0.0 | 1.3805444446
-4.5 | 0.0 | -4.5 | 0.2059135346 | 0.0 | 4.5 | 4.5 | 1.2921683755
-4.5 | 0.0 | 0.0 | -0.6372347560 | 4.5 | -4.5 | -4.5 | -0.5316027476
-4.5 | 0.0 | 4.5|-0.9389067251 | 4.5 | -4.5 | 0.0 | -1.2701643505
-4.5 | 4.5 | -4.5 | 0.2833242548 | 4.5 | -4.5 | 4.5 | -0.3162980311
-4.5 | 4.5 | 0.0 | -0.6957156566 | 4.5 | 0.0 | -4.5 | -0.8647916533
-4.5 | 4.5 | 4.5 | -0.1231373375 | 4.5 | 0.0 | 0.0 | -0.0705415393
0.0 | -4.5 | -4.5 | 1.2679160361 | 4.5 | 0.0 | 4.5 | -0.0504028522
0.0]-45| 0.0 1.1302960423 | 4.5 | 4.5 | -4.5 | 0.2687232428
0.0 | -4.5 | 4.5 | 2.3788684059 | 4.5 | 4.5 | 0.0 | 0.0373000249
0.0 | 0.0 |-4.5| 1.4432320387 | 4.5 | 4.5 | 4.5 | 0.0413759219
0.0 0.0 0.0 | 2.4084941551

Table 4

Numerical values of Os(a1, a2, a3) for the grid a1, a2,a3 = —4.5(4.5)4.5
a1 as az | REg(a1,a2,a3) | SEg(a1,az2,a3) | a1 az az | REg(a1,a2,a3) | SEz(a1,a2,a3)
-6.0 -6.0 -6.0 0.7634181196 -0.4343058249 0.0 0.0 6.0 1.7673843126 0.4577842698
-6.0 -6.0 0.0 1.0614215317 -0.2464295636 0.0 6.0 -6.0 2.3867149447 0.3025395109
-6.0 -6.0 6.0 0.0082292456 -0.6943656155 0.0 6.0 0.0 1.5190997036 0.6003264757
-6.0 0.0 -6.0 0.6335885704 -0.8703799424 0.0 6.0 6.0 1.4219788305 0.4994023971
-6.0 0.0 0.0 -0.0911980182 -0.6511890094 6.0 -6.0 -6.0 1.8811081228 0.7194017881
-6.0 0.0 6.0 1.2210838619 -1.4833483531 6.0 -6.0 0.0 0.8330545013 2.0091790377
-6.0 6.0 -6.0 0.7841550140 -0.6173295141 6.0 -6.0 6.0 0.8525566347 0.9294718703
-6.0 6.0 0.0 1.7251591431 -1.3612958534 6.0 0.0 -6.0 0.8453315601 1.9060732990
-6.0 6.0 6.0 1.7517659030 -0.8295259038 6.0 0.0 0.0 0.7240301468 0.7485154536
0.0 -6.0 -6.0 1.2573310357 -0.5959605832 6.0 0.0 6.0 0.8025007257 0.7076430337
0.0 -6.0 0.0 0.9350178145 -0.3371821981 6.0 6.0 -6.0 1.2909570698 -0.6984656479
0.0 -6.0 6.0 2.3481694461 -0.1370488621 6.0 6.0 0.0 0.7589038781 0.6310674245
0.0 0.0 -6.0 1.5826672465 -0.5591557707 6.0 6.0 6.0 0.7794286795 0.6123795565
0.0 0.0 0.0 2.3956449085 0.4765234002

Table 5

Numerical values of F3(aq,as,as) for the grid a1, a2,a3 = —6.0(6.0)6.0

From Section 3.3.3 we know that the caustic for £ = 3 is the surface described
parametrically by equation (59). We have taken sections through this surface
for a3 = 5, a3 = 0 and a3 = —5. Perspective plots of Os(a1, as,as) at these
three values of a3 are shown in figures 8, 9, 10 respectively, where the grids used
in each case are a; = —21.0(0.09)20.94 and ay = —21.0(0.09)20.94 (making
218089 calculations for each plot). The number of real critical points in figures
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Fig. 8. Plot of Os(aj,a2,5) for the grid ag = —21.0(0.09)21.94 and
az = —21.0(0.09)21.94
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Fig. 9. Plot of Os(aj,a2,0) for the grid a; = —21.0(0.09)21.94 and
as = —21.0(0.09)21.94
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Fig. 10. Plot of Os(ai,a2,—5) for the grid a1 = —21.0(0.09)21.94 and

as = —21.0(0.09)21.94
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Fig. 11. Plot of |Es(ai,a9,6)| for the grid a3 = —24.0(0.08)24.0 and

as = —24.0(0.08)24.0

| E3(a1,a5,0) |

40 -

Fig. 12. Plot of |E3(ai,a2,0)] for the grid a; = —24.0(0.08)24.0 and
a = —24.0(0.08)24.0

8 — 10 are 0,2,4 or 6. Each caustic section can be seen to provide a “skeleton”
on which is built the wave structure of Os(a1, as, as).

Finally, we plot the modulus of the evenoid of order 3, F3(a1,as,a3). Again,
the caustic is given in parametric form by equation (59), and to illustrate this
surface we take sections through it at a3 = 6, a3 = 0 and a3 = —6. Perspective
plots of |E5(a1, as,as)| at these three values of a3 are shown in figures 11, 12,
13 respectively, where the grids used in each case are a; = —24.0(0.08)24.0
and a; = —24.0(0.08)24.0 (making 361201 evaluations for each plot). For this
example, the number of real critical points is 1,3,5 or 7 and it can be seen
that |E3(a1,a9,a3)| possesses a rich interference structure as its parameters
are varied.
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Fig. 13. Plot of |E3(a1,aq,—6)| for the grid a7 = —24.0(0.08)24.0 and
ay = —24.0(0.08)24.0

5 Concluding remarks

We have investigated properties of the oddoids and evenoids that are useful for
their numerical evaluation. We studied in detail oddenoids of orders £k = 1,2, 3
since it is very difficult to visualise oddenoids with £ > 3. For each oddenoid,
we derived their Maclaurin series representation. For special values of the
oddenoid’s parameters, we investigated their relation to Airy-Hardy integrals,
which allows the oddenoids to be evaluated in terms of Bessel functions of
fractional orders. In addition, we obtained the differential equation that F(a,)
satisfies, from which we deduced a useful identity obeyed by Ej(a;) and its
first derivative. Singularity theory techniques were used to deduce the caustic,
or bifurcation set, associated with the oddenoids. We showed that each oddoid
and evenoid of the same order has the same caustic. The bifurcation sets can
possess complex whiskers which arise from the coalescence of complex valued
critical points. We also presented tables of numerical values and plots of the
oddenoids computed using CUSPINT. The rich structure present in the plots
was rationalised using the caustics and the number of real critical points in
different regions of parameter space.

Finally we note that our investigation can be extended to compute numeri-
cal values of the derivatives of the oddenoids, which are required in uniform
asymptotic theories of oscillating integrals.
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