A Generalised Upper Bound for the k-Tuple Domination Number

Andrei Gagarin
Laboratoire de Combinatoire et d'Informatique Mathématique (LaCIM)
PK-4211, Université du Québec à Montréal
C.P. 8888, Succ. Centre-Ville
Montréal, QC H3C 3P8
Canada
gagarin@lacim.uqam.ca
\section*{Vadim E. Zverovich}
Faculty of Computing, Engineering and Mathematical Sciences
University of the West of England
Bristol, BS16 1QY
UK
vadim.zverovich@uwe.ac.uk

Abstract

In this paper, we provide an upper bound for the k-tuple domination number that generalises known upper bounds for the double and triple domination numbers. We prove that for any graph G, $$
\gamma_{\times k}(G) \leq \frac{\ln (\delta-k+2)+\ln \left(\sum_{m=1}^{k-1}(k-m) \widehat{d}_{m}+\epsilon\right)+1}{\delta-k+2} n,
$$ where $\gamma_{\times k}(G)$ is the k-tuple domination number; δ is the minimal degree; \widehat{d}_{m} is the m-degree of $G ; \epsilon=1$ if $k=1$ or 2 and $\epsilon=-d$ if $k \geq 3 ; d$ is the average degree.

We consider finite and undirected graphs without loops and multiple edges. If G is a graph, then $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is the set of vertices in G, d_{i} denotes the degree of v_{i} and $d=\left(\sum_{i=1}^{n} d_{i}\right) / n$ is the average degree of G. Let $N(x)$ denote the neighbourhood of a vertex x. Also let $N(X)=\cup_{x \in X} N(x)$ and $N[X]=N(X) \cup X$, where X is a vertex set of G. Denote by $\delta(G)$ the minimal vertex degree of G, and put $\delta=\delta(G)$.

A set $X \subseteq V(G)$ is called a dominating set if every vertex not in X is adjacent to a vertex in X. The minimum cardinality of a dominating set of G is the domination
number $\gamma(G)$. A set X is called a k-tuple dominating set of G if for every vertex $v \in V(G),|N[v] \cap X| \geq k$. The minimum cardinality of a k-tuple dominating set of G is the k-tuple domination number $\gamma_{\times k}(G)$. It is easy to see that the k-tuple domination number is only defined for graphs with $\delta \geq k-1$. Also, $\gamma(G)=\gamma_{\times 1}(G)$ and $\gamma_{\times k}(G) \leq \gamma_{\times k^{\prime}}(G)$ for $k \leq k^{\prime}$. The 2-tuple domination number $\gamma_{\times 2}(G)$ and the 3 -tuple domination number $\gamma_{\times 3}(G)$ are called the double domination number and the triple domination number, respectively. A number of interesting results on the k-tuple domination number can be found in [3]-[9] and [11].

Alon and Spencer [1], Arnautov [2] and Payan [10] independently proved the following fundamental result:

Theorem $1([1,2,10])$ For any graph G,

$$
\gamma(G) \leq \frac{\ln (\delta+1)+1}{\delta+1} n
$$

Harant and Henning [3] found an upper bound for the double domination number:
Theorem 2 ([3]) For any graph G with $\delta \geq 1$,

$$
\gamma_{\times 2}(G) \leq \frac{\ln \delta+\ln (d+1)+1}{\delta} n
$$

An interesting upper bound for the triple domination number was given by Rautenbach and Volkmann [11]:

Theorem 3 ([11]) For any graph G with $\delta \geq 2$,

$$
\gamma_{\times 3}(G) \leq \frac{\ln (\delta-1)+\ln \left(d+\widehat{d}_{2}\right)+1}{\delta-1} n
$$

where $\widehat{d}_{2}=\frac{1}{n} \sum_{i=1}^{n}\binom{d_{i}}{2}$.
The following theorem generalises this bound for the k-tuple domination number. For $m \leq \delta$, let us define the m-degree \widehat{d}_{m} of a graph G as follows:

$$
\widehat{d}_{m}=\widehat{d}_{m}(G)=\frac{1}{n} \sum_{i=1}^{n}\binom{d_{i}}{m}
$$

Note that \widehat{d}_{1} is the average degree d of a graph and $\widehat{d}_{0}=1$.
Theorem 4 For any graph G with $3 \leq k \leq \delta+1$,

$$
\gamma_{\times k}(G) \leq \frac{\ln (\delta-k+2)+\ln \left((k-2) d+(2 k-5) \widehat{d}_{2}+\sum_{m=3}^{k-1}(k-m) \widehat{d}_{m}\right)+1}{\delta-k+2} n .
$$

Proof: Let A be formed by an independent choice of vertices of G, where each vertex is selected with probability $p, 0 \leq p \leq 1$. For $m=0,1, \ldots, k-1$, let us denote

$$
B_{m}=\left\{v_{i} \in V(G)-A:\left|N\left(v_{i}\right) \cap A\right|=m\right\} .
$$

Also, for $m=0,1, \ldots, k-2$, we denote

$$
A_{m}=\left\{v_{i} \in A:\left|N\left(v_{i}\right) \cap A\right|=m\right\} .
$$

For each set A_{m}, we form a set A_{m}^{\prime} in the following way. For every vertex in the set A_{m}, we take $k-m-1$ neighbours not in A. Such neighbours always exist because $\delta \geq k-1$. It is obvious that $\left|A_{m}^{\prime}\right| \leq(k-m-1)\left|A_{m}\right|$. For each set B_{m}, we form a set B_{m}^{\prime} by taking $k-m-1$ neighbours not in A for every vertex in B_{m}. We have $\left|B_{m}^{\prime}\right| \leq(k-m-1)\left|B_{m}\right|$.

We construct the set D as follows:

$$
D=A \cup\left(\bigcup_{m=0}^{k-2} A_{m}^{\prime}\right) \cup\left(\bigcup_{m=0}^{k-1} B_{m} \cup B_{m}^{\prime}\right) .
$$

The set D is a k-tuple dominating set. Indeed, if there is a vertex v which is not k-tuple dominated by D, then v is not k-tuple dominated by A. Therefore, v would belong to A_{m} or B_{m} for some m, but all such vertices are k-tuple dominated by the set D by construction.

The expectation of $|D|$ is

$$
\begin{aligned}
E(|D|) & \leq E\left(|A|+\sum_{m=0}^{k-2}\left|A_{m}^{\prime}\right|+\sum_{m=0}^{k-1}\left|B_{m}\right|+\sum_{m=0}^{k-1}\left|B_{m}^{\prime}\right|\right) \\
& \leq E\left(|A|+\sum_{m=0}^{k-2}(k-m-1)\left|A_{m}\right|+\sum_{m=0}^{k-1}(k-m)\left|B_{m}\right|\right) \\
& =E(|A|)+\sum_{m=0}^{k-2}(k-m-1) E\left(\left|A_{m}\right|\right)+\sum_{m=0}^{k-1}(k-m) E\left(\left|B_{m}\right|\right) .
\end{aligned}
$$

We have

$$
E(|A|)=\sum_{i=1}^{n} P\left(v_{i} \in A\right)=p n .
$$

Also,

$$
\begin{aligned}
E\left(\left|A_{m}\right|\right) & =\sum_{i=1}^{n} P\left(v_{i} \in A_{m}\right)=\sum_{i=1}^{n} p\binom{d_{i}}{m} p^{m}(1-p)^{d_{i}-m} \\
& \leq p^{m+1}(1-p)^{\delta-m} \sum_{i=1}^{n}\binom{d_{i}}{m}=p^{m+1}(1-p)^{\delta-m} \widehat{d}_{m} n
\end{aligned}
$$

and

$$
\begin{aligned}
E\left(\left|B_{m}\right|\right) & =\sum_{i=1}^{n} P\left(v_{i} \in B_{m}\right)=\sum_{i=1}^{n}(1-p)\binom{d_{i}}{m} p^{m}(1-p)^{d_{i}-m} \\
& \leq p^{m}(1-p)^{\delta-m+1} \sum_{i=1}^{n}\binom{d_{i}}{m}=p^{m}(1-p)^{\delta-m+1} \widehat{d}_{m} n
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
E(|D|) \leq & p n+(k-1) E\left(\left|A_{0}\right|\right)+(k-2) E\left(\left|A_{1}\right|\right) \\
& +(k-3) E\left(\left|A_{2}\right|\right)+\sum_{m=3}^{k-2}(k-m-1) E\left(\left|A_{m}\right|\right) \\
& +k E\left(\left|B_{0}\right|\right)+(k-1) E\left(\left|B_{1}\right|\right)+(k-2) E\left(\left|B_{2}\right|\right)+\sum_{m=3}^{k-1}(k-m) E\left(\left|B_{m}\right|\right) .
\end{aligned}
$$

Let us denote

$$
\mu=\delta-k+2
$$

Since $k \geq 3$, we have

$$
(1-p)^{\delta-1} \leq(1-p)^{\delta-k+2}=(1-p)^{\mu} .
$$

Using the inequality $1-x \leq e^{-x}$, we obtain

$$
(1-p)^{\delta-1} \leq e^{-p \mu}
$$

For the second and third terms of the above bound for $E(|D|)$, we have:

$$
\begin{aligned}
(k-1) E\left(\left|A_{0}\right|\right)+(k-2) E\left(\left|A_{1}\right|\right) & \leq(k-1) p(1-p)^{\delta} n+(k-2) p^{2}(1-p)^{\delta-1} \widehat{d}_{1} n \\
& \leq(k-1) p(1-p) e^{-p \mu} n+(k-2) p^{2} d e^{-p \mu} n
\end{aligned}
$$

Let us consider the fourth term $(k-3) E\left(\left|A_{2}\right|\right)$. We may assume that $k \geq 4$, for otherwise $k=3$ and all the inequalities in (1) are true. Note that for $k \geq 4$,

$$
(1-p)^{\delta-2} \leq(1-p)^{\delta-k+2}=(1-p)^{\mu} \leq e^{-p \mu}
$$

We obtain

$$
\begin{equation*}
(k-3) E\left(\left|A_{2}\right|\right) \leq(k-3) p^{3}(1-p)^{\delta-2} \widehat{d}_{2} n \leq(k-3) p^{3} \widehat{d}_{2} e^{-p \mu} n . \tag{1}
\end{equation*}
$$

Furthermore,

$$
\begin{aligned}
\sum_{m=3}^{k-2}(k-m-1) E\left(\left|A_{m}\right|\right) & \leq \sum_{m=3}^{k-2}(k-m-1) p^{m+1}(1-p)^{\delta-m} \widehat{d}_{m} n \\
& \leq(1-p)^{\mu} n \sum_{m=3}^{k-2}(k-m-1) p \widehat{d}_{m} \\
& \leq e^{-p \mu} n \sum_{m=3}^{k-2}(k-m-1) p \widehat{d}_{m}
\end{aligned}
$$

For the next three terms, we obtain

$$
\begin{aligned}
k E\left(\left|B_{0}\right|\right) & +(k-1) E\left(\left|B_{1}\right|\right)+(k-2) E\left(\left|B_{2}\right|\right) \\
& \leq k(1-p)^{\delta+1} n+(k-1) p(1-p)^{\delta} \widehat{d}_{1} n+(k-2) p^{2}(1-p)^{\delta-1} \widehat{d}_{2} n \\
& \leq k(1-p)^{2} e^{-p \mu} n+(k-1) p(1-p) d e^{-p \mu} n+(k-2) p^{2} \widehat{d}_{2} e^{-p \mu} n .
\end{aligned}
$$

Finally,

$$
\begin{aligned}
\sum_{m=3}^{k-1}(k-m) E\left(\left|B_{m}\right|\right) & \leq \sum_{m=3}^{k-1}(k-m) p^{m}(1-p)^{\delta-m+1} \widehat{d}_{m} n \\
& \leq \sum_{m=3}^{k-2}(k-m)(1-p)(1-p)^{\delta-m} \widehat{d}_{m} n+(1-p)^{\mu} \widehat{d}_{k-1} n \\
& \leq e^{-p \mu} n\left(\sum_{m=3}^{k-2}(k-m)(1-p) \widehat{d}_{m}+\widehat{d}_{k-1}\right)
\end{aligned}
$$

Thus,

$$
E(|D|) \leq p n+e^{-p \mu} n \Omega,
$$

where

$$
\begin{aligned}
\Omega= & (k-1) p(1-p)+(k-2) p^{2} d+(k-3) p^{3} \widehat{d}_{2}+\sum_{m=3}^{k-2}(k-m-1) p \widehat{d}_{m} \\
& \quad+k(1-p)^{2}+(k-1) p(1-p) d+(k-2) p^{2} \widehat{d}_{2}+\sum_{m=3}^{k-2}(k-m)(1-p) \widehat{d}_{m}+\widehat{d}_{k-1} \\
\leq & p^{3}(k-3) \widehat{d}_{2}+p^{2}\left(\widehat{d}_{2}(k-2)-d+1\right)+p(d(k-1)-k-1)+k+\sum_{m=3}^{k-1}(k-m) \widehat{d}_{m} .
\end{aligned}
$$

Taking into account that $k \geq 3$ and $\delta \geq 2$, we obtain

$$
\begin{array}{r}
\widehat{d}_{2}(k-2)-d+1 \geq \widehat{d}_{2}-d+1=\left(\sum_{i=1}^{n} 0.5 d_{i}\left(d_{i}-1\right)-\sum_{i=1}^{n} d_{i}+n\right) / n \\
=\sum_{i=1}^{n}\left(0.5 d_{i}^{2}-1.5 d_{i}+1\right) / n=\sum_{i=1}^{n}\left(\left(0.5 d_{i}-1\right)\left(d_{i}-1\right)\right) / n \geq 0
\end{array}
$$

and

$$
d(k-1)-k-1=k(d-1)-d-1 \geq 3(d-1)-d-1=2 d-4 \geq 0 .
$$

Hence

$$
\begin{aligned}
\Omega & \leq(k-3) \widehat{d}_{2}+\widehat{d}_{2}(k-2)-d+1+d(k-1)-k-1+k+\sum_{m=3}^{k-1}(k-m) \widehat{d}_{m} \\
& =(k-2) d+(2 k-5) \widehat{d}_{2}+\sum_{m=3}^{k-1}(k-m) \widehat{d}_{m}
\end{aligned}
$$

If we denote the last expression by Ψ, then

$$
E(|D|) \leq f(p)=p n+e^{-p \mu} n \Psi .
$$

For $p \in[0,1]$, the function $f(p)$ is minimised at the point $\min \{1, z\}$, where

$$
z=\frac{\ln \mu+\ln \Psi}{\mu}
$$

If $z>1$, then $f(p)$ is minimised at the point $p=1$ and the result easily follows. If $z \leq 1$, then

$$
E(|D|) \leq f(z)=\left(z+\frac{1}{\mu}\right) n=\frac{\ln \mu+\ln \Psi+1}{\mu} n .
$$

Since the expectation is an average value, there exists a particular k-tuple dominating set of order at most $f(z)$, as required. The proof of Theorem 4 is complete.

By a simple modification of the proof of Theorem 4, we obtain the following result:
Corollary 1 For any graph G with $3 \leq k \leq \delta+1$,

$$
\gamma_{\times k}(G) \leq \frac{\ln (\delta-k+2)+\ln \left(\sum_{m=1}^{k-1}(k-m) \widehat{d}_{m}-d\right)+1}{\delta-k+2} n .
$$

Proof: If $k=3$, then the result follows from Theorem 4. Thus, we may assume that $4 \leq k \leq \delta+1$.

Using the notation of the proof of Theorem 4, we obtain:

$$
\begin{aligned}
E(|D|) \leq & p n+(k-1) E\left(\left|A_{0}\right|\right)+(k-2) E\left(\left|A_{1}\right|\right)+\sum_{m=2}^{k-2}(k-m-1) E\left(\left|A_{m}\right|\right) \\
& +k E\left(\left|B_{0}\right|\right)+(k-1) E\left(\left|B_{1}\right|\right)+\sum_{m=2}^{k-1}(k-m) E\left(\left|B_{m}\right|\right)
\end{aligned}
$$

Therefore,

$$
E(|D|) \leq p n+e^{-p \mu} n \Omega,
$$

where

$$
\begin{aligned}
\Omega= & (k-1) p(1-p)+(k-2) p^{2} d+\sum_{m=2}^{k-2}(k-m-1) p \widehat{d}_{m} \\
& \quad+k(1-p)^{2}+(k-1) p(1-p) d+\sum_{m=2}^{k-2}(k-m)(1-p) \widehat{d}_{m}+\widehat{d}_{k-1} \\
& \leq p^{2}(1-d)+p(d(k-1)-k-1)+k+\sum_{m=2}^{k-1}(k-m) \widehat{d}_{m} .
\end{aligned}
$$

If $k \geq 4$, then $d \geq \delta \geq 3$ and the function $p^{2}(1-d)+p(d(k-1)-k-1)$ is monotonically increasing from 0 to 1 . Therefore,

$$
\Omega \leq \Psi=\sum_{m=1}^{k-1}(k-m) \widehat{d}_{m}-d .
$$

The remaining part of the proof is similar to the final part of the proof of Theorem 4.

The next result summarizes all the above theorems and corollaries.

Corollary 2 For any graph G with $k \leq \delta+1$,

$$
\gamma_{\times k}(G) \leq \frac{\ln (\delta-k+2)+\ln \left(\sum_{m=1}^{k-1}(k-m) \widehat{d}_{m}+\epsilon\right)+1}{\delta-k+2} n,
$$

where $\epsilon=1$ if $k=1$ or 2 , and $\epsilon=-d$ if $k \geq 3$.

Acknowledgment The authors are thankful to the anonymous referees for their valuable comments and suggestions.

References

[1] N. Alon and J.H. Spencer, The Probabilistic Method, John Wiley and Sons, Inc., 1992.
[2] V.I. Arnautov, Estimation of the exterior stability number of a graph by means of the minimal degree of the vertices. Prikl. Mat. i Programmirovanie, 11(1974) 3-8.
[3] J. Harant and M.A. Henning, On double domination in graphs. Discuss. Math. Graph Theory, 25 (2005) 29-34.
[4] F. Harary and T.W. Haynes, Double domination in graphs. Ars Combin. 55 (2000) 201-213.
[5] F. Harary and T.W. Haynes, Nordhaus-Gaddum inequalities for domination in graphs. Discrete Math. 155 (1996) 99-105.
[6] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
[7] R. Klasing and C. Laforest, Hardness results and approximation algorithms of k-tuple domination in graphs. Inform. Process. Lett. 89 2(2004) 75-83.
[8] C.S. Liao and G.J. Chang, Algorithmic aspect of k-tuple domination in graphs. Taiwanese J. Math. 6 (2002) 415-420.
[9] C.S. Liao and G.J. Chang, k-Tuple domination in graphs. Inform. Process. Lett. 87 (1)(2003) 45-50.
[10] C. Payan, Sur le nombre d'absorption d'un graphe simple. Cahiers Centre Études Recherche Opér. 17 (1975) 307-317.
[11] D. Rautenbach and L. Volkmann, New bounds on the k-domination number and the k-tuple domination number. Discrete Math. (submitted)

