
“JCA” — “JCA-HM07-04” — 2008/5/22 — 16:41 — page 231 — #1

Journal of Cellular Automata,Vol. 13, pp. 231–270 ©2008 Old City Publishing, Inc.
Reprints available directly from the publisher Published by license under the OCP Science imprint,
Photocopying permitted by license only a member of the Old City Publishing Group

Determining a Regular Language by
Glider-Based Structures called Phases fi−1

in Rule 110

Genaro J. Martínez
1,∗

, Harold V. McIntosh
2
,

Juan C. Seck Tuoh Mora
3

and Sergio V. Chapa Vergara
4

1Faculty of Computing, Engineering and Mathematical Sciences,
University of the West of England, Bristol, United Kingdom

E-mail: genaro.martinez@uwe.ac.uk
2Departamento de Aplicación de Microcomputadoras,

Instituto de Ciencias, Universidad Autónoma de Puebla, Puebla, México
E-mail: mcintosh@servidor.unam.mx

3Centro de Investigación Avanzada en Ingeniería Industrial,
Universidad Autónoma del Estado de Hidalgo Pachuca, Hidalgo, México

E-mail: jseck@uaeh.edu.mx
4Departamento de Computación,

Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México
E-mail: schapa@cs.cinvestav.mx

Received: November 1, 2006. Accepted: February 1, 2007.

Rule 110 is a complex elementary cellular automaton able of support
universal computation and complicated collision-based reactions between
gliders. We propose a representation for coding initial conditions by means
of a finite subset of regular expressions. The sequences are extracted both
from de Bruijn diagrams and tiles specifying a set of phases fi−1 for each
glider in Rule 110. The subset of regular expressions is explained in detail.

Keywords: Cellular automata, Rule 110, de Bruijn diagrams and regular expres-
sions.

1 INTRODUCTION

The study of the binary-state one-dimensional cellular automaton Rule 110 has
had a certain attention before and after the demonstration that its evolution
space can bear universal computable processes (see [5,34]).

∗E-mail: genaro.martinez@uwe.ac.uk

231

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UWE Bristol Research Repository

https://core.ac.uk/display/323900424?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

“JCA” — “JCA-HM07-04” — 2008/5/22 — 16:41 — page 232 — #2

232 Genaro J. Martínez et al.

Another important and complementary result to the previous one was
obtained by Turlough Neary and Damien Woods showing that the problem
of predictingt steps in Rule 110 is P-complete. Some interesting reductions of
Turing machines are displayed in [28]. On the other hand, Kenichi Morita has
finished a complicate and new results in cyclic tag systems [11, 12]. Mainly
over the “halt” condition in this system.

The diversity of problems in Rule 110 and its possible applications in differ-
ent fields determine the necessity of formalizing a representation for coding
systematically the evolution rule; for easily constructing initial conditions
which define a control of the gliders (particles or mobile localizations) taking
part in simple or complicated complex operations.

In the present paper we report a set of sequences based on gliders that can
be represented as regular expressions codified in initial conditions offering a
way to manipulate the glider system in Rule 110.

The paper gives a brief introduction to Rule 110 and its glider system. Later
it presents a small review on regular languages, de Bruijn diagrams and tiles.
Finally it explains how the expressions are calculated for all the gliders up to
now known in Rule 110 (without extensions), illustrating a simple procedure to
handle collisions between gliders and depicting some relevant constructions.

A pertinent mention is that this set of regular expressions has been
successfully applied in some of our previous results in Rule 110 [13,14,16–18].

2 BASIC NOTATION

Rule 110 is a cellular automaton of order(k = 2, r = 1) (Wolfram’s notation)
evolving in one dimension, wherek determines the number of states of an
alphabet� andr is the number of cells considered both to the left and to the
right side with regard of a central cell.

Particularly, Rule 110 can produce a wide variety of gliders on a periodic
background called “ether” by Matthew Cook [4, 5]. Thus, Rule 110 belongs
to Class IV in Wolfram’s classification.

The local function determining the behavior of Rule 110 is:

ϕ(0, 0, 0) → 0 ϕ(1, 0, 0) → 0
ϕ(0, 0, 1) → 1 ϕ(1, 0, 1) → 1
ϕ(0, 1, 0) → 1 ϕ(1, 1, 0) → 1
ϕ(0, 1, 1) → 1 ϕ(1, 1, 1) → 0

TABLE 1
Evolution rule 110

The evolution rule is expressed in binary notation 01101110 (representing
the decimal number 110). The global evolution of the automaton is defined

“JCA” — “JCA-HM07-04” — 2008/5/22 — 16:41 — page 233 — #3

Determining a Regular Language by Glider-Based Structures 233

FIGURE 1
Random evolution in Rule 110.

starting from linear array of cells each containing one state of�; taking every
cell xi as a central one, we evaluate the value of its corresponding neighbor-
hood to determine the new central element in the following generation:

ϕ(xt
i−1, x

t
i , x

t
i+1) → xt+1

i .

Time t is discrete and there is a simultaneous evaluation of eachxi in the
array, i.e., parallel mappings generate the following array, determining the
evolution space�Z .

Figure 1 shows a typical random evolution in Rule 110 with an initial density
of 0.5 in an array with 723 cells for 363 steps. In the evolution we have applied
a filter identifying the ether configurations allowing a clear recognizing of the
gliders present in this example.

Once established the existence of gliders (particles or mobile localizations)
we must classify them and determine their properties.

3 GLIDER SYSTEM IN RULE 110

In this section we show all the gliders until now known in Rule 110. Let us use
the classification proposed by Cook [5] from now on (illustrated in Figure 2).

Gliders are presented in two forms: as a simple structure and as extensions
or packages of them (one example showed in Figure 2). Each glider with
superscriptn ∈ Z

+ represents that it can arbitrarily extend; extensions to the
left are defined inB̄ and B̂ gliders, and extensions to the right are withE

andG gliders. At the end of the list there is an extended glider gun, where the
extension is originated bȳE gliders. Also, we can see examples of extended
gliders and packages with their respective notation.

In the evolution space of Rule 110 we can see three trajectories for the
gliders. A shift from left to right is made byA, D1 andD2 gliders and a shift

“JCA” — “JCA-HM07-04” — 2008/5/22 — 16:41 — page 234 — #4

234 Genaro J. Martínez et al.

FIGURE 2
Glider classification in Rule 110.

from right to left is realized byB, B̄, B̂, E, Ē, F , G, H gliders and the glider
gun. The last trajectory is with gliders which does not have a shift,C1, C2 and
C3 gliders. Each glider has a period determined by the number of generations
among shifts letting the same sequence or the change fromxi to xi+d or xi−d ,
whered ∈ Z represents the number of places crossed in every period.

An important indication is that the set of regular expressions�R110describ-
ing all the gliders in Rule 110 does not include extensions or packages of them,
it is only for simple gliders. On trying to enumerate all those extensions or
packages, the set of expressions grows in different modules; therefore, the
number of sequencesw in the set is the union of the periods for every glider:

�R110 =
p⋃

i=1

wi,g ∀ (wi ∈ �∗ ∧ g ∈ G) (1)

whereG is the whole set of gliders in Rule 110 andp ≥ 3 is the corresponding
period. This way, we can speak of a regular languageLR110 that is constructed
from the expressions of�R110. We must notice that this language is a subset
of the whole language in Rule 110, that is, it is only the one defined by the
expressions representing gliders, then we have:

LR110 = {w|w ∈ �R110 operating under the basic rules:·, +, ∗}. (2)

“JCA” — “JCA-HM07-04” — 2008/5/22 — 16:41 — page 235 — #5

Determining a Regular Language by Glider-Based Structures 235

LanguageLR110 is based on the regular expressions�R110 determining
each glider; a remarkable comment is thatLR110 has not been published or
explained by other authors.

LR110 is established by the de Bruijn diagrams and the characterization of
the tiles, where both have been analyzed for defining useful features called
“phases.” The phases indicate with precision both the position and the exact
moment where each glider must be positioned into a given initial condition.

When applying the set of regular expressions and their basic operations
we are able to construct desired initial conditions which yield evolutions with
important characteristics; the main interest is to control and produce collisions
among gliders. In this wayLR110 is a powerful tool to codify initial conditions
in Rule 110, and this subset has been implemented in a computer system.
Immediate applications with relevant results in the study of Rule 110 has been
performed over hundreds, thousands, millions and thousands of million of
cells, as we shall see in the following section.

Now we describe the properties of each glider in different aspects such as:
name, periodic margins, speed, width of the structure and the cap by glider in
the evolution space (see Table 2).

margins left-right

structure ems oms ems oms vg width cap

er · 1 · 1 2/3≈ 0.666666 14 T
el 1 · 1 · −1/2 = −0.5 14 T
A · 1 · 1 2/3≈ 0.666666 6 T
B 1 · 1 · −2/4 = −0.5 8 P
B̄n 3 · 3 · −6/12 = −0.5 22 T
B̂n 3 · 3 · −6/12 = −0.5 39 T
C1 1 1 1 1 0/7 = 0 9–23 P
C2 1 1 1 1 0/7 = 0 17 P
C3 1 1 1 1 0/7 = 0 11 P
D1 1 2 1 2 2/10 = 0.2 11–25 P
D2 1 2 1 2 2/10 = 0.2 19 P
En 3 1 3 1 −4/15 ≈ −0.266666 19 P
Ē 6 2 6 2 −8/30 ≈ −0.266666 21 P
F 6 4 6 4 −4/36 ≈ −0.111111 15–29 P
Gn 9 2 9 2 −14/42 ≈ −0.333333 24–38 P
H 17 8 17 8 −18/92 ≈ −0.195652 39–53 P

glider gun 15 5 15 5 −20/77 ≈ −0.259740 27–55 P

TABLE 2
Properties to each glider in Rule 110

“JCA” — “JCA-HM07-04” — 2008/5/22 — 16:41 — page 236 — #6

236 Genaro J. Martínez et al.

In Table 2, columnstructurerepresents the name of the glider or periodic
structure. The following four columns labeledmargins, indicate the number of
periodic margins in each glider. The margins are divided in margins with even
values ‘ems‘ and odd values ‘oms’which are distributed as well in two groups:
left and right, because gliders has even and odd margins in their left or right
borders (or superior and inferior ones). Particularly, the properties of the mar-
gins are explained in subsection 4.4, discussing their origins, interpretations
and representations.

Columnvg ∀ g ∈ G indicates the speed of each glider, where it is calculated
dividing the shiftd between its periodp. The three types of trajectories are
identified in this column. Positive speed indicates a shift to the right, negative
speed a shift to the left and a zero speed tells that the glider does not have a
shift.

Columnwidth indicates the minimum and maximum number of necessary
cells for determining a periodic chain in the linear array forming a glider or
another periodic structure. For example, for theC1 glider we have two values,
this means that with nine or twenty-three cells may define this glider in the
initial condition.

The last columncap indicates the gliders able to completely cover the
evolution space of Rule 110. The cap can be total ‘T’ or partial ‘P,’where total
cap implies a glider which does not need additional tiles to completely cover the
evolution space. Apartial cap describes that at least the intervention of another
tile is necessary so that the glider and the new tile can completely cover the
evolution space. This representation is oriented to the problem established by
McIntosh to cover the space with different tiles and to find the combination
of gliders fulfilling this condition.

Thus, another tendency in the research is represented by looking for pos-
sible complex constructions through tiles rather than using initial conditions.
From an initial set of tilesX we can construct a family of different setsXi

so that,{X ⊂ · · · ⊂ Xi ⊂ Xi+1 ⊂ · · · } and each set must produce a dif-
ferent pattern, hence we will make operations with the tiles in the cartesian
plane as in a puzzle but without violating the valid connections determined
by Rule 110. Therefore, in the sense of Hao Wang, we can find a composition
of different setsXi to implement a sequence of tiles being operated by a logi-
cal function, describing another way of universal computation based on these
constructions [7].

4 DETERMINING A GLIDER-BASED REGULAR LANGUAGE IN
RULE 110

This section explains the definition and representation of phases in the evolu-
tion space of Rule 110. The analysis starts with the description of the evolution
space by tiles evolutions and we applied de Bruijn diagrams [21,35] to specify

“JCA” — “JCA-HM07-04” — 2008/5/22 — 16:41 — page 237 — #7

Determining a Regular Language by Glider-Based Structures 237

the finite subset of glider-based regular expressions. Both approaches give ori-
gin to the interpretation of “phases” in Rule 110; once determined the phases,
a procedure is explained to control specific collisions among gliders codi-
fied into initial conditions applying the subset�R110 of regular expressions
establishing a regular languageLR110.

4.1 Tiles in Rule 110
A plane of tilesT is a countable family of closed setsT = {T0, T1, . . .}
covering the plane without intervals or intersections [7]. Defined as a join of
sets (called a mosaicT):

T =
n⋃

i=0

Ti ∀ n ∈ Z
+
0 (3)

The “plane” is the Euclidian planeZ × Z in elementary geometry.
Rule 110 covers the evolution space through different sets of trianglesTn ∀

n ∈ Z
+
0 , wheren represent the size of the triangle counting the cells in some of

its internal sides. The tiles are divided in two sets:α andβ ∀ n ≥ 2 [22] (each
setα orβ determines its own countable family of tiles where|{T α

n }| = |{T β
n }|,

as illustrates Figure 3). For example, differentα andβ tiles are present in the
construction of both theH glider and the glider gun (see Figure 4 in [16]).

We can represent aT0 tile by state 0; with this when the initial configura-
tion is covered by the expressions: 0*, 1* and (10)*, the evolution space is
established by a homogenous evolution with state 0 (or tileT0). Nevertheless,
the behavior is not the same for tilesT1, T

α
2 , T

β

2 , T α
3 , T

β

3 , . . . , T α
n , T

β
n ,

The evolution space can be covered by anyTn tiles for 0 ≤ n ≤ 4. Thus for
n ≥ 5 the evolution space is covered by at least twoTn tiles. LetTi andTj ∈ T
wherei
= j , then both sets cannot operate in the plane under the function of
Rule 110 if they cover the space partially (gaps) or overlap in their cells.

Another question is to know the largest tile that Rule 110 can construct
in its evolution space. At the present time, the limit is established by aT45
tile [23]; therefore, Rule 110 cannot construct a greater mosaic. At the moment
there is a way to produceTn tiles where 0≤ n ≤ 33; tilesT43, T44 andT45
were calculated through a specialized search determining the ancestors for
each tile [23]. Finally, other open problem is to determine a construction for
tiles in the interval 34≤ n ≤ 42.

FIGURE 3
Two types of tiles in Rule 110:α andβ.

“JCA” — “JCA-HM07-04” — 2008/5/22 — 16:41 — page 238 — #8

238 Genaro J. Martínez et al.

Thus, the tile family{T α
n } and{T β

n } allows a detailed description of the
evolution space in Rule 110 through their sets:α andβ. A second important
point is that the tiles establish properties by the periodic margins in their
recurrent structures (gliders and ether). Their interpretation is very important
to derive the phases, including non-periodic structures.

As we said before, if from an initial setX a family of different setsXi is
defined so that{X ⊂ . . . ⊂ Xi ⊂ Xi+1 ⊂ . . .}, a function� : T ∗ → T ∗ can
be defined. Thus, we have each

⋃n
i=0 Ti = Xi ⊂ G whereXi = GN ∨ GC .1

4.2 Regular expressions
Several interesting problems rise in the study of formal languages; one of
them is to determine the type of language derived and to which class belongs.
This hierarchy is well-known and established by Chomsky’s classification. We
shall study languages determined by regular sets, since the set of expressions
determined by each glider in Rule 110 can be associated to a particular regular
expression. Thus, some concepts of finite state machines are needed.

The finite automaton is a mathematical model with a system of discrete
inputs and outputs; the system can be placed in one of a finite set of states.
This state has the information of the received inputs necessary to determine
the behavior of the system with regard of subsequent inputs. Formally, a finite
automatonM consists of a finite set of states and a set of transitions among
states induced by the symbols selected from some alphabet. For each symbol
there is a transition form one state to other (it can return to the same one); there
is an initial state where the automaton stars and some states are designated as
final ones or acceptance states [9].

A directed graph called atransition diagramis associated with a finite
automaton as follows: the vertices of the graph correspond to the states of the
automaton; for a transition from statei to statej produced by an input symbol,
there is an edge labeled by this symbol fromi to j in the transition diagram.
The finite automaton accepts a chainw if the analogous transition sequence
leads from the initial state to a final one (or acceptation).

A language acceptedby M, represented byL(M), it is the set{w|w
is accepted byM}. The type of languages accepted by a finite automaton
is important because they complement the analysis established with regular
expressions. Historically an important relation was established by S. C. Kleene
demonstrating that regular expressions can be expressed by a finite automaton
and vice versa, i.e., they are equivalent representations [25]. In other words,
a language is aregular setif it is accepted by some finite automaton. The
accepted languages by finite automata are described by expressions known as
regular expressions; particularly, the accepted languages by finite automata
are indeed the class of languages described by regular expressions.

1WhereGN represent natural gliders andGC represent compound gliders [16].

“JCA” — “JCA-HM07-04” — 2008/5/22 — 16:41 — page 239 — #9

Determining a Regular Language by Glider-Based Structures 239

language structure

recursively enumerated Turing machine
context sensitive linear bounded automata
context free pushdown automata
regular finite automata

TABLE 3
Language classes

The sets ofregular expressionson an alphabet are defined recursively as [9]:

1. φ is the regular expression representing the empty set.

2. ε is the regular expression describing the set{ε}.
3. For each symbola ∈ �, a is a regular expression depicting the set{a}.
4. If a and b are regular expressions representing languagesA and B

respectively, then(a + b), (ab), and (a∗) are regular expressions
representingA ∪ B, AB andA∗ respectively.

When it is necessary to distinguish between a regular expressiona and the
language determined bya, we shall useLa .

The formal languages theory provides a way to study sets of chains from
a finite alphabet. The languages can be seen as inputs of some classes of
machines or like the final result from a typesetter substitution system i.e., a
generative grammar into the Chomsky’s classification [8].

The basic model necessary for the languages of these machines (and for all
computation), is the Turing machine; the machines recognizing each family of
languages are described as a Turing machine with restrictions. The relevance
of associating a machine or system to resolve each type of language is for
establishing a classification (Table 3 of [8]).

Some languages are established by regular sets; although we can take
all the words recognized by the de Bruijn diagram, we just need those
chains representing a structure in Rule 110, to manipulate the evolution space
with constructions of particles or gliders. Regular sets can be recognized by
machines with finite memory (finite state machines) and may be generated by
linear right (or left) grammars. Another way to represent chains in a regular
language is by regular expressions.2

The regular languageLR110 is restricted to gliders in Rule 110. The appli-
cation of this regular subset allows to solve some important problems, on

2Examples and properties of the formal languages, grammars, finite state machines, Turing
machines and equivalent systems can be consulted in [3,6,9,25,30,31].

“JCA” — “JCA-HM07-04” — 2008/5/22 — 16:41 — page 240 — #10

240 Genaro J. Martínez et al.

defining initial conditions codified by phases; offering as well a powerful tool
to codify the evolution space of Rule 110.3

4.3 De Bruijn diagrams
De Bruijn diagrams [21,24,35] are very adequate for describing evolution rules
in one-dimensional cellular automata, although originally they were used in
shift-register theory (the treatment of sequences where their elements overlap
each other). We shall explain de Bruijn diagrams illustrating their constructions
for determining chainsw defining a pair of gliders inG, the set of gliders in
Rule 110.

For an one-dimensional cellular automaton of order(k, r), the de Bruijn
diagram is defined as a directed graph withk2r vertices andk2r+1 edges. The
vertices are labeled with the elements of the alphabet of length 2r. An edge is
directed from vertexi to vertexj , if and only if, the 2r − 1 final symbols ofi
are the same that the 2r −1 initial ones inj forming a neighborhood of 2r +1
states represented byi
j . In this case, the edge connectingi toj is labeled with
ϕ(i
 j) (the value of the neighborhood defined by the local function) [35,36].

The connection matrixM corresponding with the de Bruijn diagram is as
follows:

Mi,j =
{

1 ifj = ki, ki + 1, . . . , ki + k − 1(modk2r)

0 in other case
(4)

Module k2r = 22 = 4 represent the number of vertices in the de Bruijn
diagram andj must take values fromk ∗ i = 2i to (k ∗ i) + k − 1 = (2 ∗ i)

+ 2 − 1 = 2i + 1. The vertices are labeled by fractions of neighborhoods
originated by 00, 01, 10 and 11, the overlap determines each connection. In
Table 4 the intersections derived from the elements of each vertex are showed;
they are the edges of the de Bruijn diagram as we can see in Figure 4.

The de Bruijn diagram has four vertices which can be renamed as
{0, 1, 2, 3} corresponding with the four partial neighborhoods of two cells
{00, 01, 10, 11}, and eight edges representing neighborhoods of size 2r + 1.

Paths in the de Bruijn diagram may represent chains, configurations or
classes of configurations in the evolution space.

The vertices of the de Bruijn diagram are sequences of symbols in the set
of states and the symbols are sequences of vertices in the diagram. The edges
describe how such a sequences can be overlapped; consequently, different
intersection degrees produce distinct de Bruijn diagrams. Thus, the connection
takes place between an initial symbol, the overlapping symbols and a terminal
one (Table 4).

3The regular languageLR110 does not imply that the evolution of Rule 110 is regular in the
sense of limit sets [8, 27, 32], becauseLR110 is only conserved in the composition of the initial
conditions.

“JCA” — “JCA-HM07-04” — 2008/5/22 — 16:41 — page 241 — #11

Determining a Regular Language by Glider-Based Structures 241

01

00 11

10

000

010

011

001

100

101

110

111

FIGURE 4
Generic de Bruijn diagram for a cellular automaton (2,1).

(0,0)
 (0,0) 000
(0,0)
 (0,1) 001
(0,1)
 (1,0) 010
(0,1)
 (1,1) 011
(1,0)
 (0,0) 100
(1,0)
 (0,1) 101
(1,1)
 (1,0) 110
(1,1)
 (1,1) 111

TABLE 4
Intersections determining the edges of the de Brujin diagram

1

0 3

201

00 11

10

000

010

011

001

100

101

110

111
0

1

1

1

0 1

1

0
0 = 1 =

FIGURE 5
De Bruijn diagram for Rule 110.

De Bruijn diagram for Rule 110 is derived from the generic one (Figure 4)
and it is calculated in Figure 5. The edge color represents the state in which each
neighborhood evolves, as the second diagram of the same figure illustrates.

Now we must discuss another variant where the de Bruijn diagram can
be extended to determine greater sequences by the period and the shift of

“JCA” — “JCA-HM07-04” — 2008/5/22 — 16:41 — page 242 — #12

242 Genaro J. Martínez et al.

FIGURE 6
Extended de Bruijn diagram determining tiles:T0 andT α

3 .

their cells in the evolution space in Rule 110. A problem is that the cal-
culation of extended de Bruijn diagrams grows exponentially with order
k2rn∀n ∈ Z

+.
An extended de Bruijn diagram is illustrated in Figure 6. The graphs of the

left show the cycles in the diagram (at the right there are their respective evo-
lutions). That means that not all the vertices offer relevant information; in fact
we are only interested in the vertices forming cycles, because they determine
periodic sequences following a particular path in the diagram. Figure shows
three cycles; the first evolution illustrates the behavior of chains(1100010)∗
or (1100111)∗ determined by cycles of length 7, where the state is represented
by the color of the vertex (for example, the vertex 5 (000101) intersect with
vertex 11 (001011) forming the neighborhood 11 (0001011), that evolves into
state 1). In this case, both cycles produceT α

3 mosaic with different chains.
Also, the chains move to three elements to the right each two generations.

The behavior for the third cycle represented by vertex 0 produces all the
sequences 0+. Second evolution of Figure 6 describes the behavior of this
sequence dominated by tileT0 (homogenous evolution).

The extended de Bruijn diagrams4 calculate all the periodic sequences by
the cycles defined in the diagram. These ones also calculate the shift of a peri-
odic sequence for a certain number of steps; thus we can get de Bruijn diagrams
describing all the periodic sequences characterizing a glider in Rule 110.

In order to explain how the sequences of each glider are determined, we
firstly calculate the de Bruijn diagram composing anA glider in Rule 110,
and discussing how the periodic sequences are extracted for representing this
glider and specifying as well the set of regular expressions.

The A glider moves two cells to the right in three times (Table 2). We
compute the extended de Bruijn diagram (2-shift, 3-gen) depicted in Figure 7.

4The de Bruijn diagrams were calculated with the NXLCAU21 system developed by McIntosh
for NextStep and OpenStep systems and LCAU21 to MsDos system. Application and code source
are available from: http://delta.cs.cinvestav.mx/∼mcintosh/oldweb/software.html

“JCA” — “JCA-HM07-04” — 2008/5/22 — 16:41 — page 243 — #13

Determining a Regular Language by Glider-Based Structures 243

FIGURE 7
De Bruijn diagram calculatingA gliders and ether configurations.

The cycles of the diagram have the periodic sequences describing theA glider;
however, these sequences are not ordered yet. Therefore, we must determine
and classify them.

In the figure we have two cycles: a cycle formed by vertex 0 and a large cycle
of 26 vertices which is composed as well by 9 internal cycles. The evolution of
the right illustrates the location of the different periodic sequences producing
theA glider in distinct numbers.

Following the paths through the edges we obtain the sequences or regular
expressions determining the phases of theA glider. For example, we have
cycles formed by:

I. The expression (1110)*, vertices 29, 59, 55, 46 determiningAn gliders.

II. The expression (111110)*, vertices 61, 59, 55, 47, 31, 62 definingnA

gliders with aT3 tile between each glider.

III. The expression (11111000100110)*, vertices 13, 27, 55, 47, 31, 62, 60,
56, 49, 34, 4, 9, 19, 38 describing ether configurations in a phase (in
the following subsection we will see that it corresponds to the phase
e(f1−1)).

The cycle with period 1 represented by vertex 0 produces a homogenous
evolution with state 0. The evolution of the right (Figure 7) shows different
packages ofA gliders, the initial condition is constructed following some of
the seven possible cycles of the de Bruijn diagram or several of them. We can
select the number ofA gliders or the number of intermediate tilesT

β

3 changing
from one cycle to another.

A problem on computing de Bruijn diagrams for all the periodic sequences
representing each glider in Rule 110 is that the NXLCAU21 system is only
able to estimate extended de Bruijn diagrams up to ten generations (implying
an enormous diagram with 1,048,576 vertices); consequently, trying to order
or classify all the cycles is a huge task. Also, as we can see in Table 2,E,
Ē, F , G, H gliders and glider guns exceed by several times the limit of ten

“JCA” — “JCA-HM07-04” — 2008/5/22 — 16:41 — page 244 — #14

244 Genaro J. Martínez et al.

generations. In order to solve this problem and to determine all the regular
expressions to each glider of Rule 110, we evaluate all the phases to each
glider aligning tilesT β

3 .
Let us take all the existing patterns derived from the de Bruijn diagrams

(Figure 8) up to 10 generations and analyze some results briefly, an extensive
discussion can be found in [16]. When the two numbers coincide the diagram
consists exclusively of loops, but not necessarily of one single loop. Since zero
is a quiescent state, entries of form (1,1) indicate that it is the only configuration
holding the shifting requirement; in particular, there are no still life patterns
(except for zero).

Some interesting points of the figure are that some of Cook’s gliders are at
entries (2,3) (A-gliders), (−2,4) (B-gliders), (0,7) (C-gliders), and at (2,10)
(D-gliders). Notation(x, y) indicates a shift ofx places, (negative values
corresponding with a left shift) iny generations.

Cook’s gliders are found in different phases. For example at (−2,3) theA

glider completely covers the evolution space, at (−6,2) a package ofA2 gliders
is interchanged with aT3 tile, at (−10,1) there areA3 gliders, at (−6,6) there
areA4 gliders, at (−6,8) there areA5 gliders, at (−8,7) there areA6 gliders,
at (−8,9) there areA7 gliders and so on. But also we can see configurations
groupingT3 tiles in different package ofA gliders as it can be seen at (−8,6),
(−8,10), (−10,8), (4,6) and (6,9).

Another important point is that de Bruijn diagrams can find periodic con-
figurations constructed by large tiles. For example in coordinate (10,10) we
have that aT11 tile may cover the evolution space with other additional tiles;
we can find similar evolutions for tilesT10, T9, T8, T7 among others. The
construction of the de Bruijn diagrams allows to validate each of the strings
representing every glider of�R110, and we can apply well-known results from
theory of languages like the pumping lemma or decision algorithms [9].

The subset diagram [21] is derived from the de Bruijn diagram, representing
a general diagram for determining what sequences belong to the language
produced by Rule 110 and besides defining the configurations in the Garden
of Eden (sequences with no ancestors).

In this way, the subset diagram has 2k2r
vertices, if all the configurations of

certain length have ancestors then all the configurations with extensions both
to the left and the right with the same equivalence must have ancestors. If this
is not the case, then they describe configurations in the Garden of Eden and
represent paths going from the maximum set to the minimum one in the subset
diagram.

The nodes are grouped into subsets, note being taken of the subsets to which
one can arrive through systematic departures from all the nodes in any given
subset. The result is a new graph, with subsets for nodes and links summarizing
all the places that one can get to from all the different combinations of starting

“JCA” — “JCA-HM07-04” — 2008/5/22 — 16:41 — page 245 — #15

Determining a Regular Language by Glider-Based Structures 245

F
IG

U
R

E
8

P
at

te
rn

s
ca

lc
ul

at
ed

by
de

B
ru

ijn
di

ag
ra

m
s

up
to

10
ge

ne
ra

tio
ns

.

“JCA” — “JCA-HM07-04” — 2008/5/22 — 16:41 — page 246 — #16

246 Genaro J. Martínez et al.

vertex edge with 0 edge with 1

0 0 1
1 φ 2, 3
2 0 1
3 3 2

TABLE 5
Relation between states of the subset diagram

points. Sometimes, but far from always, the possible destinations narrow down
as one goes along; in any event one has all the possibilities cataloged.

One point to be observed is that if one thinks that there should be a link
at a certain node and there is not, the link should be drawn to the empty set
instead; a convention which assures every label of having a representation at
every node in the subset diagram.

Vertices of the subset diagram are formed by the combination of each
subset formed from the states forming the de Bruijn diagram (a power set).
For example for a CA(2, 1) we have four sequences of states in the Bruijn
diagram enumerated as {0}, {1}, {2} and {3}, all the possible subsets are: {0,
1, 2, 3}, {0, 1, 2}, {0, 1, 3}, {0, 2, 3}, {1, 3, 2}, {0, 1}, {0, 2}, {0, 3}, {1,
2}, {1, 3}, {3, 2}, {3}, {2}, {1}, {0} and {}. In these subsets four unitary
classes can be distinguish; the incorporation of the empty set guarantees that
all subsets have at least one image, although this one does not exist in the
original diagram. In order to determine the type of union between the subsets,
the state in which each sequence evolves must be reviewed to know towards
which states (subset that form it) may be connected; this way the relation for
Rule 110 is constructed in Table 5.

There is another important reason for working with subsets. Labelled links
resemble functions, by associating things with one another. But if two links
with the same label emerge from a single vertex, they can hardly represent a
function. Forging the subset of all destinations, leaves one single link between
subsets, bringing functionality to the subset diagram even though it did not
exist originally. Including the null set ensures that every point has an image,
avoiding partially defined functions.

Once the subset diagram has been formed, if a path leads from the universal
set to the empty set, that is conclusive evidence that such a path exists nowhere
in the original diagram. Another application the one originally envisioned by
Edward Moore [26]–is to determine whether there are paths leading to the unit
classes. Such a paths, if they existed, could be used to force an automaton into
a predetermined state, no matter what its original condition

Although the edges between subsets do not define a function, it is well
defined for the whole graph by the inclusion of the empty set. Each class of

“JCA” — “JCA-HM07-04” — 2008/5/22 — 16:41 — page 247 — #17

Determining a Regular Language by Glider-Based Structures 247

edges defines a function:�0 or �1. The subset diagram describes the join of
�0 ∪ �1, that by itself is not functional.

Let a andb be vertices,S a subset and|S| the cardinality ofS; then the
subset diagram is defined by the following equation:

∑
i

(S) =




φ S = φ

{b | edgei (a, b)} S = {a}.⋃
a∈S �i(a) |S| > 1

(5)

three important properties are given here:

1. If there is a path from the maximum subset to the minimum one, then
there exists a similar path starting from some smaller subset to the
empty one. On the other hand, if all the unitary classes do not have
edges going to the empty set, then there are no configurations in the
Garden of Eden.

2. There is a certain image of the de Bruijn diagram, in the sense that
given an origin and a destiny, there is always a subset containing the
accessible destiny and another subset containing the origin, besides the
destiny can have additional vertices.

3. The subset diagram is not connected, and it is interesting to know the
accessible greatest subset as well as the smallest one from a given
subset.

The local functionϕ of Rule 110 has an injective correspondence, knowing
this correspondence then we must find paths in the subset diagram going from
the maximum set to the empty set. Two minimal configurations in the Garden
of Eden of Rule 110 are: (101010)* and (01010)*.

Also of obtaining the Garden of Eden sequences through the subset diagram.
We have too a general machine recognizing each sequence in�R110. In order
to verify this it is just necessary to take a sequence from the subset of regular
expressions, hence there exists a path in the subset diagram starting from the
maximum set determining its existence on ending into a nonempty subset.

Altogether, the principal value of the scalar subset diagram is to establish
such things as:

1. The shortest excluded words, the occurrence of any one of which creates
a Garden of Eden configuration.

2. A maximum length for a minimal excluded word, which is the number
of nodes in the portion of the subset diagram connected to the full subset.

3. Whether exclusion occurs in stages, as key segments are built up.

4. A regular expression describing excluded words.

“JCA” — “JCA-HM07-04” — 2008/5/22 — 16:41 — page 248 — #18

248 Genaro J. Martínez et al.

FIGURE 9
Subset diagram of Rule 110.

FIGURE 10
Phases fi of theT3 tile.

4.4 Phases in Rule 110
In this section we discuss how the phases are derived, represented and obtained
to determine periodic sequences in the evolution space of Rule 110.

TheT
β

3 tile illustrated in Figure 10 has four phases or sequences by row:
f1 = 1111, f2 = 1000, f3 = 1001, and f4 = 10 (from now on we shall simply talk
aboutT β

3 tile asT3). Thus, the concatenation of four phases fi determine a
(periodic) sequence describing the ether pattern: f1 f2 f3 f4 = 11111000100110.

Following each level ofT3 we determine that there are at most four phases
to represent any periodic sequence. First we derive all the possible phases
of ether in Rule 110 and define them in the following way:e(f1−1) =
11111000100110,e(f1−2) = 10001001101111,e(f1−3) = 10011011111000,
ande(f1−4) = 10111110001001.

The evolution of Rule 110 converges in time generally into ether from
random initial conditions with a 0.57 of probability. The initial condition
constructed by the expressione(f1−i)∗∀1 ≤ i ≤ 4, where the interval indicates
all the possible phases, covers the whole evolution space with ether. Let us
notice that each phasee(f1−i) is a permutation of first one. Therefore, fixing

“JCA” — “JCA-HM07-04” — 2008/5/22 — 16:41 — page 249 — #19

Determining a Regular Language by Glider-Based Structures 249

FIGURE 11
Phases fi−i with theT3 tile.

phases level one (Ph1) → {f1−1, f2−1, f3−1, f4−1}
phases level two (Ph2) → {f1−2, f2−2, f3−2, f4−2}

phases level three (Ph3) → {f1−3, f2−3, f3−3, f4−3}
phases level four (Ph4) → {f1−4, f2−4, f3−4, f4−4}

TABLE 6
Four sets of phasesPhi in Rule 110

a phase is sufficient to establish a measurement; by sequential order we chose
phases fi−1 to establish a horizontal one.

Cook determines two measures in the evolution space [5]: horizontal	i

and vertical↗i . We only determine the horizontal case fi−1. Phases fi−1 have
four sub-levels consequence of the phases inT3 tile (Figure 11, left part) and
each phase can be alignedi times generating all the possible phases (right part).

The phases represent the periodic sequences (regular expressions of each
glider) of finite length in the de Bruijn diagram. It is important to indicate
that an alignment of a phase determines a set of regular expressions and
another alignment defines another set of them. Thus, we have four possible
sets (Table 6):Ph1 (phases level one),Ph2 (phases level two),Ph3 (phases
level three) andPh4 (phases level four), where the sets are disjunct each other
to construct initial conditions. The property of regular expressions is con-
served only in the domain of each set if we want to project these structures in
the dynamics of the cellular automaton, where the separation is originated by
the four permutations describing ether. In this way there are four sets where the
elements of one are permutations the elements in other; therefore a single set
is enough to construct initial conditions under the rules of regular expressions.

The way of calculating the whole set of strings for every glider is analyzing
the alignment of the fi−1 phases. In order to determine them, first it is necessary
to describe each glider in its form and limits through tiles. Later we fix a phase,
in our case we took fi−1 and we drew up to a horizontal line in the evolution

“JCA” — “JCA-HM07-04” — 2008/5/22 — 16:41 — page 250 — #20

250 Genaro J. Martínez et al.

FIGURE 12
Phases fi1 for A andB gliders respectively.

space tying two tilesT3 (second illustration in Figure 11). Thus, the sequence
between both tiles aligned in each one of the four levels determines a periodic
sequence representing a particular structure in the evolution space of Rule 110.
We calculate all the periodic sequences in a certain phase and this procedure
enumerates all the periodic sequences forming each glider.

Variable fi indicates the phase currently used where the second subscripti

(forming notation fi−i) indicates that selected setPhi of regular expressions.
Finally, our notation proposes to codify initial conditions by phases is in the
following way:

#1(#2, fi−1) (6)

where #1 represents the glider according to Cook’s classification (Table 2) and
#2 the phase of the glider if it has a period greater than four.5

Now we determine the phases fi−16 for A and B gliders as Figure 12
illustrates.T3 tiles determine a phase #1; in the case ofA andB gliders only a
T3 tile is necessary to describe their structure. In all the others cases, at least
two T3 tiles are needed.

Following each phase initiated by everyT3 tile, the phases fi−1 for theA

glider are as follows:

• A(f1−1) = 111110

• A(f2−1) = 11111000111000100110

• A(f3−1) = 11111000100110100110

The sequence is defined taking the first value from the first cell ofT3 tile on
the left until reaching a second cell representing the first value of the second
T3 tile on the right. In Figure 12 a black cell indicates the limit of each phase.

5We must indicate that the arrangement by capital letters for the #2 parameter into the OSXL-
CAU21 system [15] does not have a particular meaning; it is only used to give a representation
at the different levels for phases with gliders of periods module four.
6The subset of regular expressions�R110 for each glider in Rule 110 (see Appendix), serves as
input data for the OSXLCAU21 system [15].

“JCA” — “JCA-HM07-04” — 2008/5/22 — 16:41 — page 251 — #21

Determining a Regular Language by Glider-Based Structures 251

In general for every structure with negative speed, the phase f4−1 = f1−1,
for this reason the phase is not written. Each periodic sequences defined byT3
tiles conserves the regular expression property when basic rules are applied.
Therefore,ε, A(f1−1),A(f1−1)+A(f1−1), A(f1−1)−A(f1−1), A(f1−1)* and
A(f3−1) − A(f1−1) − A(f2−1) − A(f3−1) − A(f2−1) are regular expressions
(we use ‘−’ to represent the concatenation operation in our constructions). Let
us remember the codification in phases,A indicates the glider (#1) and fi−1
indicates the phase.

Thus, all phases fi−1 for theB glider are:

• B(f1−1) = 11111010

• B(f2−1) = 11111000

• B(f3−1) = 1111100010011000100110

• B(f4−1) = 11100110

The procedure made overA andB gliders was applied to all the gliders for
obtaining the whole subset of regular expressions�R110. First we shall expose
some properties ofT3 tile representing ether in Rule 110 and how they are
reflected in the evolution space for each periodic and non-periodic structure.

TheT3 tile determines three types of slopes7 as we can see in Figure 13:
positive slope “p+,” negative slope “p−” and null slope “p0.” The slopesp+
andp− specify maximal positive and negative speeds for all the gliders in the
evolution space of Rule 110.

If p+ has a shift of+2 cells in 3 generations, then the ether speed is
ver = 2/3. If p− has a shift of−2 cells in 4 generations, then the speed of the
ether isvel = −1/2 (as we have indicated in Table 2).

In the analysis by phases theT3 tile determines the existence of two margins
“oms” and “ems” (right illustration in Figure 13) for both slopes and each tile,
establishing other important properties.

If p+, there is an odd marginoms with a height of three cells. Ifp−, there
is an even marginems with a height of four cells. The contact points8 are
determined by the number of odd marginsoms whenp+ or even marginsems

whenp−. Finally, both odd and even margins (left and right in a periodic
structure) have a bijective correspondence (see Table 2).

7If P1(x1, y1) andP2(x2, y2) are two different points one a straight line, its slopem is: m =
y1−y2
x1−x2

. Thus we can select a first point(i, j) into the evolution space of Rule 110 within someT3
tile for each one of its shifts. If the shift goes from left to right, the second point is(i + 2, j + 3).
If the shift goes from right to left, the second point is(i − 2, j + 4).
8A contact point [29] indicate as a region where a given glider may hit against another one.
Therefore, a non-contact point implies a region where a glider cannot be affected by some collision.
Contact points are not exclusive for periodic structures in Rule 110, but they also exist in non-
periodic structures.

“JCA” — “JCA-HM07-04” — 2008/5/22 — 16:41 — page 252 — #22

252 Genaro J. Martínez et al.

2 right in 3 generations

right displacement
positive slope

right ems
margin = 3

left ems
margin = 3

2

ver = 2/3

2 left in 4 generations

left displacement
negative slope

left oms
margin = 4

right oms
margin = 4

vel = -1/2

1

2

3

4

slopes ether

p+

p+

p0 p
p

FIGURE 13
Three slopes produced by the ether pattern.

If there aren marginsoms in the upper part of a glider whenp+, then there
aren marginsoms in its lower part. In the other hand, if there aren margins
ems in the upper part whenp−, then there aren marginsems in its lower
part. In other words, the existence of a contact point in a glider implies the
existence of a non-contact point in its converse part.

All periodic or non-periodic structure in the evolution space of Rule 110
advances+2 cells and goes back−2 cells, then each structure withp+ has a
speed ofvg ≤ ver and whenp− thenvg ≤ |vel |, wherevg represents the speed
of ag glider (see Table 2). Therefore, every structure withp+ advances with
incrementsver and goes backs with decrementsvel . In other case, the structure
with p− advances with incrementsvel and goes back with decrementsver .

Every structure withp+ can be affected by another structure with different
slope (p0 or p−), only if the first has at least a marginoms and the second
has at least a marginems. In the other case, each structure withp− can be
affected by another structure with distinct slope (p0 or p+), only if the first
has at least a marginems and the second has at least a marginoms.

These properties produce the following equations. LetG be the whole set
of gliders in Rule 110, then the shift ofg ∈ G is represented in the following
way:

dg = (2 ∗ oms) − (2 ∗ ems). (7)

Every periodic structure has a period defined by the number of margins
oms andems. Therefore, the period of ag glider is determined by:

pg = (3 ∗ oms) + (4 ∗ ems) (8)

and has a speed described by:

vg = (2 ∗ oms) − (2 ∗ ems)

(3 ∗ oms) + (4 ∗ ems)
. (9)

“JCA” — “JCA-HM07-04” — 2008/5/22 — 16:41 — page 253 — #23

Determining a Regular Language by Glider-Based Structures 253

p+ p− p0

f1−1 �→ 1T3(right) - 0T3(left) f1−1 �→ 1T3(left) - 1T3(right) f1−1 �→ 1T3(left) - 0T3(right)
f2−1 �→ 2T3(right) - 3T3(left) f2−1 �→ 2T3(left) - 0T3(right) f2−1 �→ 2T3(left) - 3T3(right)
f3−1 �→ 3T3(right) - 2T3(left) f3−1 �→ 3T3(left) - 3T3(right) f3−1 �→ 3T3(left) - 2T3(right)

f4−1 = f1−1 f4−1 �→ 0T3(left) - 2T3(right) f4−1 �→ 0T3(left) - 1T3(right)

TABLE 7
Phases determining distances mod 4 (byT3 tiles)

The number of collisions between gliders have a maximum level deter-
mined by the number of marginsomsandems. Thus, for an arbitrary glider
with omscontact points and other arbitrary glider different from the first with
emscontact points, we have the following number of collisions:

c ≤ oms∗ ems (10)

wherec represents the maximum number of collisions between both gliders.
Nevertheless, in some gliders the maximum level is not fulfilled. Depurating
the equality we have exact number of collisions between a pairgi , gj ∈ G
wherei
= j in the following equation:

c = |(omsgi
∗ emsgj

) − (omsgj
∗ emsgi

)|. (11)

The procedure used to codify initial conditions by phases fi−1 to handle
collisions, specifies as well two measures representing distances in the linear
space of Rule 110 (Table 7): mod 4 (by eachT3 tile). In this case we have a
minimum distance of zeroT3 tiles and a maximum distance of threeT3 tiles
among gliders. The second measurement is module 14 (by number of cells).
In this case we have a minimum distance of 0 cells up to 4+ 4 + 4 + 2 cells
among gliders. The restriction is generated by theT3 tile.

The relevance of knowing and determining a distance in the linear space of
Rule 110 is for establishing a suitable control for the positions of gliders and
for obtaining the desired reactions. Now we analyze the distances induced by
the phases (by tile) for slopesp+, p− andp0, as described in Table 7.

In the case of the ether sequences, the distances are the same implying an
interval of 4T3 tiles which is the maximum distance by tile. Forp+ we can
take anA glider as example; forp− aB glider can be chosen and forp0 aC

glider is useful to verify the distances.
In this way, if a glider has a slopep− then the phases do not overlap,

conversely if a glider has a slopep+ the phases overlap. Finally, If the phase
f4−1 overlaps with the phase f1−1 then in this case only we have three phases,
in other one, we have four different periodic chains. Therefore, if f4−1 overlaps
with f1−1, f4−1 = f1−1.

If a glider withp+ collisions sequentially in its four phases against a glider
with p− in its four phases as well placed in(x, y), then the collisions take place

“JCA” — “JCA-HM07-04” — 2008/5/22 — 16:41 — page 254 — #24

254 Genaro J. Martínez et al.

in the samey-position with identical distances between each interval. The
minimum range is important to generate a proper collision. Kenneth Steiglitz
determines two types of collisions [29] between gliders:

• Proper collision. The collision takes place in a contact point.

• Non-proper collision. The collision takes place when the gliders over-
lap in their sequences, i.e., they overlap in initial conditions or in the
evolution.

Rule 110 has the two forms of non-proper collisions: the first case is in
phases overlapping from initial conditions and the second one is where several
gliders interact in regions where distances cannot be extrapolated.

4.5 Phases on non-periodic structures
The phases not only can be determined in periodic structures of Rule 110, they
are also defined in non-periodic structures.

The projection to non-periodic structures is made in the same way that
we did with the periodic ones, only that the glider case is easier because
they have a period and, therefore, a fixed number of phases. Nevertheless,
for decompositions in short or long chaotic regions, the number of margins
oms andems varies arbitrarily. The chaotic regions can initiate from initial
conditions or, in other cases, they are originated by collisions of two or more
gliders and even by the near interaction of one or several chaotic regions.

In Figure 14 we show a small decomposition generated by the collision
among three gliders. The sequence for this example is:e∗ − C2(A, f3−1) −
C2(A, f1−1) − e − B̄(A, f2−1) − e*.9

C2 glider has both anomsand anemsmargin in each end and̄B glider has
threeomsand zeroemsmargins in each end (see Figure 2). The chaotic region
has eightomsand threeemsmargins in the left part, but in the right one it has
threeomsand fiveemsmargins. In this case, the decomposition has several
points where other structures can interact in both margins. Consequently, for
a non-periodic structure the bijective correspondence betweenomsandems
margins is not conserved, because it does not have a specific period.

Concluding, every structure in the evolution space of Rule 110 must have
at least a contact point and other non-contact point.

For example, in Figure 14 we can seen twoC2 gliders close to (2C2) with
emsandomsmargins, conserving the pair of gliders without alteration. So,
at the end of the chaotic decomposition, the last collision is between anA

glider against aB glider with a distance of 0T3 tiles. For this reason the
decomposition does not leave debris at the end of its evolution. The product

9From now on the phase represented by an ether configuration ‘e(f1)’ will be simply described
as ‘e’ because it never changes.

“JCA” — “JCA-HM07-04” — 2008/5/22 — 16:41 — page 255 — #25

Determining a Regular Language by Glider-Based Structures 255

contact
points

non contact
points

non contact
points

contact
points

FIGURE 14
Annihilation of gliders with a short decomposition.

of the collision amongA andB gliders with distance 0 can be specified with
the following expression:e∗ − A(f1−1) − B(f4−1) − e∗.

4.6 A simple procedure to construct desired collisions
The goal of the procedure is to construct initial conditions in the one-
dimensional space of Rule 110 for controlling collisions in the evolution space.
The constructions are codified by the phases fi−1 determining as well the
base set of regular expressions fi−1; offering a procedure to handle complex
collisions among all the possible structures.

Let �R110 be the base subset of regular expressions determined by the set
of glidersG. Now we specify a subset:ε, 0, 1,e and #1(#2, fi−1) ∈ �R110
as regular expressions following the classic rules. Thus we have two ways of
yielding collisions among gliders:

• The first case is fixing the initial phases of twogi , gj ∈ G where
i
= j and both have different slopesp+ andp− (or p0). Then the
interval between the two gliders is determined by an ether sequencee

and with this condition we can enumerate all the possible binary colli-
sions just changing the interval of ether, i.e., manipulating the distance.
Therefore, the collision between two gliders is determined by the
expression:e+ − gi − e∗ − gj − e+. The restriction is that it only enu-
merates only collisions between two gliders and not among packages
of them.

• The second case can codify several equal or different gliders simulta-
neously, where the phase and distances are particularly manipulated,

“JCA” — “JCA-HM07-04” — 2008/5/22 — 16:41 — page 256 — #26

256 Genaro J. Martínez et al.

i.e., we can change both parameters to obtain a collision in the wished
time and place. The advantage to use this case, is that we obtain a total
control of the evolution space, but the disadvantage is that in order to
determine the collision we must evaluate the production of the initial
condition to know the distance and the adequate phase to get the desired
result. In other words, we must construct the codification by a proof-
and-error approach, but we will see that it is the best option because
several collisions must be codified changing the phase, but not the dis-
tance (we exemplified this situation in the following section, when we
applied the procedure to construct specific initial conditions for solving
a particular problem).

For instance, if we want to produce a given glider by collisions among
others, the involved speed of each glider may be different in every case.
Therefore, if we need a simultaneous collision, we must determine first the
distance and later the phase among them to obtain the required reaction in the
wished place.

We present a number of steps to construct initial conditions in Rule 110
involving several gliders, we remark that the result shall be obtained by
subsequent approaches.

1. Determine the number ofgi gliders wherei ∈ Z
+ and the particular

g ∈ G desired in the process.

2. Determine thefi−1 phase where 1≤ i ≤ 4 in which each glider must
start.

3. Determine the distance defined by ethere between each glider (if it is
necessary).

4. Execute the assigned codification to evaluate the production. If the
production is correct, finish the allocation. In other case:

(a) If the distance is correct but the phase is not the right one, a search
is made crossing allj phases of #2, where 1≤ j ≤ pg andpg is the
number of possible phases established by the number of margins
4ems+ 3oms= pg in ag glider of periodpg.

(b) If the phase is correct but the distance is not the right one, it is nec-
essary to calculate the number of configurationsne+ #1(#2, fi−1)

(mod 4 or mod 14). Establish if it is necessary to assign ether
configurations or just change the phase of the structure.
If the distance is smaller to mod 4 (0, 1, 2 or 3T3 tiles), it is not
necessary to introduce a sequencee. In this case we need to adjust
the distance with thei phases fi−1 of g. If distance is mod 14 (4,
4, 4 or 2 number of cells), follow the previous criterion and return
to step 4.

“JCA” — “JCA-HM07-04” — 2008/5/22 — 16:41 — page 257 — #27

Determining a Regular Language by Glider-Based Structures 257

éter BA

A B

fase

t t

fase

FIGURE 15
Schematic diagram representing collisions in 1D CA.

The complexity grows in the evolution space of Rule 110 with regard of
the number of gliders involved and the size of the initial configuration, by the
information amount contained in the chain.

All word w constructed through phases under the basic rules of regu-
lar expressions represents an initial condition, in Figure 15 we show the
schematic diagram describing collisions and phases by periodic sequences
in the evolution space.

The relation between two cycles in the de Bruijn diagram may be with
two or more different periodic chains. In the figure we have that anA glider
has a connection with ether and on the other hand ether has a connection
with a B glider. The final sequence is an assigned regular expression in the
initial condition yielding a collision. The result is interpreted in one or several
δ gliders (we do not know the result of the reaction).

The right diagram of the figure represents exactly what does a phase mean.
For example, we assign to the initial condition arbitrary ether sequences in both
ends and a fixed phase betweenA andB gliders. Consequently, the periodic
sequence between ether sequences is not altered in its length, and it will
represent the glider phases during its movement through the evolution space.

5 CONCLUSIONS

The basic structure of Rule 110 has been explained, its behaviors and all the
gliders until now known were displayed. The phases were described in detail,
showing their origin induced by the analysis both in de Bruijn diagrams and
tiles in Rule 110. Thus, phases help to determine a classification of periodic
sequences to obtain the subset of glider-based regular expressions.

Also, once obtained the subset of glider-based regular expressions we pro-
posed a codification by phases ‘#1(#2, fi−1)’ to construct initial conditions in

“JCA” — “JCA-HM07-04” — 2008/5/22 — 16:41 — page 258 — #28

258 Genaro J. Martínez et al.

the one-dimensional space of Rule 110 for determining a procedure to control
collisions between gliders from initial conditions.

The application of this regular set has been used to describe to the universe
of gliders in Rule 110 [16] and the construction of Rule 110 objects [13, 17]
besides to other interesting reactions; for instance, the reconstruction of the
operation of the cyclic tag system [18].10

Finally, several questions arise because it seems that the evolution of
Rule 110 language should always be regular. For instance, How a regular
language can be able of constructing a universal machine? Could Rule 110
determine new grammars? [8, 19, 20]. Could we project this language to
two-dimensional finite-state automata? [10, 19]. Could Rule 110 be able
of implementing unconventional logic operations by glider-based reactions?
[1,2]. Well, it is only the beginning.

ACKNOWLEDGEMENT

This paper was inspired by the results of Prof. Harold V. McIntosh in de Bruijn
diagrams and Rule 110. Prof. McIntosh has been as well an invaluable profes-
sor in Mexico for a huge number of researches; in our case his work has been a
major influence since our initial studies in cellular automata theory, in particu-
lar in the application of graph theory, algebra of matrices, CAMEX, probability
and statistics, between other topics. Particularity, he was our first contact with
CAM-PC and NXLCAU systems, stimulating in this way the implementa-
tion of our own software in C-Objetive for NextStep operating system in the
Microcomputer Department at the Autonomous University of Puebla in 1996.
First author also acknowledges the support of EPSRC (grant EP/D066174/1)
and the previous support of CONACyT with register number 139509.

REFERENCES

[1] Adamatzky A. Computing in Nonlinear Media and Automata Collectives, Institute of
Physics Publishing, Bristol and Philadelphia, 2001.

[2] Adamatzky A. (Ed.).Collision-Based Computing, Springer, 2002.

[3] Michael A. Arbib. Theories of Abstract Automata, Prentice-Hall Series in Automatic
Computation, 1969.

[4] Cook M. Introduction to the activity of rule 110 (copyright 1994-1998 Matthew
Cook), http://w3.datanet.hu/∼cook/Workshop/CellAut/Elementary/Rule110/ 110pics.html.
1999.

[5] Cook M. Universality in Elementary Cellular Automata,Complex Systems, 15(1) (2004),
1–40.

10You can see a full snapshots and details description by components of functioning of cyclic tag
system in Rule 110 from http://uncomp.uwe.ac.uk/genaro/rule110/ctsRule110.html

“JCA” — “JCA-HM07-04” — 2008/5/22 — 16:41 — page 259 — #29

Determining a Regular Language by Glider-Based Structures 259

[6] Davids M.Computability and Unsolvability, Dover Publications, Inc. New York, 1982.

[7] Grünbaum B. and Shephard G. C.Tilings and Patterns, W. H. Freeman and Company, New
York, 1987.

[8] Hurd L. P. Formal Language Characterizations of Cellular Automaton Limit Sets,Complex
Systems, 1 (1987), 69–80.

[9] Hopcroft J. E. and Ullman J. D.Introduction to Automata Theory Languages, and
Computation, Addison-Wesley Publishing Company, 1987.

[10] Kari J. and Moore C. New results on alternating and non-deterministic two-dimensional
finite-state automata,Symposium on Theoretical Aspects of Computer Science, 2001.

[11] Morita K. Simple Universal One-Dimensional Reversible Cellular Automata,Journal of
Cellular Automata, by publish.

[12] Morita K. Simplifying Universal One-Dimensional Reversible Cellular Automaton on
Infinite Configurations, personal communication.

[13] Juárez Martínez G. and McIntosh H. V. ATLAS: Collisions of gliders like phases of ether in
Rule 110, http://uncomp.uwe.ac.uk/genaro/papers.html. 2001.

[14] Juárez Martínez G., McIntosh H. V. and Seck Tuoh Mora Juan C. Production of gliders by
collisions in Rule 110,Lecture Notes in Computer Science2801 (2003), 175–182.

[15] Juárez Martínez G. Introduction to OSXLCAU21 System, Bielefeld, Germany,
http://uncomp.uwe.ac.uk/genaro/papers.html. 2004.

[16] Juárez Martínez G., McIntosh H. V. and Seck Tuoh Mora Juan C. Gliders in Rule 110,
International Journal of Unconventional Computing2(1) (2006), 1–49.

[17] Juárez Martínez G., McIntosh H. V., Seck Tuoh Mora Juan C. and Vergara S. V. Chapa.
Rule 110 objects and other collision-based constructions,Journal of Cellular Automata, by
publish, 2006.

[18] Juárez Martínez G., McIntosh H. V., Seck Tuoh Mora Juan C. and Vergara S. V. Chapa.
Reproducing the cyclic tag systems developed by Matthew Cook with Rule 110 using the
phases fi−1, http://uncomp.uwe.ac.uk/genaro/papers.html, pre-print.

[19] Lindgren K., Moore C. and Nordahl M. Complexity of Two-Dimensional Patterns,Journal
of Statistical Physics91(5-6) (1998), 909–951.

[20] Moore C. and Crutchfield J. P. Quantum automata and quantum grammars,Theoretical
Computer Science237 (2000), 275–306.

[21] McIntosh H.V. Linear cellular automata via de Bruijn diagrams, http://delta.cs.cinvestav.mx/
∼mcintosh/oldweb/pautomata.html. 1991.

[22] McIntosh, H. V. Rule 110 as it relates to the presence of gliders, http://delta.cs.cinvestav.mx/
∼mcintosh/oldweb/pautomata.html. 1999.

[23] McIntosh H. V. A Concordance for Rule 110, http://delta.cs.cinvestav.mx/∼mcintosh/
oldweb/pautomata.html. 2000.

[24] McIntosh H. V.One Dimensional Cellular Automata, by publish.

[25] Minsky M. Computation: Finite and Infinite Machines, Prentice Hall, 1967.

[26] Moore E. F. Gedanken Experiments on Sequential Machines,in C. E. Shannon and John
McCarthy (eds),Automata Studies, Princeton University Press, Princeton, New Jersey,
1956.

[27] Nordahl M. Formal languages and finite cellular automata,Complex Systems, 3 (1989),
63–78.

[28] Neary T. and Woods D. P-completeness of cellular automaton Rule 110,Lecture Notes in
Computer Science, 4051 (2006), 132–143.

[29] Park J. K., Steiglitz K. and Thurston W. P. Soliton-like behavior in automata,Physica D, 19
(1986), 423–432.

[30] Stone H. S.Discrete Mathematical Structures and their Applications, Computer Science
Series, Stanford University, 1973.

“JCA” — “JCA-HM07-04” — 2008/5/22 — 16:41 — page 260 — #30

260 Genaro J. Martínez et al.

[31] Turing A. M. On Computable numbers, with an application to the Entscheidungsprob-
lem, Proceedings of the London Mathematical Society, Ser. 2, vol. 42, (1936), 230–265.
Corrections, Ibid, vol 43, (1937) 544–546.

[32] Wolfram S. Computation Theory on Cellular Automata,Communication in Mathematical
Physics, 96 (1984), 15–57.

[33] Wolfram S. Theory and Applications of Cellular Automata, World Scientific Press,
Singapore, 1986.

[34] Wolfram S.A New Kind of Science, Wolfram Media, Inc., Champaign, Illinois, 2002.

[35] Voorhees B. H.Computational analysis of one-dimensional cellular automata, World
Scientific Series on Nonlinear Science, Series A, Vol. 15, 1996.

[36] Voorhees B. H. Remarks on Applications of De Bruijn Diagrams and Their Fragments,
Journal of Cellular Automata, in this issue.

A FINITE SUBSET OF REGULAR EXPRESSIONS
GLIDERS-BASED

We present the complete subsetPh1 of regular expressions determining a
particular phase (periodic sequence), for each glider up to now known in
Rule 110.11

A.1 ether
e(f1−1) = 11111000100110

A.2 A glider
A(f1−1) = 111110
A(f2−1) = 11111000111000100110
A(f3−1) = 11111000100110100110
A(f4−1) = A(f1−1)

A.3 B glider
B(f1−1) = 11111010
B(f2−1) = 11111000
B(f3−1) = 1111100010011000100110
B(f4−1) = 11100110

A.4 B̄ glider
B̄(A, f1−1) = 1111100010110111100110
B̄(A, f2−1) = 111110001001111111001011111000100110
B̄(A, f3−1) = 111110001001101100000101111000100110
B̄(A, f4−1) = 1111110000111100100110

B̄(B, f1−1) = 1111100001000110010110
B̄(B, f2−1) = 111110001000110011101111111000100110
B̄(B, f3−1) = 111110001001100111011011100000100110
B̄(B, f4−1) = 1110110111111010000110

11The subset of regular expressions is also available in a text file “listPhasesR110.txt” from
http://uncomp.uwe.ac.uk/genaro/Rule110.html

“JCA” — “JCA-HM07-04” — 2008/5/22 — 16:41 — page 261 — #31

Determining a Regular Language by Glider-Based Structures 261

B̄(C, f1−1) = 1111101111110000111000
B̄(C, f2−1) = 111110001110000100011010011000100110
B̄(C, f3−1) = 111110001001101000110011111011100110
B̄(C, f4−1) = 1111100111011000111010

A.5 B̂ glider
B̂(A, f1−1) = 111110001011011110011001111111000100110
B̂(A, f2−1) = 111110001001111111001011101100000100110
B̂(A, f3−1) = 111110001001101100000101111011110000110
B̂(A, f4−1) = 1111110000111100111001000

B̂(B, f1−1) = 111110000100011001011010110011000100110
B̂(B, f2−1) = 111110001000110011101111111111011100110
B̂(B, f3−1) = 111110001001100111011011100000000111010
B̂(B, f4−1) = 1110110111111010000000110

B̂(C, f1−1) = 111110111111000011100000011111000100110
B̂(C, f2−1) = 111110001110000100011010000011000100110
B̂(C, f3−1) = 111110001001101000110011111000011100110
B̂(C, f4−1) = 1111100111011000100011010

A.6 C1 glider
C1(A, f1−1) = 111110000
C1(A, f2−1) = 11111000100011000100110
C1(A, f3−1) = 11111000100110011100110
C1(A, f4−1) = 111011010

C1(B, f1−1) = 11111011111111000100110
C1(B, f2−1) = 11111000111000000100110
C1(B, f3−1) = 11111000100110100000110
C1(B, f4−1) = C1(B, f1−1)

A.7 C2 glider
C2(A, f1−1) = 11111000000100110
C2(A, f2−1) = 11111000100000110
C2(A, f3−1) = 11111000100110000
C2(A, f4−1) = 11100011000100110

C2(B, f1−1) = 11111010011100110
C2(B, f2−1) = 11111000111011010
C2(B, f3−1) = 1111100010011011111111000100110
C2(B, f4−1) = C2(B, f1−1)

A.8 C3 glider
C3(A, f1−1) = 11111011010
C3(A, f2−1) = 1111100011111111000100110
C3(A, f3−1) = 1111100010011000000100110
C3(A, f4−1) = 11100000110

“JCA” — “JCA-HM07-04” — 2008/5/22 — 16:41 — page 262 — #32

262 Genaro J. Martínez et al.

C3(B, f1−1) = 11111010000
C3(B, f2−1) = 1111100011100011000100110
C3(B, f3−1) = 1111100010011010011100110
C3(B, f4−1) = C3(B, f1−1)

A.9 D1 glider
D1(A, f1−1) = 11111000010
D1(A, f2−1) = 1111100010001111000100110
D1(A, f3−1) = 1111100010011001100100110
D1(A, f4−1) = 11101110110

D1(B, f1−1) = 1111101110111111000100110
D1(B, f2−1) = 1111100011101110000100110
D1(B, f3−1) = 1111100010011011101000110
D1(B, f4−1) = D1(C, f1−1)

D1(C, f1−1) = 11111011100
D1(C, f2−1) = 1111100011101011000100110
D1(C, f3−1) = 1111100010011011111100110
D1(C, f4−1) = D1(A, f1−1)

A.10 D2 glider
D2(A, f1−1) = 1111101011000100110
D2(A, f2−1) = 1111100011111100110
D2(A, f3−1) = 1111100010011000010
D2(A, f4−1) = 1110001111000100110

D2(B, f1−1) = 1111101001100100110
D2(B, f2−1) = 1111100011101110110
D2(B, f3−1) = 111110001001101110111111000100110
D2(B, f4−1) = D2(C, f1−1)

D2(C, f1−1) = 1111101110000100110
D2(C, f2−1) = 1111100011101000110
D2(C, f3−1) = 1111100010011011100
D2(C, f4−1) = D2(A, f1−1)

A.11 E glider
E(A, f1−1) = 1111100000000100110
E(A, f2−1) = 1111100010000000110
E(A, f3−1) = 1111100010011000000
E(A, f4−1) = 1110000011000100110

E(B, f1−1) = 1111101000011100110
E(B, f2−1) = 1111100011100011010
E(B, f3−1) = 111110001001101001111111000100110
E(B, f4−1) = E(C, f1−1)

E(C, f1−1) = 1111101100000100110
E(C, f2−1) = 1111100011110000110
E(C, f3−1) = 1111100010011001000
E(C, f4−1) = 1110110011000100110

“JCA” — “JCA-HM07-04” — 2008/5/22 — 16:41 — page 263 — #33

Determining a Regular Language by Glider-Based Structures 263

E(D, f1−1) = 1111101111011100110
E(D, f2−1) = 1111100011100111010
E(D, f3−1) = 1111100010011010110
E(D, f4−1) = 1111111111000100110

A.12 Ē glider
Ē(A, f1−1) = 111110000100011111010
Ē(A, f2−1) = 111110001000110011000
Ē(A, f3−1) = 11111000100110011101110011000100110
Ē(A, f4−1) = 111011011101011100110

Ē(B, f1−1) = 111110111111011111010
Ē(B, f2−1) = 111110001110000111000
Ē(B, f3−1) = 11111000100110100011010011000100110
Ē(B, f4−1) = 111110011111011100110

Ē(C, f1−1) = 111110001011000111010
Ē(C, f2−1) = 111110001001111100110
Ē(C, f3−1) = 11111000100110110001011111000100110
Ē(C, f4−1) = 111111001111000100110

Ē(D, f1−1) = 111110000101100100110
Ē(D, f2−1) = 111110001000111110110
Ē(D, f3−1) = 11111000100110011000111111000100110
Ē(D, f4−1) = 111011100110000100110

Ē(E, f1−1) = 111110111010111000110
Ē(E, f2−1) = 111110001110111110100
Ē(E, f3−1) = 11111000100110111000111011000100110
Ē(E, f4−1) = Ē(F, f1−1)

Ē(F, f1−1) = 111110100110111100110
Ē(F, f2−1) = 111110001110111110010
Ē(F, f3−1) = 11111000100110111000101111000100110
Ē(F, f4−1) = Ē(G, f1−1)

Ē(G, f1−1) = 111110100111100100110
Ē(G, f2−1) = 111110001110110010110
Ē(G, f3−1) = 11111000100110111101111111000100110
Ē(G, f4−1) = 111110011100000100110

Ē(H, f1−1) = 111110001011010000110
Ē(H, f2−1) = 111110001001111111000
Ē(H, f3−1) = 11111000100110110000010011000100110
Ē(H, f4−1) = 111111000011011100110

A.13 F glider
F(A, f1−1) = 111110001011010
F(A, f2−1) = 11111000100111111111000100110

“JCA” — “JCA-HM07-04” — 2008/5/22 — 16:41 — page 264 — #34

264 Genaro J. Martínez et al.

F(A, f3−1) = 11111000100110110000000100110
F(A, f4−1) = 111111000000110

F(B, f1−1) = 111110000100000
F(B, f2−1) = 11111000100011000011000100110
F(B, f3−1) = 11111000100110011100011100110
F(B, f4−1) = 111011010011010

F(C, f1−1) = 11111011111101111111000100110
F(C, f2−1) = 11111000111000011100000100110
F(C, f3−1) = 11111000100110100011010000110
F(C, f4−1) = 111110011111000

F(D, f1−1) = 11111000101100010011000100110
F(D, f2−1) = 11111000100111110011011100110
F(D, f3−1) = 11111000100110110001011111010
F(D, f4−1) = 111111001111000

F(E, f1−1) = 11111000010110010011000100110
F(E, f2−1) = 11111000100011111011011100110
F(E, f3−1) = 11111000100110011000111111010
F(E, f4−1) = 111011100110000

F(F, f1−1) = 11111011101011100011000100110
F(F, f2−1) = 11111000111011111010011100110
F(F, f3−1) = 11111000100110111000111011010
F(F, f4−1) = F(G, f1−1)

F (G, f1−1) = 11111010011011111111000100110
F(G, f2−1) = 11111000111011111000000100110
F(G, f3−1) = 11111000100110111000100000110
F(G, f4−1) = F(H, f1−1)

F (H, f1−1) = 111110100110000
F(H, f2−1) = 11111000111011100011000100110
F(H, f3−1) = 11111000100110111010011100110
F(H, f4−1) = F(A2, f1−1)

F (A2, f1−1) = 111110111011010
F(A2, f2−1) = 11111000111011111111000100110
F(A2, f3−1) = 11111000100110111000000100110
F(A2, f4−1) = F(B2, f1−1)

F (B2, f1−1) = 111110100000110
F(B2, f2−1) = 111110001110000
F(B2, f3−1) = 11111000100110100011000100110
F(B2, f4−1) = 111110011100110

A.14 G glider
G(A, f1−1) = 111110100111110011100110
G(A, f2−1) = 111110001110110001011010
G(A, f3−1) = 11111000100110111100111111111000100110
G(A, f4−1) = 111110010110000000100110

“JCA” — “JCA-HM07-04” — 2008/5/22 — 16:41 — page 265 — #35

Determining a Regular Language by Glider-Based Structures 265

G(B, f1−1) = 111110001011111000000110
G(B, f2−1) = 111110001001111000100000
G(B, f3−1) = 11111000100110110010011000011000100110
G(B, f4−1) = 111111011011100011100110

G(C, f1−1) = 111110000111111010011010
G(C, f2−1) = 11111000100011000011101111111000100110
G(C, f3−1) = 11111000100110011100011011100000100110
G(C, f4−1) = 111011010011111010000110

G(D, f1−1) = 111110111111011000111000
G(D, f2−1) = 11111000111000011110011010011000100110
G(D, f3−1) = 11111000100110100011001011111011100110
G(D, f4−1) = 111110011101111000111010

G(E, f1−1) = 111110001011011100100110
G(E, f2−1) = 11111000100111111101011011111000100110
G(E, f3−1) = 11111000100110110000011111111000100110
G(E, f4−1) = 111111000011000000100110

G(F, f1−1) = 111110000100011100000110
G(F, f2−1) = 11111000100011001101000011111000100110
G(F, f3−1) = 11111000100110011101111100011000100110
G(F, f4−1) = 111011011100010011100110

G(G, f1−1) = 111110111111010011011010
G(G, f2−1) = 11111000111000011101111111111000100110
G(G, f3−1) = 11111000100110100011011100000000100110
G(G, f4−1) = 111110011111010000000110

G(H, f1−1) = 111110001011000111000000
G(H, f2−1) = 11111000100111110011010000011000100110
G(H, f3−1) = 11111000100110110001011111000011100110
G(H, f4−1) = 111111001111000100011010

G(A2, f1−1) = 11111000010110010011001111111000100110
G(A2, f2−1) = 11111000100011111011011101100000100110
G(A2, f3−1) = 11111000100110011000111111011110000110
G(A2, f4−1) = 111011100110000111001000

G(B2, f1−1) = 11111011101011100011010110011000100110
G(B2, f2−1) = 11111000111011111010011111111011100110
G(B2, f3−1) = 11111000100110111000111011000000111010
G(B2, f4−1) = G(C2, f1−1)

G(C2, f1−1) = 111110100110111100000110
G(C2, f2−1) = 11111000111011111001000011111000100110
G(C2, f3−1) = 11111000100110111000101100011000100110
G(C2, f4−1) = G(A, f1−1)

“JCA” — “JCA-HM07-04” — 2008/5/22 — 16:41 — page 266 — #36

266 Genaro J. Martínez et al.

A.15 H glider
H(A, f1−1) = 11111000101100000000111110001001101001111111000100110
H(A, f2−1) = 11111000100111110000000110001001101111101100000100110
H(A, f3−1) = 11111000100110110001000000111001101111100011110000110
H(A, f4−1) = 111111001100000110101111100010011001000

H(B, f1−1) = 11111000010111000011111110001001101110110011000100110
H(B, f2−1) = 11111000100011110100011000001001101111101111011100110
H(B, f3−1) = 11111000100110011001110011100001101111100011100111010
H(B, f4−1) = 111011101101011010001111100010011010110

H(C, f1−1) = 11111011101111111111100110001001101111111111000100110
H(C, f2−1) = 11111000111011100000000010111001101111100000000100110
H(C, f3−1) = 11111000100110111010000000011110101111100010000000110
H(C, f4−1) = H(D, f1−1)

H(D, f1−1) = 111110111000000011001111100010011000000
H(D, f2−1) = 11111000111010000001110110001001101110000011000100110
H(D, f3−1) = 11111000100110111000001101111001101111101000011100110
H(D, f4−1) = H(E, f1−1)

H(E, f1−1) = 111110100001111100101111100011100011010
H(E, f2−1) = 11111000111000110001011110001001101001111111000100110
H(E, f3−1) = 11111000100110100111001111001001101111101100000100110
H(E, f4−1) = H(F, f1−1)

H(F, f1−1) = 111110110101100101101111100011110000110
H(F, f2−1) = 111110001111111110111111100010011001000
H(F, f3−1) = 11111000100110000000111000001001101110110011000100110
H(F, f4−1) = 111000000110100001101111101111011100110

H(G, f1−1) = 111110100000111110001111100011100111010
H(G, f2−1) = 111110001110000110001001100010011010110
H(G, f3−1) = 11111000100110100011100110111001101111111111000100110
H(G, f4−1) = 111110011010111110101111100000000100110

H(H, f1−1) = 111110001011111110001111100010000000110
H(H, f2−1) = 111110001001111000001001100010011000000
H(H, f3−1) = 11111000100110110010000110111001101110000011000100110
H(H, f4−1) = 111111011000111110101111101000011100110

H(A2, f1−1) = 111110000111100110001111100011100011010
H(A2, f2−1) = 11111000100011001011100110001001101001111111000100110
H(A2, f3−1) = 11111000100110011101111010111001101111101100000100110
H(A2, f4−1) = 111011011100111110101111100011110000110

H(B2, f1−1) = 111110111111010110001111100010011001000
H(B2, f2−1) = 11111000111000011111100110001001101110110011000100110
H(B2, f3−1) = 11111000100110100011000010111001101111101111011100110
H(B2, f4−1) = 111110011100011110101111100011100111010

“JCA” — “JCA-HM07-04” — 2008/5/22 — 16:41 — page 267 — #37

Determining a Regular Language by Glider-Based Structures 267

H(C2, f1−1) = 111110001011010011001111100010011010110
H(C2, f2−1) = 11111000100111111101110110001001101111111111000100110
H(C2, f3−1) = 11111000100110110000011101111001101111100000000100110
H(C2, f4−1) = 111111000011011100101111100010000000110

H(D2, f1−1) = 111110000100011111010111100010011000000
H(D2, f2−1) = 11111000100011001100011111001001101110000011000100110
H(D2, f3−1) = 11111000100110011101110011000101101111101000011100110
H(D2, f4−1) = 111011011101011100111111100011100011010

H(E2, f1−1) = 11111011111101111101011000001001101001111111000100110
H(E2, f2−1) = 11111000111000011100011111100001101111101100000100110
H(E2, f3−1) = 11111000100110100011010011000010001111100011110000110
H(E2, f4−1) = 111110011111011100011001100010011001000

H(F2, f1−1) = 11111000101100011101001110111001101110110011000100110
H(F2, f2−1) = 11111000100111110011011101101110101111101111011100110
H(F2, f3−1) = 11111000100110110001011111011111101111100011100111010
H(F2, f4−1) = 111111001111000111000011100010011010110

H(G2, f1−1) = 11111000010110010011010001101001101111111111000100110
H(G2, f2−1) = 11111000100011111011011111001111101111100000000100110
H(G2, f3−1) = 11111000100110011000111111000101100011100010000000110
H(G2, f4−1) = 111011100110000100111110011010011000000

H(H2, f1−1) = 11111011101011100011011000101111101110000011000100110
H(H2, f2−1) = 11111000111011111010011111100111100011101000011100110
H(H2, f3−1) = 11111000100110111000111011000010110010011011100011010
H(H2, f4−1) = H(A3, f1−1)

H(A3, f1−1) = 11111010011011110001111101101111101001111111000100110
H(A3, f2−1) = 11111000111011111001001100011111100011101100000100110
H(A3, f3−1) = 11111000100110111000101101110011000010011011110000110
H(A3, f4−1) = H(B3, f1−1)

H(B3, f1−1) = 111110100111111101011100011011111001000
H(B3, f2−1) = 11111000111011000001111101001111100010110011000100110
H(B3, f3−1) = 11111000100110111100001100011101100010011111011100110
H(B3, f4−1) = 111110010001110011011110011011000111010

H(C3, f1−1) = 111110001011001101011111001011111100110
H(C3, f2−1) = 11111000100111110111111100010111100001011111000100110
H(C3, f3−1) = 11111000100110110001110000010011110010001111000100110
H(C3, f4−1) = 111111001101000011011001011001100100110

H(D3, f1−1) = 111110000101111100011111101111101110110
H(D3, f2−1) = 11111000100011110001001100001110001110111111000100110
H(D3, f3−1) = 11111000100110011001001101110001101001101110000100110
H(D3, f4−1) = 111011101101111101001111101111101000110

H(E3, f1−1) = 111110111011111100011101100011100011100
H(E3, f2−1) = 11111000111011100001001101111001101001101011000100110

“JCA” — “JCA-HM07-04” — 2008/5/22 — 16:41 — page 268 — #38

268 Genaro J. Martínez et al.

H(E3, f3−1) = 11111000100110111010001101111100101111101111111100110
H(E3, f4−1) = H(F3, f1−1)

H(F3, f1−1) = 111110111001111100010111100011100000010
H(F3, f2−1) = 11111000111010110001001111001001101000001111000100110
H(F3, f3−1) = 11111000100110111111001101100101101111100001100100110
H(F3, f4−1) = H(G3, f1−1)

H(G3, f1−1) = 111110000101111110111111100010001110110
H(G3, f2−1) = 11111000100011110000111000001001100110111111000100110
H(G3, f3−1) = 11111000100110011001000110100001101110111110000100110
H(G3, f4−1) = 111011101100111110001111101110001000110

H(H3, f1−1) = 111110111011110110001001100011101001100
H(H3, f2−1) = 11111000111011100111100110111001101110111011000100110
H(H3, f3−1) = 11111000100110111010110010111110101111101110111100110
H(H3, f4−1) = H(A4, f1−1)

H(A4, f1−1) = 111110111111011110001111100011101110010
H(A4, f2−1) = 11111000111000011100100110001001101110101111000100110
H(A4, f3−1) = 11111000100110100011010110111001101111101111100100110
H(A4, f4−1) = 111110011111111110101111100011100010110

A.16 Glider gun
gun(A, f1−1) = 11111010110011101001100101111100000100110
gun(A, f2−1) = 11111000111111011011101110111100010000110
gun(A, f3−1) = 11111000100110000111111011101110010011000
gun(A, f4−1) = 11100011000011101110101101110011000100110

gun(B, f1−1) = 11111010011100011011101111111101011100110
gun(B, f2−1) = 11111000111011010011111011100000011111010
gun(B, f3−1) = 11111000100110111111011000111010000011000
gun(B, f4−1) = gun(C, f1−1)

gun(C, f1−1) = 11111000011110011011100001110011000100110
gun(C, f2−1) = 11111000100011001011111010001101011100110
gun(C, f3−1) = 11111000100110011101111000111001111111010
gun(C, f4−1) = 111011011100100110101100000

gun(D, f1−1) = 11111011111101011011111111000011000100110
gun(D, f2−1) = 11111000111000011111111000000100011100110
gun(D, f3−1) = 11111000100110100011000000100000110011010
gun(D, f4−1) = 11111001110000011000011101111111000100110

gun(E, f1−1) = 11111000101101000011100011011100000100110
gun(E, f2−1) = 11111000100111111100011010011111010000110
gun(E, f3−1) = 11111000100110110000010011111011000111000
gun(E, f4−1) = 11111100001101100011110011010011000100110

gun(F, f1−1) = 11111000010001111110011001011111011100110
gun(F, f2−1) = 11111000100011001100001011101111000111010
gun(F, f3−1) = 11111000100110011101110001111011100100110
gun(F, f4−1) = 11101101110100110011101011011111000100110

“JCA” — “JCA-HM07-04” — 2008/5/22 — 16:41 — page 269 — #39

Determining a Regular Language by Glider-Based Structures 269

gun(G, f1−1) = 11111011111101110111011011111111000100110
gun(G, f2−1) = 11111000111000011101110111111000000100110
gun(G, f3−1) = 11111000100110100011011101110000100000110
gun(G, f4−1) = 11111001111101110100011000011111000100110

gun(H, f1−1) = 11111000101100011101110011100011000100110
gun(H, f2−1) = 11111000100111110011011101011010011100110
gun(H, f3−1) = 11111000100110110001011111011111111011010
gun(H, f4−1) = 11111100111100011100000011111111000100110

gun(A2, f1−1) = 11111000010110010011010000011000000100110
gun(A2, f2−1) = 11111000100011111011011111000011100000110
gun(A2, f3−1) = 11111000100110011000111111000100011010000
gun(A2, f4−1) = 11101110011000010011001111100011000100110

gun(B2, f1−1) = 11111011101011100011011101100010011100110
gun(B2, f2−1) = 11111000111011111010011111011110011011010
gun(B2, f3−1) = 1111100010011011100011101100011100101111111111000100110
gun(B2, f4−1) = gun(C2, f1−1)

gun(C2, f1−1) = 11111010011011110011010111100000000100110
gun(C2, f2−1) = 11111000111011111001011111110010000000110
gun(C2, f3−1) = 11111000100110111000101111000001011000000
gun(C2, f4−1) = gun(D2, f1−1)

gun(D2, f1−1) = 11111010011110010000111110000011000100110
gun(D2, f2−1) = 11111000111011001011000110001000011100110
gun(D2, f3−1) = 11111000100110111101111100111001100011010
gun(D2, f4−1) = 11111001110001011010111001111111000100110

gun(E2, f1−1) = 11111000101101001111111110101100000100110
gun(E2, f2−1) = 11111000100111111101100000001111110000110
gun(E2, f3−1) = 11111000100110110000011110000001100001000
gun(E2, f4−1) = 11111100001100100000111000110011000100110

gun(F2, f1−1) = 11111000010001110110000110100111011100110
gun(F2, f2−1) = 11111000100011001101111000111110110111010
gun(F2, f3−1) = 11111000100110011101111100100110001111110
gun(F2, f4−1) = 11101101110001011011100110000111000100110

gun(G2, f1−1) = 11111011111101001111111010111000110100110
gun(G2, f2−1) = 11111000111000011101100000111110100111110
gun(G2, f3−1) = 1111100010011010001101111000011000111011000111000100110
gun(G2, f4−1) = 11111001111100100011100110111100110100110

gun(H2, f1−1) = 11111000101100010110011010111110010
gun(H2, f2−1) = 1111100010011111001111101111111000101111000100110
gun(H2, f3−1) = 1111100010011011000101100011100000100111100100110
gun(H2, f4−1) = 11111100111110011010000110110010110

gun(A3, f1−1) = 1111100001011000101111100011111101111111000100110
gun(A3, f2−1) = 1111100010001111100111100010011000011100000100110

“JCA” — “JCA-HM07-04” — 2008/5/22 — 16:41 — page 270 — #40

270 Genaro J. Martínez et al.

gun(A3, f3−1) = 1111100010011001100010110010011011100011010000110
gun(A3, f4−1) = 11101110011111011011111010011111000

gun(B3, f1−1) = 1111101110101100011111100011101100010011000100110
gun(B3, f2−1) = 1111100011101111110011000010011011110011011100110
gun(B3, f3−1) = 1111100010011011100001011100011011111001011111010
gun(B3, f4−1) = gun(C3, f1−1)

gun(C3, f1−1) = 11111010001111010011111000101111000
gun(C3, f2−1) = 1111100011100110011101100010011110010011000100110
gun(C3, f3−1) = 1111100010011010111011011110011011001011011100110
gun(C3, f4−1) = 11111110111111001011111101111111010

gun(D3, f1−1) = 11111000001110000101111000011100000
gun(D3, f2−1) = 1111100010000110100011110010001101000011000100110
gun(D3, f3−1) = 1111100010011000111110011001011001111100011100110
gun(D3, f4−1) = 11100110001011101111101100010011010

gun(E3, f1−1) = 1111101011100111101110001111001101111111000100110

