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Abstract

In this paper, we provide an upper bound for the k-tuple domination number
that generalises known upper bounds for the double and triple domination
numbers. We prove that for any graph G,

γ×k(G) ≤
ln(δ − k + 2) + ln

(∑k−1
m=1(k −m)d̂m + ε

)
+ 1

δ − k + 2
n,

where γ×k(G) is the k-tuple domination number; δ is the minimal degree; d̂m

is the m-degree of G; ε = 1 if k = 1 or 2 and ε = −d if k ≥ 3; d is the average
degree.

We consider finite and undirected graphs without loops and multiple edges. If
G is a graph, then V (G) = {v1, v2, ..., vn} is the set of vertices in G, di denotes the
degree of vi and d = (

∑n
i=1 di)/n is the average degree of G. Let N(x) denote the

neighbourhood of a vertex x. Also let N(X) = ∪x∈XN(x) and N [X] = N(X) ∪ X,
where X is a vertex set of G. Denote by δ(G) the minimal vertex degree of G, and
put δ = δ(G).

A set X ⊆ V (G) is called a dominating set if every vertex not in X is adjacent to
a vertex in X. The minimum cardinality of a dominating set of G is the domination
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number γ(G). A set X is called a k-tuple dominating set of G if for every vertex
v ∈ V (G), |N [v] ∩ X| ≥ k. The minimum cardinality of a k-tuple dominating set
of G is the k-tuple domination number γ×k(G). It is easy to see that the k-tuple
domination number is only defined for graphs with δ ≥ k − 1. Also, γ(G) = γ×1(G)
and γ×k(G) ≤ γ×k′(G) for k ≤ k′. The 2-tuple domination number γ×2(G) and the
3-tuple domination number γ×3(G) are called the double domination number and the
triple domination number, respectively. A number of interesting results on the k-tuple
domination number can be found in [3]–[9] and [11].

Alon and Spencer [1], Arnautov [2] and Payan [10] independently proved the
following fundamental result:

Theorem 1 ([1, 2, 10]) For any graph G,

γ(G) ≤ ln(δ + 1) + 1

δ + 1
n.

Harant and Henning [3] found an upper bound for the double domination number:

Theorem 2 ([3]) For any graph G with δ ≥ 1,

γ×2(G) ≤ ln δ + ln(d + 1) + 1

δ
n.

An interesting upper bound for the triple domination number was given by Raut-
enbach and Volkmann [11]:

Theorem 3 ([11]) For any graph G with δ ≥ 2,

γ×3(G) ≤ ln(δ − 1) + ln(d + d̂2) + 1

δ − 1
n,

where d̂2 = 1
n

∑n
i=1

(
di

2

)
.

The following theorem generalises this bound for the k-tuple domination number.
For m ≤ δ, let us define the m-degree d̂m of a graph G as follows:

d̂m = d̂m(G) =
1

n

n∑
i=1

(
di

m

)
.

Note that d̂1 is the average degree d of a graph and d̂0 = 1.

Theorem 4 For any graph G with 3 ≤ k ≤ δ + 1,

γ×k(G) ≤
ln(δ − k + 2) + ln

(
(k − 2)d + (2k − 5)d̂2 +

∑k−1
m=3(k −m)d̂m

)
+ 1

δ − k + 2
n.
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Proof: Let A be formed by an independent choice of vertices of G, where each vertex
is selected with probability p, 0 ≤ p ≤ 1. For m = 0, 1, ..., k − 1, let us denote

Bm = {vi ∈ V (G)− A : |N(vi) ∩ A| = m}.

Also, for m = 0, 1, ..., k − 2, we denote

Am = {vi ∈ A : |N(vi) ∩ A| = m}.

For each set Am, we form a set A′
m in the following way. For every vertex in the set

Am, we take k −m − 1 neighbours not in A. Such neighbours always exist because
δ ≥ k − 1. It is obvious that |A′

m| ≤ (k −m − 1)|Am|. For each set Bm, we form a
set B′

m by taking k − m − 1 neighbours not in A for every vertex in Bm. We have
|B′

m| ≤ (k −m− 1)|Bm|.
We construct the set D as follows:

D = A ∪
(

k−2⋃
m=0

A′
m

)
∪
(

k−1⋃
m=0

Bm ∪B′
m

)
.

The set D is a k-tuple dominating set. Indeed, if there is a vertex v which is not
k-tuple dominated by D, then v is not k-tuple dominated by A. Therefore, v would
belong to Am or Bm for some m, but all such vertices are k-tuple dominated by the
set D by construction.

The expectation of |D| is

E(|D|) ≤ E(|A|+
k−2∑
m=0

|A′
m|+

k−1∑
m=0

|Bm|+
k−1∑
m=0

|B′
m|)

≤ E(|A|+
k−2∑
m=0

(k −m− 1)|Am|+
k−1∑
m=0

(k −m)|Bm|)

= E(|A|) +
k−2∑
m=0

(k −m− 1)E(|Am|) +
k−1∑
m=0

(k −m)E(|Bm|).

We have

E(|A|) =
n∑

i=1

P (vi ∈ A) = pn.

Also,

E(|Am|) =
n∑

i=1

P (vi ∈ Am) =
n∑

i=1

p
(

di

m

)
pm(1− p)di−m

≤ pm+1(1− p)δ−m
n∑

i=1

(
di

m

)
= pm+1(1− p)δ−md̂mn

and

E(|Bm|) =
n∑

i=1

P (vi ∈ Bm) =
n∑

i=1

(1− p)
(

di

m

)
pm(1− p)di−m

≤ pm(1− p)δ−m+1
n∑

i=1

(
di

m

)
= pm(1− p)δ−m+1d̂mn.
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Therefore,

E(|D|) ≤ pn + (k − 1)E(|A0|) + (k − 2)E(|A1|)

+(k − 3)E(|A2|) +
k−2∑
m=3

(k −m− 1)E(|Am|)

+kE(|B0|) + (k − 1)E(|B1|) + (k − 2)E(|B2|) +
k−1∑
m=3

(k −m)E(|Bm|).

Let us denote
µ = δ − k + 2.

Since k ≥ 3, we have

(1− p)δ−1 ≤ (1− p)δ−k+2 = (1− p)µ.

Using the inequality 1− x ≤ e−x, we obtain

(1− p)δ−1 ≤ e−pµ.

For the second and third terms of the above bound for E(|D|), we have:

(k − 1)E(|A0|) + (k − 2)E(|A1|) ≤ (k − 1)p(1− p)δn + (k − 2)p2(1− p)δ−1d̂1n

≤ (k − 1)p(1− p)e−pµn + (k − 2)p2de−pµn.

Let us consider the fourth term (k − 3)E(|A2|). We may assume that k ≥ 4, for
otherwise k = 3 and all the inequalities in (1) are true. Note that for k ≥ 4,

(1− p)δ−2 ≤ (1− p)δ−k+2 = (1− p)µ ≤ e−pµ.

We obtain

(k − 3)E(|A2|) ≤ (k − 3)p3(1− p)δ−2d̂2n ≤ (k − 3)p3d̂2e
−pµn. (1)

Furthermore,

k−2∑
m=3

(k −m− 1)E(|Am|) ≤
k−2∑
m=3

(k −m− 1)pm+1(1− p)δ−md̂mn

≤ (1− p)µn
k−2∑
m=3

(k −m− 1)pd̂m

≤ e−pµn
k−2∑
m=3

(k −m− 1)pd̂m.

For the next three terms, we obtain

kE(|B0|) + (k − 1)E(|B1|) + (k − 2)E(|B2|)
≤ k(1− p)δ+1n + (k − 1)p(1− p)δd̂1n + (k − 2)p2(1− p)δ−1d̂2n

≤ k(1− p)2e−pµn + (k − 1)p(1− p)de−pµn + (k − 2)p2d̂2e
−pµn.
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Finally,

k−1∑
m=3

(k −m)E(|Bm|) ≤
k−1∑
m=3

(k −m)pm(1− p)δ−m+1d̂mn

≤
k−2∑
m=3

(k −m)(1− p)(1− p)δ−md̂mn + (1− p)µd̂k−1n

≤ e−pµn
( k−2∑

m=3

(k −m)(1− p)d̂m + d̂k−1

)
.

Thus,
E(|D|) ≤ pn + e−pµnΩ,

where

Ω = (k − 1)p(1− p) + (k − 2)p2d + (k − 3)p3d̂2 +
k−2∑
m=3

(k −m− 1)pd̂m

+k(1− p)2 + (k − 1)p(1− p)d + (k − 2)p2d̂2 +
k−2∑
m=3

(k −m)(1− p)d̂m + d̂k−1

≤ p3(k − 3)d̂2 + p2(d̂2(k − 2)− d + 1) + p(d(k − 1)− k − 1) + k +
k−1∑
m=3

(k −m)d̂m.

Taking into account that k ≥ 3 and δ ≥ 2, we obtain

d̂2(k − 2)− d + 1 ≥ d̂2 − d + 1 =
( n∑

i=1

0.5di(di − 1)−
n∑

i=1

di + n
)
/n

=
n∑

i=1

(0.5d2
i − 1.5di + 1)/n =

n∑
i=1

((0.5di − 1)(di − 1))/n ≥ 0

and

d(k − 1)− k − 1 = k(d− 1)− d− 1 ≥ 3(d− 1)− d− 1 = 2d− 4 ≥ 0.

Hence

Ω ≤ (k − 3)d̂2 + d̂2(k − 2)− d + 1 + d(k − 1)− k − 1 + k +
k−1∑
m=3

(k −m)d̂m

= (k − 2)d + (2k − 5)d̂2 +
k−1∑
m=3

(k −m)d̂m.

If we denote the last expression by Ψ, then

E(|D|) ≤ f(p) = pn + e−pµnΨ.

For p ∈ [0, 1], the function f(p) is minimised at the point min{1, z}, where

z =
ln µ + ln Ψ

µ
.
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If z > 1, then f(p) is minimised at the point p = 1 and the result easily follows. If
z ≤ 1, then

E(|D|) ≤ f(z) =

(
z +

1

µ

)
n =

ln µ + ln Ψ + 1

µ
n.

Since the expectation is an average value, there exists a particular k-tuple dominating
set of order at most f(z), as required. The proof of Theorem 4 is complete.

By a simple modification of the proof of Theorem 4, we obtain the following result:

Corollary 1 For any graph G with 3 ≤ k ≤ δ + 1,

γ×k(G) ≤
ln(δ − k + 2) + ln

(∑k−1
m=1(k −m)d̂m − d

)
+ 1

δ − k + 2
n.

Proof: If k = 3, then the result follows from Theorem 4. Thus, we may assume that
4 ≤ k ≤ δ + 1.

Using the notation of the proof of Theorem 4, we obtain:

E(|D|) ≤ pn + (k − 1)E(|A0|) + (k − 2)E(|A1|) +
k−2∑
m=2

(k −m− 1)E(|Am|)

+kE(|B0|) + (k − 1)E(|B1|) +
k−1∑
m=2

(k −m)E(|Bm|).

Therefore,
E(|D|) ≤ pn + e−pµnΩ,

where

Ω = (k − 1)p(1− p) + (k − 2)p2d +
k−2∑
m=2

(k −m− 1)pd̂m

+k(1− p)2 + (k − 1)p(1− p)d +
k−2∑
m=2

(k −m)(1− p)d̂m + d̂k−1

≤ p2(1− d) + p(d(k − 1)− k − 1) + k +
k−1∑
m=2

(k −m)d̂m.

If k ≥ 4, then d ≥ δ ≥ 3 and the function p2(1−d)+p(d(k−1)−k−1) is monotonically
increasing from 0 to 1. Therefore,

Ω ≤ Ψ =
k−1∑
m=1

(k −m)d̂m − d.

The remaining part of the proof is similar to the final part of the proof of Theorem
4.

The next result summarizes all the above theorems and corollaries.
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Corollary 2 For any graph G with k ≤ δ + 1,

γ×k(G) ≤
ln(δ − k + 2) + ln

(∑k−1
m=1(k −m)d̂m + ε

)
+ 1

δ − k + 2
n,

where ε = 1 if k = 1 or 2, and ε = −d if k ≥ 3.
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