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Abstract We propose that the behavior of nonlinear media can be
controlled automatically through evolutionary learning. By extension,
forms of unconventional computing (viz., massively parallel nonlinear
computers) can be realized by such an approach. In this initial study
a light-sensitive subexcitable Belousov-Zhabotinsky reaction in which
a checkerboard image, composed of cells of varying light intensity
projected onto the surface of a thin silica gel impregnated with a
catalyst and indicator, is controlled using a learning classifier system.
Pulses of wave fragments are injected into the checkerboard grid,
resulting in rich spatiotemporal behavior, and a learning classifier
system is shown to be able to direct the fragments to an arbitrary
position through dynamic control of the light intensity within
each cell in both simulated and real chemical systems. Similarly,
a learning classifier system is shown to be able to control the electrical
stimulation of cultured neuronal networks so that they display
elementary learning. Results indicate that the learned stimulation
protocols identify seemingly fundamental properties of in vitro
neuronal networks. Use of another learning scheme presented in the
literature confirms that such fundamental behavioral characteristics
of a given network must be considered in training experiments.
1 Introduction
There is growing interest in research into the development of hybrid wetware-silicon devices focused
on exploiting their potential for nonlinear computing. The aim is to harness the as yet only partially
understood intricate dynamics of nonlinear media to perform complex computations, (potentially)
more effectively than with traditional architectures, and to further the understanding of how such
systems function. The area provides the prospect of radically new forms of machines and is enabled
by improving capabilities in wetware-silicon interfacing. We are developing an approach by which
networks of nonlinear media—reaction-diffusion systems and in vitro neuronal networks—can be
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produced to achieve user-defined computation in a way that allows control of the media used.
Evolutionary algorithms (e.g., [33]) are used to design the appropriate networks by searching a
defined behavioral space to create a computing resource capable of satisfying one or more given
objectives. In this article we begin by examining a Belousov-Zhabotinsky (BZ) [54] reaction-
diffusion system in which the networks are created with light, and we present initial results from the
general control-programming methodology. We then apply the same approach to the control of a 3D
form of cultured neuronal network.

Excitable and oscillating chemical systems have been used to perform a number of computa-
tional tasks [1] such as implementing logical circuits [42, 48], image processing [30], shortest-path
problems [41], and memory [35]. In addition, chemical diodes [2], coincidence detectors [16], and
transformers where a periodic input signal of waves may be modulated by the barrier into a complex
output signal depending on the gap width and frequency of the input [40] have all been dem-
onstrated experimentally.

A number of experimental and theoretical constructs utilizing networks of chemical reactions to
implement computation have been described. These chemical systems act as simple models for
networks of coupled oscillators such as neurons, circadian pacemakers, and other biological systems
[28]. Over 30 years ago the construction of logic gates in a bistable chemical system was described by
Rossler [36]. Ross and coworkers [18, 19] produced a theoretical construct suggesting the use of
‘‘chemical’’ reactor systems coupled by mass flow for implementing logic gates, neural networks, and
finite-state machines. In further work Hjelmfelt et al. [17, 20] simulated a pattern recognition device
constructed from large networks of mass-coupled chemical reactors containing a bistable iodate–
arsenous acid reaction. They encoded arbitrary patterns of low and high iodide concentrations in the
network of 36 coupled reactors. If the network is initialized with a pattern similar to the encoded
one, then errors in the initial pattern are corrected, bringing about the regeneration of the stored
pattern. However, if the pattern is not similar, then the network evolves to a homogeneous state
signaling nonrecognition.

In related experimental work Laplante et al. [31] used a network of eight bistable mass-coupled
chemical reactors (via 16 tubes) to implement pattern recognition operations. They demonstrated
experimentally that stored patterns of high and low iodine concentrations could be recalled (stable
output state) if similar patterns were used as input data to the programmed network. This highlights
how a programmable parallel processor could be constructed from coupled chemical reactors. This
chemical system has many properties similar to parallel neural networks. In other work, Lebender
and Schneider [32] described methods of constructing logical gates using a series of flow-rate-
coupled continuous-flow stirred tank reactors (CSTRs) containing a bistable nonlinear chemical
reaction. The minimal bromate reaction involves the oxidation of cerium(III) (Ce3+) ions by bromate
in the presence of bromide and sulfuric acid. In the reaction the Ce4+ concentration state is
considered as ‘‘0’’ or ‘‘false’’ (‘‘1’’ or ‘‘true’’) if a given steady state is within 10% of the minimal
(maximal) value. The reactors were flow-rate coupled according to rules given by a feedforward
neural network run using a PC. The experiment is started by feeding in two ‘‘true’’ states to the input
reactors and then switching the flow rates to generate ‘‘true’’-‘‘false’’, ‘‘false’’-‘‘true’’, and ‘‘false’’-
‘‘false’’. In this three-coupled-reactor system, AND (output ‘‘true’’ if inputs are both high Ce4+,
‘‘true’’), OR (output ‘‘true’’ if one of the inputs is ‘‘true’’), NAND (output ‘‘true’’ if one of the inputs
is ‘‘false’’), and NOR (output ‘‘true’’ if both of the inputs are ‘‘false’’) gates could be realized.
However, to construct XOR and XNOR gates two additional reactors (a hidden layer) were required.
These composite gates are produced by interlinking AND and OR gates and their negations. In
this work, coupling was implemented by computer, but the authors suggested that true chemical
computing of some Boolean functions may be achieved by using the outflows of reactors as the
inflows to other reactors, that is, serial mass coupling.

As yet no large-scale experimental network implementations have been undertaken, mainly due to
the complexity of analyzing and controlling many reactors. That said, there have been many experi-
mental studies carried out involving coupled oscillating and bistable systems [3, 4, 9, 10, 23, 44].
The reactions are coupled together either physically by diffusion or an electrical connection, or
Artificial Life Volume 14, Number 2204
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chemically by having two oscillators that share a common chemical species. The effects observed in-
clude multistability, synchronization, in-phase and out-of-phase entrainment, amplitude or oscillator
death, the cessation of oscillation in two coupled oscillating systems, and the reverse, rhythmogenesis,
in which coupling two systems at steady state causes them to start oscillating [13].

In this article we adapt a system described by Wang et al. [51] and explore the computational
potential based on the movement and control of wave fragments. In the system they describe,
Gaussian noise (where the mean light level is fixed at the subexcitable threshold of the reaction) in
the form of light is projected onto a thin layer of the light-sensitive analogue of the BZ reaction. This
was observed to induce wave formation and subsequently avalanche behavior, whereby a proliferation
of open-ended excitation wave fragments occurred. Interestingly, calcium waves induced in networks
of cultured glial cells [27] display similar features to the ones identified in this chemical system, which
the authors postulated may provide a possible mechanism for long-range signaling and memory in
neuronal tissues.

The study of in vitro neuronal networks has the potential to discover the underlying behaviors of
neurons, since such networks are typically created from dissociated cells; the self-organizing char-
acteristics of such cells become identifiable. Such networks have already been reported as being
capable of simple learning, memory, and other computation-like behaviors.

It is well established that in vitro neuronal networks display a strong disposition to form synapses
and sensitivity to electrochemical stimulation. Shahaf and Marom [39] have highlighted these char-
acteristics in their work with cultured rat neurons in commercially available multi-electrode hardware
(Multichannel Systems Ltd. MEA-60). Some electrodes are designated as input sources, and the rest
are monitored for recurring patterns in action potentials; such technology enables large-scale
network- or ensemble-level analyses. Shahaf and Marom were able to demonstrate a simple form of
supervised stimulus-response learning in the cultured networks such that a required response for a
given input was obtained from a predetermined neuron (electrode) through timed stimulus removal.
Drawing on ideas proposed during the 1940s by behavioral psychologists, they showed that with in-
cremental single-step training, desired discrete-output computations could be achieved from essen-
tially randomly connected neuronal networks.

Shahaf and Marom’s [39] work is related to that of DeMarse et al. [12], who used the same
hardware to randomly control a simulated mobile robot, again with feedback from the output to the
inputs. They presented an approach to in vitro AI wherein the neuronal network exists within a
feedback loop to its environment: The sensors of the simulated mobile robot are fed directly into the
network, and its responses fed to the robot’s actuators. They report the emergence of a number of
repeated spiking patterns during the control process.

Ruaro et al. [37] describe the use of neuronal networks for an image processing task. Here, two
spatial patterns are exposed to the network through appropriate electrode stimulation. They show
that the response of the network to one pattern can be trained to be significantly higher than the
response to the other. It has also recently been shown that controlled pairwise stimulation can be
used to alter network response, thereby indicating a rudimentary memory mechanism for in vitro
networks; the response to a given stimulus on one electrode alters if another has been stimulated
within a time window (e.g., [46]).

Machine learning techniques, such as evolutionary algorithms (EAs) (e.g., [37]) and reinforcement
learning (RL) (e.g., [45]), are being increasingly used in the design of complex systems. Example
applications include data mining, time series analysis, scheduling, process control, robotics, and
electronic circuit design. Such techniques can be used for the design of computational resources in a
way that offers substantial promise for application to computing in nonlinear media, since the
algorithms are almost independent of the medium in which the computation occurs. This is im-
portant in order to achieve effective computing in nonlinear media, since the algorithms do not need
to directly manipulate the material to facilitate learning, and the task itself can be defined in a fairly
unsupervised manner. In contrast, most traditional learning algorithms use techniques that require
detailed knowledge of and control over the computing substrate involved. In this article we control
the BZ and neuronal networks via a reinforcement learning approach, which uses evolutionary
Artificial Life Volume 14, Number 2 205
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computing to create generalizations over the state-action space—Holland’s learning classifier system
[22], in particular a form known as XCS [53].

The article is arranged as follows: The next section describes the subexcitable BZ system that
forms the basis of the chemical computing aspect of our research. The next section describes a
computational model of the system and XCS. Initial results from using the evolutionary learner to
control the simulated and the real chemical systems are then presented. The form of neuronal cell
culture we are developing is then described, along with the XCS control scenario used. Initial results
from controlling the electrical stimulation via XCS are then presented, together with confirmation via
another learning protocol presented in the literature. Finally, all results are discussed.
2 Chemical Experimental System

2.1 Materials and Equipment
Sodium bromate, sodium bromide, malonic acid, sulfuric acid, tris(bipyridyl) ruthenium(II) chloride,
and 27% sodium silicate solution stabilized in 4.9 M sodium hydroxide were purchased from Aldrich
(UK) and used as received unless stated otherwise.

An InFocus model projector was used to illuminate the computer-controlled image. Images were
captured using a Panasonic NV-GS11 digital video camera. The microscope slide was immersed
in the continuously-fed reaction solution contained in a custom-designed petri dish, designed by
Radleys (Bristol, UK), with a water jacket thermostatted at 22jC. A Watson Marlow 205U multi-
channel peristaltic pump was used to pump the reaction solution into the reactor and remove the
effluent.

2.2 Experimental Procedures

2.2.1 Making Gels
A stock solution of the sodium silicate solution was prepared by mixing 222 mL of the purchased
sodium silicate solution with 57 mL of 2 M sulfuric acid and 187 mL of deionized water, as in the
procedure used by Wang et al. [51]. Precured solutions for making gels were prepared by mixing
5 mL of the acidified silicate solution with a solution consisting of 1.3 mL of 1.0 M sulfuric acid and
1.2 mL of 0.025 M tris(bipyridyl) ruthenium(II) chloride. Using capillary action, portions of this
solution were transferred onto microscope slides with 100-Am shims and Plexiglas covers. The
transferred solutions were left for 3 h to permit complete gellation, after which the covers and shims
were removed and the gels washed in deionized water to remove residual tris(bipyridyl) ruthenium(II)
chloride and the sodium chloride byproduct. The gels were 26 by 26 mm, with a wet thickness of
approximately 100 Am. The gels were stored under water and rinsed right before use.

2.2.2 Catalyst-Free Reaction Mixture
The bulk of the catalyst-free reaction mixture was freshly prepared in 300-mL batches, which in-
volved the in situ synthesis of stoichiometric bromomalonic acid from malonic acid and bromine
generated from the partial reduction of sodium bromate. The catalyst-free reaction solution con-
sisted of the 0.36 M sodium bromate, 0.0825 M malonic acid, 0.18 M sulfuric acid, and 0.165 M
bromomalonic acid. To minimize deterioration during the experiment, this solution was kept in an
ice bath. This solution was continuously fed into the thermostatted reactor, with a reactor residence
time of 30 min.

2.2.3 Experimental Setup
The spatially distributed excitable field on the surface of the gel was made possible by the projection
of a 10-by-10-cell checkerboard grid pattern generated using a computer. After Wang et al., the checker-
board image was composed of a heterogeneous network of cells at two light levels, a low intensity
of 0.394 mW cm�2 and a high intensity of 9.97 mW cm�2, representing excitable and non-excitable
Artificial Life Volume 14, Number 2206



Figure 1. A block diagram of the experimental setup where the computer, projector, mirror, microscope slide with the
catalyst-laden gel, thermostatted petri dish, peristaltic pump, thermostatted water bath, reservoir of catalyst-free
reaction solution, digital camcorder, and effluent flow are designated by A, B, C, D, E, F. G, H, I, and J, respectively. The
catalyst-free reaction solution reservoir was kept in an ice bath during the experiment.
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domains, respectively. A digital video camera was used to capture the chemical wave fragments. A
diagrammatic representation of the experimental setup is shown in Figure 1.

2.2.4 Data Capturing and Image Processing
A checkerboard grid pattern was projected onto the catalyst-laden gel through a 455-nm narrow
bandpass interference filter and 100–100-mm-focal-length lens pair and mirror assembly. The
projected grid was approximately 20 mm square. Every 10 s, the checkerboard pattern was replaced
with a uniform gray level of 9.97 mW cm�2 for 400 ms, during which time an image of the BZ
waves on the gel was captured. The purpose of removing the grid pattern during this period was to
allow activity on the gel to be more visible to the camera and assist in subsequent image processing
of chemical activity.

Captured images were processed to identify chemical wave activity. This was done by differencing
successive images pixel by pixel to create a black-and-white thresholded image. Each pixel in the
black-and-white image was set to white, corresponding to chemical activity, if the intensity of the red
or blue channels differed in successive images by more than 1.95%. Pixels at locations not meeting
this criterion were set to black. The thresholded images were automatically despeckled and manually
edited to remove artifacts of the experiment, such as glare from the projector and bubbles from the
oxidative decarboxylation of malonic acid and bromomalonic acid. The images were cropped to the
grid location and the grid superimposed on the thresholded images to aid analysis of the results.

3 Computational System

3.1 Model
The features of this system were simulated using a two-variable Oregonator model modified to take
account of the photochemistry [15, 29]:

Au

At
¼ 1

q
u � u2 � ð fv þAÞ u � q

u þ q

� �
þ Duj

2u;

Av

At
¼ u � v:
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The variables u and v represent the instantaneous local concentrations of the bromous acid auto-
catalyst and the oxidized form of the catalyst—HBrO2 and tris(bipyridyl) Ru(III), respectively—
scaled to dimensionless quantities. The ratio of the time scales of the two variables u and v is denoted
by q and depends on the rate constants and reagent concentration; f is a stoichiometric coefficient.
The rate of the photoinduced bromide production is designated by A, which also denotes the
excitability of the system, in which low light intensities facilitate excitation while high intensities result
in the production of bromide that inhibits the process, as is experimentally verified. The scaling
parameter q depends on reaction rates only. The system was integrated using the Euler method with
a five-node Laplacian operator, time step Dt ¼ 0.001, and grid point spacing Dx ¼ 0.15. The
diffusion coefficient Du of species u was unity, while that of species v was set to zero, as the catalyst
was immobilized in gel.
3.2 Evolutionary Algorithm
XCS represents a significant development of Holland’s learning classifier system formalism and has
been shown to be able to tackle many complex tasks effectively (see [6] for examples). It consists of a
limited-size population [P] of classifiers (rules). Each classifier is in the form of ‘‘IF condition
THEN action’’ (condition!action) and has a number of associated parameters. Conditions traditionally
consist of a ternary representation, {0,1,#}, where the wildcard symbol facilitates generalization, and
actions are binary strings.

On each time step a match set [M] is created. A system prediction is then formed for each action
in [M] according to a fitness-weighted average of the predictions of rules in each action set [A].
The system action is then selected either deterministically or stochastically, based on the fitness-
weighted predictions (usually probability 0.5 per trial). If [M] is empty, a covering heuristic is used,
which creates a random condition to match the given input and then assigns it to a rule for each
possible action.

Fitness reinforcement in XCS consists of updating three parameters, q, p, and F, for each ap-
propriate rule; the fitness is updated according to the relative accuracy of the rule within the set in
five steps:

1. Each rule’s error is updated: qj ¼ qj + h(jP � pjj � qj), where 0 V h V 1 is a learning rate
constant.

2. Rule predictions are then updated: pj ¼ pj + h(P � pj)

3. Each rule’s accuracy nj is determined: nj ¼ a(q0/q)
r, or n ¼ 1 where q < q0. Here r, a, and q0 are

constants controlling the shape of the accuracy function.

4. A relative accuracy nj V is determined for each rule by dividing its accuracy by the total of the
accuracies in the action set.

5. The relative accuracy is then used to adjust the classifier’s fitness Fj using the moyenne adaptive
modifiée (MAM) procedure: If the fitness has been adjusted 1/h times, Fj ¼ Fj + h(nj V � Fj).
Otherwise Fj is set to the average of the values of nV seen so far.

In short, in XCS fitness is inversely proportional to the error in reward prediction, with errors below
q0 not improving fitness. The maximum P(ai) of the system’s prediction array is discounted by a
factor g and used to update rules from the previous time step, and an external reward may be
received from the environment. Thus XCS exploits a form of Q-learning [52] in its reinforcement
procedure.

A genetic algorithm (GA) [21] acts in action sets [A], that is, niches. Two rules are selected, based
on fitness, from within the chosen [A]. Two-point crossover is applied at rate m, and point mutations
at rate A. Rule replacement is global and based on the estimated size of each action set a rule
participates in, with the aim of balancing resources across niches. The GA is triggered within a given
Artificial Life Volume 14, Number 2208
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action set (after [5]), based on the average time since the members of the niche last participated in
a GA.

The intention in XCS is to form a complete and accurate mapping of the problem space through
efficient generalizations. In reinforcement learning terms, XCS learns a value function over the
complete state-action space. In this way, XCS represents a means of using temporal difference
learning on complex problems where the number of possible state-action combinations is very large
(other approaches have been suggested, such as neural networks—see [45] for an overview). The
reader is referred to [8] for an algorithmic description of XCS, and [7] for an overview of current
formal understanding of its operations.
3.3 XCS Control: Simulator
The aforementioned model of the BZ system has been interfaced to an implementation of XCS in a
way that approximates the envisaged hardware-wetware scenario. A 3 	 3 grid is initialized with a
pulse of excitation in the bottom middle cell, as in the wetware experiments described in Section 2.
Two light levels have been used thus far: one that is sufficiently high to inhibit the reaction, and the
other low enough to enable it. The modeled chemical system is then simulated for 10 s of real time.
A 9-bit binary description of the 3 	 3 grid is then passed to the XCS. Each bit corresponds to a cell,
and it is set to ‘‘true’’ if the average level of activity within the given cell is greater than a predeter-
mined threshold. The XCS returns a 9-bit action string, each bit of which indicates whether light of
the high (A ¼ 0.197932817) or low (A ¼ 0.007791641) intensity should be projected onto the given
cell. Another 10 s of real time is then simulated, and so on, until either a maximum number of
iterations has passed or the emergent spatial-temporal dynamics of the system match a required
configuration. In this initial work, a fragment is required to exist in the middle left-hand cell of the
grid only. At such a time, a numerical reward of 1,000 is given the system, and the system is reset for
another learning trial. To be able to obtain this behavior reliably, it has been found beneficial to use
an intermediate reward of 500 in the presence of a fragment in the target cell, regardless of the
activity on the rest of the grid (see [14] for related discussions). The XCS parameters used for this
were (largely based on [53]): N ¼ 30,000, h ¼ 0.2, A ¼ 0.04, m ¼ 0.8, g ¼ 0.71, ude l ¼ 20, y ¼ 0.1,
q0 ¼ 10, a ¼ 0.1, r ¼ 5.0, umna ¼ 512, uGA ¼ 25, UI ¼ qI ¼ FI ¼ 10.0, p# ¼ 0.33. Other parameters
for the BZ model were q ¼ 0.022, f ¼ 1.4, q ¼ 0.002.

Figure 2 shows a typical light program and associated wave fragment behavior sequence, here
taking nine steps to solve the problem, which appears optimal with the given parameters of the
simulator and allowed time between XCS control steps. Figure 3 shows the average reward received
by the learner per trial on exploit trials only, as a 50-point moving average (after [53]) over three runs.
As can be seen, this approaches the maximum of 1,000 in the time considered; the XCS controller is
reliable in its ability to develop a fragment controller in the given scenario.
3.4 XCS Control: Chemistry
Given the success of the simulation experiments, the XCS was connected to the chemical system
described in Section 2. The scenario for the chemical experiments was the same as for the simula-
tions, although it must be noted that there is a slightly longer delay before the XCS is able to con-
trol the initial light levels once the pulse is added to the grid, due to the image processing required.
Figure 4 shows an example result using the same parameters as before. This solution was discovered
on trial 4 and then refined over the subsequent three trials to that shown. It can be seen that XCS has
learned to control the fragment in the real chemical system as it did in the simulation.
4 Neuronal System

The majority of in vitro studies of the electrophysiological properties of neuronal networks exploit
either tissue slices or monolayer cell cultures. For example, all the research described in the intro-
duction used monolayers, that is, cells in a network grown across the surface of a multi-electrode
Artificial Life Volume 14, Number 2 209
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array dish. However, it has long been known that aggregated (i.e., 3D) neuronal cell cultures exhibit
properties that are remarkably similar to their in vivo counterparts. For example, early studies showed
structures identical to hippocampal architecture [11], and Seeds [38] showed how the temporal
biochemical differentiation of brain cell aggregates was very similar to that seen during development
in mice, much more so than equivalent monolayer cultures. Indeed, the amount and type of cell
differentiation was suggested to be the main difference between monolayer and aggregate cultures (e.g.,
[34, 47]).

Advances in cell culturing mean that it is now possible to differentiate neuronal and neuroglial
cells obtained from ovoid primary cultures and maintain them for relatively long periods of time,
typically several months. These organotypic cultures are derived from hen embryos at day 7 in ovo.
We have recently described how the maturation of spontaneous spiking behavior in aggregated
cultures of such cells is typically very similar to that reported in monolayers of mammalian cortical
Figure 2. Example control of the simulated chemical system (A) under the learned light programs (B).

Artificial Life Volume 14, Number 2210



Figure 3. The average reward received by the XCS controllers with increasing number of learning cycles or problems.
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cells [49]. However, response to simple stimulation has been shown to be capable of causing an
increase in the relative spiking frequency during maturation, typically up to around two times larger
after fourteen days in culture (DIV14). This result indicates strong self-organizing processes within
the neuronal networks of such aggregate cultures, wherein networks containing mutual inhibition
form under steady-state (unstimulated) conditions in such a way that external stimulation causes sig-
nificant excitation within the structure. It is this feature we aim to explore further using evolutionary
computation. Figure 5 shows an example of the aggregates used in this study.
4.1 Materials and Equipment
Fertilized eggs of Gallus domesticus (Red Island hens) were obtained from a local poultry farm and
transported to our laboratories; eggs underwent a preconditioning phase at room temperature. After
marking and recording, the eggs were incubated for 7 days at 37jC in an egg incubator (Octagon
100, Brinsea Ltd., UK). During the incubation, appropriate levels of humidity were maintained.

On the day of spheroid preparation, eggs were removed from the incubator at a precise time
in order that the E7 embryonic stage had been reached. The embryo was removed using aseptic
techniques and placed in a 100-mm petri dish with Hanks balanced salt solution (HBSS, Life Tech-
nologies). Several embryos were pooled and then washed three times in HBSS. Under sterile condi-
tions, the neuroepithelial tissue was removed under a stereo Leica Zoom 2000 microscope (Leica
Co., Germany) with transmission and reflected illumination. The tissue was cleaned of meninges
and transferred to a 25-mm petri dish with culture medium [DMEM, nutrient mixture F-12 Ham,
fetal bovine serum, L-glutamine solution, penicillin-streptomycin solution, progesterone (water soluble),
putrescine dihydrochloride, 3,3,5-triiod-L-thyronine, selenium dioxide, holotransferrin (human), and
insulin, all from SIGMA]. The tissue was then collected and placed in a test tube with 5 mL of culture
medium and triturated to prepare a cell suspension that was then filtered through a 35-Am Nybolt
membrane. A trypan blue dye (0.4% w/v) exclusion assay was conducted and a cell count performed
under light microscopy using a hemacytometer. The plating cell concentration was 0.5 	 106 viable
cells per milliliter of cell culture medium, 3 mL per well in a six-well culture plate. The six-well plates
were placed on a gyrorotatory shaker (Innova 2000, New Brunswick Scientific Co., Inc.) and cultured
at 37jC in 5% CO2 and 95% air at 75 rpm. The cell culture medium was refreshed every other day
by removing some 50% of the old medium and refilling with fresh medium warmed to a physiological
temperature.
Artificial Life Volume 14, Number 2 211



Figure 4. Example control of the real chemical system (A) under the learned light programs (B). Skewing of cell images is
due to camera setup.
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Multi-electrode arrays (MEAs) (MCS-2100, Multi Channel Systems MCS GmbH, Aspenhaustrasse
21, 72770 Reutlingen, Germany) with pyramidal electrodes (40 	 40 	 70 Am, spaced on 200 Am)
were used to record electrical activity of the spheroids. The MEA dish surface was modified with
10-Ag/mL aqueous solution of polymer ethylene imine (PEI) (Fluka Chemie AG, Buchs, Switzerland)
Figure 5. Scanning electron microscope image of DIV21 hen embryo aggregate neuronal culture.
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under sterile conditions. The molecular weight of the PEI varied between 0.610 and 1.010 according to
product specifications. After the modification, two washing steps with demineralized (DEMI) water
were undertaken before the plating of the spheroids.

The electrical recording from the spheroids was performed with a 60-channel data acquisition
system, where the sampling frequency of each channel was set to 25 kHz and the single-channel
amplification kept at 1,200 with a digital resolution of 12 bits. At these conditions, data sampling of
the input band of spikes within 5 kHz including a high-pass 300-Hz filter was performed in a way
that was similar to other studies (e.g., [26]). The spikes were detected by a threshold depending upon
the standard deviation and the offset of noise. A set of data was monitored and raw signal, filtered
signal, and spikes were chosen in order to perform fast and reliable recordings and analysis with the
MC Rack software (Multi Channel Systems MCS GmbH). The recorded data was written in the
custom *.mcd MC Rack format and stored for further analysis. The recorded signals were analyzed
and the spike parameters were extracted using the MC Rack software and analyzed with bespoke
software as a postprocessing step.

The stimulation of the hen embryo brain spheroids was realized with the eight-channel
programmed generator STG2008 (Multi Channel Systems MCS GmbH). The stimulation protocol
was created within the MC_Stimulus II software (Multi Channel Systems MCS GmbH). The
elaborated stimulation protocol shared features of relevant published studies (e.g., [50]), consisting of
a single sharp biphasic impulse of 300-As duration and voltages between 300 and 2,000 mV for each
phase per sweep of 1 s.
4.2 XCS Control: Scheme
In the current study XCS was applied to the control of the electrical stimulation of the neuronal
networks in the following way. Firstly, the average spontaneous spiking frequency of a chosen ag-
gregate network is ascertained over a 300-s window. Typically, an individual aggregate covers three
or four electrodes in a dish, as shown in Figure 6, one or two of which will show a suitably
good connection into the neuronal network therein, that is, spikes will be detected of the kind
shown in Figure 7. The standard deviation in the spiking frequency is also calculated over the
window. The task of the XCS controller is then to cause the chosen neuronal network to reply to
the simple stimulus described above with a spiking frequency equal to the spontaneous mean plus
two standard deviations; a significant increase in typical spiking frequency is required under
stimulation.
Figure 6. Composite picture of phase contrast microscopy images taken at various optical magnifications and focal planes
of aggregate cell cultures on multi-electrode array dish.
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Figure 7. Example spiking behavior recorded on a single electrode.
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The input to the XCS on each cycle is the spiking frequency of the neuronal network aver-
aged over the last 3 s and the length of time the stimulus was applied. The first number is pre-
sented as a fraction of the maximum spiking frequency observed under the 300 s of spontaneous
behavior, and the second as a fraction of the maximum allowed stimulation time of 600 s. The
XCS returns one of three actions: to double, halve, or maintain the current stimulation time. A
reward of 500 is given if the spiking frequency increased in the last stimulation period over that
immediately prior, and a reward of 1,000 is given if the target spiking frequency, or a greater one, was
achieved.

Following [39], we allow a 300-s rest period between applications of the stimulus and truncate the
maximum duration of stimulation to 600 s. Thus 300 s after the last stimulation period, the XCS
controller is given the last recorded spiking frequency of the neuronal network under stimulation as a
three-point running average, and the amount of time for which the stimulus was applied that caused
the response. It then adjusts or maintains the stimulus duration for the coming cycle. For the initial
cycle, a stimulation period of 60 s is used.

Hence the XCS is presented with an environmental input consisting of two real numbers scaled
between 0.0 and 1.0; the condition part of the classifiers is encoded as unordered pairs of real
numbers in the range [0, 1], one pair for each environmental input (after [43]). A pair is considered to
match the corresponding input value if one member of the pair is smaller than or equal to the target,
and the other is larger or equal. The action of the classifier is an integer. Given the online nature of
the task, roulette wheel rather than random action selection was used in explore trials.

The mutation operator is altered from that in XCS as described above, to deal with the new
representation. Mutation, in the case of the real numbers of the condition, is effected either by the
addition or subtraction of either a small number drawn from a Gaussian distribution centered on the
current value, or a fixed small change (here, 0.1). Action mutation is done by picking an integer from
the set {0,1,2} at random, such that the chosen action is different from the current one.

In the initial population, classifier conditions are created randomly in the range [0,1]. During
cover, the current environmental input e is used as a center, and two values are created in the range
[e � Cmax, e + Cmax], where Cmax is 0.1.

The XCS parameters used were again typical for those in the literature: N ¼ 3,000, h ¼ 0.2, A ¼
0.04, m ¼ 0.8, udel ¼ 20, y ¼ 0.1, q0 ¼ 10, a ¼ 0.1, r ¼ 5.0, umna ¼ 3, uGA ¼ 2, UI ¼ qI ¼ FI ¼ 10.0.
The cell cultures used were all in the range of 20 to 30 days old in vitro.
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4.3 XCS Control: Results
After a number of experiments it became clear that the XCS was only able to alter a neuronal
network’s behavior in roughly a third of cases. Figure 8 shows an example where it was able to cause
the required spiking response to the stimulus. As can be seen, and as was typical here, the XCS
controller achieves this by increasing the duration over which the stimulation is applied. However,
Figure 9 shows a case where no significant change in spiking appears to have occurred, regardless
of how the XCS adjusted the network’s stimulation. In other cases the average spiking response
decreases during the experiment regardless of the stimulation duration (not shown). These figures
show both the exploration and exploitation trial behavior of XCS, that is, the actual online
Figure 8. Example learning behavior under XCS control, showing (a) the spiking-frequency response becoming re-
peatedly higher than the target indicated by the dashed line, and (b) how XCS altered the stimulus application time to
achieve this.
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Figure 9. Example unsuccessful learning behavior under XCS control, showing (a) the spiking-frequency response never
rising to the target indicated by the dashed line, and (b) how XCS altered the stimulus application time.
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stimulation as experienced by the neuronal networks; unlike the chemical systems above, every
stimulation has a potential long-term effect on the neuronal network.

Given these findings, we implemented the aforementioned behavior shaping and learning pro-
tocol of Shahaf and Marom [39] for comparison. This scheme, in contrast to the more widespread
consideration of neuromodulatory reward mechanisms for learning, is inspired by the work of be-
haviorists such as Clark Hull (e.g., [24]). Known as the stimulus regulation principle (SRP), it
proposes that reward, and hence learned, behavior are achieved through the removal of the driving
stimulus. That is, neurons cease a continual alteration of their connectivity when the driving stimulus
is removed, and hence the behavior becomes fixed; no other mechanism (i.e., no neuromodulator) is
required for such (low-level) learning.
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In our implementation the target spiking frequency was again the mean plus two standard de-
viations recorded under spontaneous behavior for 300 s. The same stimulus was applied as before
and removed either when the required spiking response was obtained (as a running average over
the last 3 s, as before) or if 600 s had elapsed. Again, a 300-s rest period between applications was
allowed.

Figure 10 shows a successful experiment akin to those reported by Shahaf and Marom. Here the
amount of time the stimulus must be applied before the required spiking frequency is seen rapidly
decreases until that target is consistently obtained almost immediately with every application. To our
knowledge this represents the first reproduction of the work by Shahaf and Marom. However, we
Figure 10. Example learning behavior under SRP control, showing (a) the spiking-frequency response becoming re-
peatedly higher than the target indicated by the dashed line and (b) how the stimulus was applied and removed to achieve
this. The spiking frequency shown is the last recorded on a given cycle.

Artificial Life Volume 14, Number 2 217



Figure 11. Example unsuccessful learning behavior under SRP control, showing (a) the spiking-frequency response falling
away from the target indicated by the dashed line, and (b) how the stimulus was therefore constantly applied throughout.
The spiking frequency shown is the last recorded on a given cycle.
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again found that such results occurred only about a third of the time. Figure 11 shows an example
where the target frequency is never seen: The stimulation always remains applied for the maximum
of 600 s, and the spiking frequency drops over time. Examples with no significant change were again
also seen (not shown).

5 Conclusions

Excitable and oscillating chemical systems have previously been used to perform a number of very
simple computational tasks. We propose that utilizing networks of coupled oscillating chemical reactions
will open chemical computing to wider domains and are interested in using light to construct such
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systems on the surface of a gel—cells in a regular grid here. In this article we have presented initial
results from a methodology by which to achieve the complex task of designing such systems—through
the use of evolutionary learning techniques. We have shown, using both simulated and real systems, that
it is possible to control the behavior of a light-sensitive BZ reaction using XCS.

Neuronal networks represent another form of unconventional system by which to achieve com-
putation. However, we suggest that the use of two-dimensional networks is a somewhat impo-
verished formalism and that three-dimensional networks represent a potentially fruitful avenue of
research. The results from using XCS again, and then an SRP-inspired protocol, to induce learning
indicate three possible rudimentary responses to simple stimulation from such in vitro neuronal
networks: excitation, giving the potential for significant increases in typical spiking behavior; inhibition,
wherein spiking behavior decreases due to stimulation; and unchanging, that is, no significant shift in
spiking behavior over spontaneous behavior is seen due to the stimulus. We found that each such
behavior was equally likely and that neither learning protocol could affect the underlying behavior of
a given neuronal network.

Jimbo et al. [25], using monolayer cultures of mammalian cortex, reported simple stimulation at
an electrode could induce either an excitatory or an inhibitory response at other electrodes—
‘‘pathway-dependent plasticity.’’ Our results therefore suggest that the same is also true for aggregate
neuronal cell cultures, but that a third class of behavior is possible. It is not clear at this time whether
such behavior is typical in monolayers.

We are currently exploring the use of XCS to elicit more subtle responses to stimulation from
in vitro neuronal networks and to demonstrate computation; we have recently demonstrated rudi-
mentary computational capability in neuronal networks using the simple SRP (see Appendix). We are
also extending the chemical scenario presented to include larger grids containing many more con-
current fragments of excitation. In the longer term, our aim is to study information processing
in nonlinear chemical and neuronal media in order to determine fundamental principles for the de-
sign of novel computers based on nonlinear media and to abstract new unconventional computing
mechanisms.
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Appendix
Using a doubled version of the stimulation protocol described in Section 4.1, we have been able to
use the SRP to train (excitable) networks to perform a two-input Boolean OR function. Double
stimulation is given concurrently at the electrodes under the identified aggregate for a logical 11
input, and single stimulation for 01 and 10. The input pattern cycles through these three in each
training period. Input 00 is taken as the unstimulated state. Figure 12 shows an example result
wherein, after training, a spiking response over the threshold is almost immediately obtained for any
of the three inputs 11, 01, and 10, all of which would require a response representing a logical 1 for
logical OR. Hence if a spiking response over the threshold of the mean plus two standard deviations,
as before, is deemed to represent a logical ‘‘1’’ and anything else, logical ‘‘0,’’ the network can be seen
to perform OR.
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Figure 12. Example successful learning of a two-input OR function using the SRP, showing (a) that the spiking-frequency
response is repeatedly higher than the target indicated by the dashed line for all three inputs containing stimulation (i.e.,
logical ‘‘1’’), and (b) how the stimulus was applied and removed to achieve this. The spiking frequency shown is the last
recorded on a given cycle.
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