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Abstract. Rule 54, in Wolfram’s notation, is one of elementary yet com-
plexly behaving one-dimensional cellular automata. The automaton sup-
ports gliders, glider guns and other non-trivial long transients. We show
how to characterize gliders in Rule 54 by diagram representations as
de Bruijn and cycle diagrams; offering a way to present each glider in
Rule 54 with particular characteristics. This allows a compact encod-
ing of initial conditions which can be used in implementing non-trivial
collision-based computing in one-dimensional cellular automata.

1 Preliminaries

Amongst one-dimensional cellular automata (CA) studied by Wolfram in [15,
16], one can find a few evolution rules supporting gliders (particles or mobile
self-localizations); rules 110 and 54 exhibit particularly rich and somewhat com-
plex behaviour.3 Interaction between gliders can be employed to execute logical
operations, and thus ultimately to perform universal computation [1]. Collision-
based computing schemes are very sensitive to initial configurations of gliders,
even a shift in a glider phase can completely destroy a cascade of logical gates.
There is a need for a compact and uniform description of glider types and glider
interactions. In the present paper, taking Rule 54 as example, we discuss how
such a description can be reached by de Bruijn and cycle diagrams.

Following, Wolfram’s notation — a one-dimensional elementary CA has two
parameters (k, r), number of states k and cell neighborhood radius r – Rule 54
is a CA with parameters (2, 1), i.e. two cell-states and three cell neighborhood
(a central cell, its left and right neighbors). The local transition function f is
determinated as follows: 111 → 0, 110 → 0, 101 → 1, 100 → 1, 011 → 0,
010 → 1, 001 → 1 and 000 → 0. The binary sequence 00110110 in decimal
notation represents the evolution rule 54.
3 http://uncomp.uwe.ac.uk/genaro/Rule54.html
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A detailed study of Rule 54 was initiated in [2], and some basic characteristics
of gliders, or particles, were initially derived by Hanson and Crutchfield in [4].
They constructed a subset diagram capable of identifying sequences of gliders in
Rule 54. No complete characterization of gliders was provided however. This is
a reason why we became interested in representing each glider in Rule 54 by a
well-defined way as de Bruijn and cycle diagrams [8, 12, 14, 17].

In a previous paper [5] we demonstrated self-organization in Rule 54 devel-
oping a ‘genealogical tree’ of gliders, where every glider can be derived from
collisions between other ones, and also classifying all possible scenarios of binary
and ternary collisions between gliders. In the present paper we advance our un-
derstanding of glider dynamics by de Bruijn and cycle diagram representations.

Results of the present paper are based on de Bruijn diagrams [8, 11–13], cycle
diagrams [14, 9] and computing based on interaction between gliders [1].

2 Gliders in Rule 54

A glider is a compact group of non-quiescent states traveling along cellular au-
tomata lattice. Rule 54 automaton exhibits relatively a small number of glider
types, which makes it particularly attractive for discretization and formal repre-
sentation. Thus we look tools to characterize these gliders and control collisions
in Rule 54 from its initial condition.4

go gew→ glider gun←w

Fig. 1. Gliders in Rule 54 (time goes down). Cell-state 1 is shown by black pixels, also
a filter is represented for clarity.

To represent gliders in Rule 54 we follow Boccara’s et al. notation [2]. Thus
we can display every glider together with a list of its properties (dynamic, names,
speed and periodic width), see examples in Fig. 1 and Tab. 1.

We study automata with periodic boundary conditions, let e1 and e2 rep-
resent glider phases in the periodic background. Thus we have four primitive

4 Single gliders in Rule 54 or packages and extensions of them also can be consulted
in http://uncomp.uwe.ac.uk/genaro/rule54/glidersRule54.html



Table 1. Properties of gliders in Rule 54.

structure (glider) vg periodic width

e1 2/2 = 1 4

e2 2/2 = 1 4

w→ 2/2 = 1 2

w← -2/2 = -1 0-4

go 0/4 = 0 6-2

ge 0/4 = 0 7-3

glider gun 0/32 = 0 14-4

gliders — w→, w←, go, ge — and a compound glider — the glider gun. Speed vg

of a glider is evaluated using the period between displacements. Therefore w→

glider moves with positive slope, w← glider moves with negative slope and go,
ge and the glider gun move with velocity zero (as still live configurations in one
dimension).

2.1 De Bruijn diagrams calculating gliders in Rule 54

For a one-dimensional cellular automaton of order (k, r) and a given finite al-
phabet K, its de Bruijn diagram is defined as a directed graph with k2r vertexes
and k2r+1 edges. The vertexes are labeled with the elements of the alphabet of
length 2r. An edge is directed from vertex i to vertex j, if and only if, the 2r−1
final symbols of i are the same as 2r − 1 initial symbols in j forming a neigh-
borhood of 2r + 1 states represented by i � j. In this case, the edge connecting
i to j is labeled by f(i � j) (the value of the neighborhood defined by the local
function f) [12, 13].

Thus de Bruijn diagram of any one-dimensional CA can be constructed as
follow:

Mi,j =
{

1 if j = ki, ki + 1, . . . , ki + k − 1 (mod k2r)
0 in other case (1)

Modulo k2r = 22 = 4 represents the number of vertexes in the de Bruijn
diagram and j takes values from k ∗ i = 2i to (k ∗ i) + k − 1 = (2 ∗ i) + 2− 1 =
2i + 1. The vertexes (indexes of M) are labeled by fractions of neighborhoods
originated by 00, 01, 10 and 11, the overlap determines each connection. This
way Fig. 2 displays Rule 54’s matrix evolution and de Bruijn diagram of Rule
54 respectively.

Paths in the de Bruijn diagram may represent chains, configurations or classes
of configurations in the evolution space. Also fragments of the diagram itself are
useful in discovering periodic blocks of strings, pre-images, codes, and cycles [11,
13].

After the de Bruijn diagram is completed, we can calculate an extended de
Bruijn diagram [11, 7]. An extended de Bruijn diagram takes into account more
significant overlapping of neighborhoods. Thus, we represent M

(2)
R54 by indexes



i = j = 2r ∗ n, where n ∈ Z+. Moreover the de Bruijn diagram grows expo-
nentially, order k2rn

, for each M
(n)
R54; consequently basic de Bruijn diagram is

obtained for n = 1.

MR54 =





0 1 . .
. . 1 0
1 1 . .
. . 0 0
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1 2

0
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1

1

0

00

1

Fig. 2. de Bruijn diagram for Rule 54.

Let us calculate de Bruijn diagrams for gliders w→ and w← with periodic
background. Tab. 1 shows that the gliders translate two cells in a time. Hence
the extended de Bruijn diagram of order M

(2)
R54 can be used to extract a cyclic

structure of gliders.5 The constructed diagrams show all possible relations but,
we will focus on cycles, or periodic strings generated by local-transition functions.

Fig. 3. de Bruijn diagrams corresponding to gliders w→ (up) and w← (down).

5 Extended de Bruijn diagrams are calculated with NXLCAU21 software developed
by Harold McIntosh. Application and source code are available at http://delta.

cs.cinvestav.mx/∼mcintosh/oldweb/software.html



Fig. 3 demonstrates the de Bruijn diagram when strings are translated two
sites to the right (+) or to the left (−). In this case, Rule 54 offers an easy
case to extract gliders from their cyclic representation in de Bruijn diagrams. A
glider can be identified as a cycle and the glider interactions with regard or their
phase changes are reflected in bigger cycles containing two or more cycles. The
first diagram displays periodic strings moving two cells to the right in two times,
i.e., period and displacement in the periodic background defining the glider w→.
This diagram has a positive orientation of cycles and also shows that relations
of vertexes (1, 2, 4, 6) and (13, 11, 7, 14) representing all possible phases where
glider w→ can be placed. However, the existence of this glider is related to both
cycles of the diagram. Thus the periodic background in phase one represents the
string 1000 and in phase two the string 1110. So, to represent glider w→ in its
two different phases we must make a transition from one cycle to another, or to
concatenate the strings (1000)∗-00-(1110)∗.

Rule 54 has a particular characteristic where gliders can travel between two or
three different backgrounds. Fig. 3 show four cycles, three of them self-contained
and one cycle starts with the nil state. Fragments of evolutions in the same
picture show what types of gliders are more likely to be defined by these cycles.
We can see a large cycle represented by the vertexes (1, 2, 5, 11, 13, 14, 12, 6). This
cycle is equivalent to the periodic string 10111000, which produces an evolution
space covered with just a pair of w→ gliders. Finally, a fourth cycle, represented
by the cycle 0, determines a transition between two different patterns, “fuse
configurations.” The periodic background is formed by a cycle of length four
and the existence of gliders is determined by other cycles. Therefore, we see
that the problem of representing gliders by de Bruijn diagrams is reduced to the
classification of cycles in the diagrams.

The advantage of using a de Bruijn diagram is that many problems concern-
ing automata are thereby transformed into known problems regarding of the
tracing of paths through a graph. For instance, no loop can be longer than the
total number of nodes in the graph without repeating some segment; but then
there must exist still other loops in which the repeated segment is traversed an
arbitrary number of times. For example, a binary automaton depending upon
nearest neighbors has eight distinct neighborhoods, representable as eight links
connecting four nodes, it follows that no static configuration can be more than
four cells long without repeating some two-cell partial neighborhood. Thus the
static configurations are rather severely constrained.

Sometimes the de Bruijn diagram reveals information about localized aspects
of a configuration. For example if an acceptable path terminates at a node in
which all the outgoing links are acceptable, it does not need to continue. Likewise,
if all the incoming links are acceptable, the path may begin just as it has been
part of a loop. Thus semi infinite structures may be located, or even finite ones
if both ends have such universal terminations. This leads to the phenomonon
of membranes and macrocells which Wolfram noticed during the course of his
investigations. That is, an automaton may have patches which are isolated from
one another by static regions, whose evolutions procede quite independently [11].



2.2 Cycle diagrams calculating gliders in Rule 54

De Bruijn diagrams have demonstrated their power in representing periodic
strings based in gliders in elemental CA [7]. Some other tools could also be
used to derive these sequences, e.g. the cycle diagrams (Fig. 4). Of course, we
should remember that de Bruijn diagrams grow exponentially, so our potential
for computational classification of the diagrams is fairly limited. Thus cycle di-
agrams can help at least calculating attractors as was extensively studied by
Wuensche in [14, 9] and thus precisely represent some selected periodic patterns.

There are two ways to obtain the cycles for a given automaton. The first is to
enumerate all the rings of the desired length, and follow up the evolution of each.
In doing so task, various shortcuts can be taken, such as generating the configu-
rations in Gray code order so that only a single cell changes state from one to the
next. Still lifes can be detected very quickly in this way. Numerical comparison
of successive generations means that whenever the new generation is smaller, it
has been already examined and there is no need for further exploration.

The second way is more systematic and is worth the bookkeeping effort in-
volved. A graph whose links are determined by evolution is prepared, following
which a path enumerating procedure is followed to locate all the loops, whose
lengths will give the periods of all the cycles of that length. Cycles of length
up to ten can be obtained easily, twenty with effort, but passing thirty requires
dedication; for binary automata it is slightly easier, increasingly more difficult
for others [11].

Fig. 4. Cycle diagrams calculating their two possible periodic and stable background
in Rule 54 from their attractors.



Also cycle diagrams represent very well and easily the concept of global con-
figurations and Garden of Eden configurations. The first involucre a global state
of a CA in each vertex therefore each global state represents an instantaneous
description of the evolution space and also is guaranteed that each global state
has an image. The second concept is represented with configurations without
ancestors, i.e., leaves as vertexes that have not images from another global con-
figurations, these configurations are called Garden of Eden configurations.

Finally we must mention that the evolution space in Rule 54 can be charac-
terized as well by means of tiles as it was studied in Rule 110 [10, 7]. Although
in this paper it is not extended the analysis, several of them are classified from
their de Bruijn and cycle diagrams.

Thus we can enumerate some important characteristics to determine gliders
from their cycle diagrams as follow:

Table 2. Cycle diagrams calculating gliders in Rule 54.

cycle length cycle total vertexes structures

4 4 4 T3 and T2 tiles

6 4 5 ge glider

8 4 14 ge gliders joined
6 28 ge glider with a T2

9 4 44 ge-go gliders joined
27 45 T4 transporting a w← (extensible as a T5 in R110)

10 30 90 two T4 tiles joined

11 4 125 go glider with a T6 tile
11 55 packages of T4 tiles
99 231 meta-glider with w→-T5-T6-T4-T2 tiles

12 10 124 periodic background composed of 2T6-2T3-T2 tiles
12 102 2w→ gliders

13 4 406 (ge-go)* gliders concatenated
169 1274 meta-glider with T8-2T4-T2 and w→ gliders

14 112 805 meta-glider with T8-3T4-T2 tiles

15 330 7680 meta-glider with T5-2T6-T4-T2 tiles

16 6 116 periodic background composed of T6-T2 tiles
8 8 w→ gliders
14 944 meta-glider with w→-go-w

← gliders
16 2896 2w→ gliders
40 1246 meta-glider with T8-5T6-2T2-3T4-T5 tiles

In this way we can list a number of periodic strings derived from the de
Bruijn and cycle diagrams. In this case, every primitive glider (see Fig. 1) can
be reproduced from different cycles as shows Tab. 2. The concept of meta-glider
refers to a synchronization of several gliders preserving their form, reactions and
structure periodically as was also reported in Rule 110 in [6].



3 Coding Rule 54

Quickly we must show how to code Rule 54 to solve some problems reported in
[5]. We can select a production by gliders or sequences and code its respective
initial condition.6 If we select a production by gliders, a number of them are
important, e.g. if we want to produce a w→ glider, we need to collide a go with
a w← glider. The encoding can be described as follows:

(a) w→ = e+
1 -go(A,f1)-e+

1 -w←(f2)-e+
2

(b) w→ = e+
1 -go(B,f1)-e+

1 -w←(f2)-e+
2

(c) glider gun = e+
1 -ge(A,f1)-ge(B,f1)-4e1-w←(f1)-e+

2

(d) double glider gun = e+
1 -2w→(f1)-8e1-2ge(A,f1)-2e1-2ge(A,f1)-8e1-2w←(f1)-e+

1

(see fig. 5).

Fig. 5. Double glider gun in Rule 54 produced from multiple collisions between gliders.

4 Conclusions

The rows of the period-cycle table can be found from de Bruijn diagrams in the
same way that the cycles can be found from the evolution diagram; since 2r + 1
cells are needed to deduce a generation of evolution, only about half as many
periods as cycles can be worked out for a given amount of effort. This anomaly
is really an artifact of the way r parameterizes the neighborhood, and would
disappear if half-integral increments were taken for r.

6 See demos of encoding collision between single gliders and their trains in http:

//uncomp.uwe.ac.uk/genaro/rule54/collisionsRule54.html



Similar theoretical conclusions are possible, since the periods are taken from
a subset of the de Bruijn diagram. A 2r-stage de Bruijn diagram for k symbols
has k2r nodes; k times as many links. Once this number of links has been used
up in constructing a path through the diagram, one of them would have to be
repeated. Thus there is also an exponential upper bound in the rows of the
period-cycle table. For example, if an automaton has a cycle of period 2, it must
already show up in some short ring; if it has not appeared in rings below a certain
limit, it will never appear in longer rings [11].

Finally a way to code Rule 54 is needed to obtain a complete description
of gliders. With this system we would be able to construct arbitrary initial
conditions in Rule 54 to control simple o complicated reactions with dozen or
hundred of gliders. Potentially this feature will provide a powerful tool to develop
spatiotemporal solutions in Rule 54 such as: Rule 54 objects, solitons, eaters and
so on. Thus a complete regular glider-based language in Rule 54 with de Bruijn
diagrams will be presented in our next paper.
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