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Abstract—This paper considers on a number of issues that
arise when a trainable machine vision system learns directly from
humans. We contrast this to the “normal” situation where machine
learning (ML) techniques are applied to a “cleaned” data set which
is considered to be perfectly labeled with complete accuracy. This
paper is done within the context of a generic system for the visual
surface inspection of manufactured parts; however, the issues
treated are relevant not only to wider computer vision applications
such as medical image screening but also to classification more
generally. Many of the issues we consider arise from the nature of
humans themselves: They will be not only internally inconsistent
but also will often not be completely confident about their deci-
sions, particularly if they are making decisions rapidly. People will
also often differ systematically from each other in the decisions
they make. Other issues may arise from the nature of the process,
which may require the ML to have the capacity for real-time online
adaptation in response to users’ input. Because of this, it may be
that the users cannot always provide input to a consistent level of
detail. We describe how all of these issues may be tackled within
a coherent methodology. By using a range of classifiers trained
on data sets from a compact disc imprint production process, we
present results which demonstrate that training methods designed
to take proper consideration of these issues may actually lead to
improved performance.

Index Terms—Human–machine interaction (HMI), image clas-
sification, insight into classifier structures, online adaptation,
partial confidence, resolving contradictory inputs, variable input
levels.

I. INTRODUCTION

IN MANY machine vision applications, such as inspection
tasks for quality control, an automatic system tries to re-
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produce human cognitive abilities. Even if a human expert is
told to apply a set of well-defined rules, a lot of subjective
past experiences will be incorporated in the decision. Any ma-
chine vision system that does not consider such an experience
will fail to achieve a high classification accuracy. The most
efficient and flexible way to transfer this experience into the
software of a machine vision system is to learn the task from
a human expert [9]. Traditionally, this is done either by an
expert providing preclassified images for supervised learning
or by knowledge acquisition from human operators in the form
of rule bases. Typically, machine learning (ML) systems are
trained in a supervised batch mode from a set of example data
items, each of which has a unique label. Although there may
be inconsistencies or noise within the data, these are generally
considered to be random in nature, and each point is considered
to be labeled with complete accuracy.

However, as ML technology moves from research laborato-
ries to practical applications such as machine vision, a range of
issues arise concerning how humans relate to and interact with
such systems [11], [21]. Not only does this question the feasibil-
ity or even relevance of considering “cleaned” data sets, there is
an increasing demand for systems to operate in situations where
offline batch-mode processing is not appropriate [18]. This can
occur if data are hard, time consuming, or costly to obtain,
or if the underlying processes change fairly rapidly, requiring
reconfiguration. Both of these cases lead to the need for an
element of incremental online training [23], [44]. Nevertheless,
this prompts a renewed interest in the nature of the human
interaction with adaptive ML systems [2], [6].

In this paper, we focus on a number of issues relating to
human–machine interaction (HMI) in the context of a generic
system for the visual surface inspection of manufactured parts.
A big challenge in the design of HMI scenarios is that they
can be handled by the expert in the system domain, without the
necessity of being experts in computer science [3], [12]. This
property makes them applicable to (a wider range of) end users.
The issues proposed in this paper fulfill this strong property
as embedded in a quality control system the system experts
and end users work with regularly. Section II describes the
basic architecture of the proposed system, and Fig. 1 shows the
impact of the issues therein. Following a description of the data
sets (Section III), the HMI issues are considered as follows.

1) Section IV deals with the issues arising when the nature
of the application demands real-time online learning after
an initial batch-mode phase (HMI 1). We show how clas-
sifiers which can be trained incrementally can outperform
static ones, which cannot be further refined in response to
incoming data.
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Fig. 1. Classification framework for classifying images into good and bad, with the five major HMI issues marked with red ellipsoids.

2) Section V considers the fact that different users will
often differ systematically from each other (HMI 2) and
how best to incorporate this diversity of information. The
differences are influenced by the reliability of the users,
which can be caused by skill, mood, weather conditions,
time pressure, etc. [47].

3) Section VI considers how the demand for rapid responses
may reduce the level of detail in the feedback that users
can produce (HMI 3), and suggests ways for dealing
with this.

4) Section VII considers the fact that, for a number of
reasons, the operator(s) may not be completely confident
in their decisions (HMI 4), and shows how an enhanced
HMI interface for online labeling can be exploited to
capture this information and lead to performance im-
provements.

5) Section VIII issues related to the interpretability of the
classifiers are considered (HMI 5). This may motivate the
operators to interact with the system on a system model
level.

All these scenarios support the interaction with the operators
in a direct way rather than performing a complex information
analysis as, for example, done in [1]. In fact, operators have
the option to provide direct and more detailed information
than just a simple go/no-go sign. Any further information from
the operators will guide the whole quality control system to
a higher accuracy (as empirically shown in the subsequent
sections).

II. GENERIC ARCHITECTURE FOR IMAGE CLASSIFICATION

The whole framework is shown in Fig. 1. Starting from
the original image, a “contrast image” is calculated. A pre-
defined master image is used as an ideal and fault-free ref-
erence situation. Each red/green/blue pixel value of a newly
recorded image is compared with the corresponding (same
x−y coordinate position) red/green/blue pixel value of the mas-
ter image plus–minus a threshold, which may vary for different
regions in the image (e.g., in homogeneous regions typically
lower than in edgy regions). These thresholds are preestimated
based on historic data and long-term experience. The absolute
values of deviation in red, green, and blue are averaged to an
overall deviation in gray value (ranging from 0 to 255). In
this sense, the gray value of each pixel represents the degree
of deviation from the normal appearance of the surface. For

all further discussions, we disregard these low-level processing
steps and assume that an appropriate and stable system of image
acquisition, preprocessing, and image segmentation is in place.
In particular, we assume that enough relevant information is
captured to permit correct decisions to be made purely based
on each image.

From the contrast images, regions of interest (ROIs) are
extracted, each of which contains a single object which may
or may not be a fault. Various ROI extraction methods for
grouping local and similar data clouds were applied, and their
accuracy was tested, ranging from connected components, mor-
phological approaches to clustering approaches for grouping
such as iterative k-means, hierarchical clustering [22], reduced
Delaunay graph [35], DBSCAN algorithm [15] etc. For each
ROI, a total of 57 object features are calculated, such as area,
brightness, homogeneity, or roundness of objects, characteriz-
ing their shape, size, etc. These are complemented by aggregate
features which characterize images as a whole, such as the
number of objects, the maximal density of objects, or the
average brightness in an image. The full list of aggregated
features is shown in Table I. This list was derived on the basis
of discussions with experts on surface inspection and wider
machine vision applications. Some features appear as quite
intuitive to have a high discriminative power, particularly the
number and total area of all ROIs (typically, the more deviating
pixels the contrast image show, the higher the likelihood that the
corresponding production item is bad) or the maximal/average
local density of ROIs (dense regions are more likely to belong
to bad parts). Depending on the nature of the operator’s feed-
back, the data describing individual ROI may be added to the
aggregate image data in various ways.

The feature vectors are then processed by a trained classifier
system that generates a final good/bad decision for the whole
image. We have implemented and evaluated many different
classifiers within this framework, and the “best” classifier is, of
course, problem dependent [53]. Here, we focus on reporting
the results of three classifiers which performed well on these
data sets. For offline training, these were two decision tree-
based classifiers CART [5] and C4.5 [37], along with k-Nearest
Neighbors (kNN) [20]. These methods are widely known and
used and were recently named among the top 10 data mining
algorithms [55]. We also applied two incremental learning
algorithms, i.e., eVQ-Class [29] and FLEXFIS-Class [31]. Be-
cause the framework is generic, it produces many features
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TABLE I
LIST OF “AGGREGATED” IMAGE-LEVEL FEATURES USED WITHIN GENERIC FRAMEWORK

describing each ROI, not all of which may be relevant to any
given task. To reduce the “curse of dimensionality” effect [20],
we therefore applied Tabu Search to perform feature selection
as described in, e.g., [4] and [48].

The classifiers are trained using operator input. For a limited
period of time, the operators judge the parts in parallel to the
machine vision system. They usually inspect the real part (not
the image) and make a decision, which is then fed back into
the classifier. In the simplest case, the operator just pushes
a green (“good”) or red (“bad”) button. If the speed of the
production process allows, they may also provide more detailed
training input (this will be treated in HMI issues #3 and #4,
i.e., in Sections VI and VII). For many reasons, it may be
desirable to aggregate input from different operators who are
separated in time (shift patterns. . .) or space (multiple lines or
sites). To cope with this, reflect different opinions, and maintain
user engagement, a separate classifier is trained using the input
from each operator. When these trained classifiers are applied
to new images, any contradicting decisions are resolved using
an ensemble (more precisely, classifier fusion) method [25]
to provide the final decision of the system (see Section V,
HMI issue #2). In addition, there might be a quality control
supervisor, which does not do the daily quality inspection him-
/herself, but who wants to be in control as much as possible. If
the supervisor also labels (part of) the data, the system will take
into account this information, as well, by using it for training
the ensemble method in such a way that its output models the
supervisor’s decisions.

In general, classification performance will be measured in
terms of tenfold cross-validation (CV) error, except for the
incremental online training issue, where the accuracy on a
separate test set is calculated (as CV is an offline procedure).
Sometimes, this whole training process may fail to produce
satisfactory results, most often because there is important in-
formation missing in the image. This may be due to inadequate
lightning or failure of the image segmentation. To detect such
situations, we have developed an early warning system that
predicts the success or failure of the training process [45].

III. CHARACTERISTICS OF THE CD IMPRINT DATA SET

The whole recorded data set contains 1687 images, from
which 153 contrast images are fully black, hence containing
no potential fault candidates on it and can be classified directly
as good. The images were labeled by four different operators,
which assigned the labels not only to the whole images but
also to each single ROI. A graphical user interface (GUI) was
designed (see Fig. 2) in consultation with the users to allow
them to rapidly assign both a class (0–12) (6 belonging to

Fig. 2. GUI of labeling tool. Here, six ROIs are found which can be all labeled
by a drop-down control element (lower left), and image labels can be assigned
together with a confidence (lower right).

pseudoerror = no real errors and 6 belonging to real errors)
and a severity to each object segmented in the image. In
these images, the class distributions were not well balanced;
in this sense, it was not possible to train a high-performance
stand-alone object classifier. However, when using their output
information as additional features (under the scope of HMI 3,
according to Fig. 1), we could improve the classification as will
be demonstrated in Section VI.

Examples of faults on compact discs (CDs) caused by the
imprint system are a color drift during offset print, a pinhole
caused by a dirty sieve (color cannot go through), occurrence
of colors on dirt, and palettes running out of ink. These have to
be distinguished between so-called pseudofaults, for instance,
shifts of CDs in the tray (disc not centered correctly), causing
longer arc-type objects (e.g., see the upper left ROI in Fig. 3)
or masking problems at the edges of the image or illumination
problems (causing reflections). This leads to quite complex
structures in the deviation images, ranging from blob-type pixel
clouds over arc-type objects (usually pseudoerrors) to large
widespread pixel areas (usually stemming from dirt and palettes
running out of ink). For an image example, see Fig. 3: Different
types of script nameplates (at different positions) form separate
ROIs. In addition, the different arc-type objects (two in the
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Fig. 3. Typical example of a contrast image from the CD imprint production
process. Different ROIs found by DBSCAN are marked with different gray
levels/colors.

Fig. 4. Deviation image from the CD imprint process. Different colors/gray
levels represent different ROIs. Note that most of the image is white, which
means that the deviation to the fault-free master is concentrated in small
regions; the faulty and nonfaulty parts are exclusively marked as such.

middle and one long one outside partially circumventing all
other objects) (both marking pseudoerrors as due to shift of
the CD in the tray) and the small but clearly visible blob in
the middle of the image (a real error) all represent different
ROIs; the different gray levels (respectively, colors) represent
a grouping achieved by the DBSCAN algorithm [15]. In Fig. 4,
another example of a deviation image is presented from the
CD imprint production process: Different ROIs found by the
ROI recognition method are highlighted in different colors
(respectively, gray levels). In fact, the longer arc-type object (in
light gray) denotes a completely other type of error than the two
rectangle and compact type of regions (in darker gray levels).
An interesting point here is that on the right most part of the
faulty region (marked with blue pixels) would be not enough to
classify the whole image as “bad,” whereas the whole region is
significant enough to classify the image as “bad.” This means
that aggregated features explaining the intensity and area of
the pixel clouds may be necessary for discriminating between
“good” and “bad” images. However, this is not sufficient, as it
also depends on the shape characteristics of the ROIs: Imagine
two arc-type objects with the same intensity and area as the
faulty region shown in Fig. 4. This image would be classified as

“bad,” although containing two pseudoerrors. In this sense, it is
important to add object features characterizing shape, density,
etc., of single objects either supervised or unsupervised to the
aggregated features. The class distributions of the labeled ROI
were not well balanced, which meant that it was not possible to
train a high-performance stand-alone object classifier; however,
when using their output information as additional features (un-
der the scope of HMI 3, according to Fig. 1), we could improve
the classification as will be demonstrated in Section VI.

Applying these classification algorithms to the standard ag-
gregated feature sets (containing 17 predefined features) of
real-world data from an online CD imprint production process
produced accuracies between 90% and 94% [42] within a
tenfold CV procedure [46]. Even though the accuracies lie in
a reasonable range, they fall far below the standards needed for
automated industrial quality control or desirable for medical
diagnostic support (often, > 96% is required). However, as
the following sections detail, it is possible to gain significant
improvements by considering the human aspects of the sources
of data from which the ML system learns. Another benefit
is that the resulting systems are also more transparent, user
friendly, and generally applicable.

IV. INCREMENTAL CLASSIFIERS BASED ON

OPERATORS’ FEEDBACK

Incremental training involves the adaptation of parameters
and evolving structures (e.g., evolving neurons, rules, etc.) and
is required whenever the operator gives a feedback upon the
classifier(s) decisions during online production mode. This is
because a periodic rebuilding of the classifier using all the
samples seen so far is impractical as it slows down the training
process too much. On the other hand, if the classifier(s) are not
updated at all (i.e., they are kept fixed after the initial offline
batch training phase), they cannot refine their parameters, react
to changing operating conditions or system behaviors, and
hence may result in unsatisfactory performance. For dealing
with the online learning problem, we exploited an evolving
clustering-based classifier (eVQ-Class [29]) and an evolving
fuzzy rule-based classifier (FLEXFIS-Class [31]). The first one
is a clustering-based classifier based on vector quantization [19]
and exploits the idea of a vigilance parameter motivated in [8]
for forming an incremental and evolving variant. It is incremen-
tal in the sense that the cluster centers and surfaces are updated
samplewise based on new incoming samples during the online
process. It is evolving in the sense that new clusters are evolved
based on Mahalanobis distances from a newly loaded sample
(feature vector extracted from a newly recorded image) to all
the clusters: The minimal value of these Mahalanobis distances
is compared with a threshold, also called vigilance parameter,
and if greater than this, a new cluster is born, otherwise the
nearest cluster is updated. In this sense, the latter controls the
tradeoff between stability (i.e., the generation of new clusters)
and plasticity (i.e., the updating of existing clusters). The cluster
prototypes (centers) are updated by shifting them toward new
incoming samples, using a learning rate which starts with value
0.5 and decreases with the size of the clusters, i.e., by 0.5/ki,
with ki being the number of samples forming the cluster i,
i.e., those samples for which this cluster was the nearest one.
The surfaces of the ellipsoidal clusters are estimated by the
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width of the cluster in each dimension and synchronously up-
dated by exploiting a recursive variance formula [36]. Another
modification of the conventional vector quantization approach
is that to find the winning cluster: It does not calculate the
distance of a new incoming sample to all the cluster centers
but to the ellipsoidal surfaces of the clusters. If a new sample
falls inside some ellipsoids, the distances to the center of these
clusters are taken and the winning cluster is elicited. This
cluster is then updated, and in this case, a new cluster is never
born. Each cluster is labeled with the class most frequently
represented among the samples it contains (for further details,
see [29]).

The second incremental classifier evolves multiple Takagi–
Sugeno fuzzy (regression) models [50] and a one-versus-rest
classification scheme [13] in case of K > 2 classes. For each
class, a separate Takagi–Sugeno fuzzy model is trained based
on an indicator matrix, obtained by setting the label entries for
the current class to one and for all others to zero. The final
multimodel fuzzy classifier is extremely flexible for integrating
new classes on demand as they arise, user defined, during the
online production and learning process. As fuzzy models are
highly nonlinear and hence able to force the regression surface
of a model to go toward zero more rapidly, as compared to
inflexible linear hyperplanes, the masking effect (which is a
severe problem in the case of linear regression by indicator
matrix [20]) is much weaker than in the pure linear case.
The single Takagi–Sugeno fuzzy models are evolved by the
FLEXFIS (FLEXible Fuzzy Inference Systems) approach [30],
which connects the eVQ [29] for evolving the fuzzy rules
and for incremental training of the antecedent parts with the
recursive least squares approach [28] for consequent adaptation
in a way, such that near optimality in the least squares sense is
achieved. In these terms, we speak about a “robust” incremental
learning approach coming close to the hypothetical solution if
all online samples would have been sent into a batch learning
process.

The methods are used to generate initial offline batch trained
classifiers, which are further updated and evolved as new sam-
ples arrive. However, it is necessary to alleviate the burden of
input on the user, by reducing the number of responses they
are required to give. Most so-called active learning approaches
(e.g., see [51]) accomplish this by only querying the user if
the system’s confidence in its own decision is below some
threshold. However, this can be a risky strategy in situations
where examples of previously unseen classes may arise or if
the user wishes to override previous decisions, which could
happen for a range of human- or production-related reasons.
The approach that we have taken is as follows.

1) The system predicts the class of each new sample.
2) This is shown visually to the user.
3) The default position is to assume the user’s tacit

agreement.
4) In this case, the system is updated using its own deci-

sion output and taking into account the effect on class
imbalance—for example, a maximal imbalance of one-
third and two-third is allowed in 0/1 case.

5) If the user disagrees with the prediction, they can provide
contradictory input. In this case, the system is updated
with this input as a training signal.

TABLE II
PERFORMANCE OF INCREMENTAL ONLINE VERSUS STATIC

(AND RETRAINED) BATCH CLASSIFIERS

From an HMI perspective, this changes the way that the
question is posed to the user: The system is effectively asking
the user “Am I right that this a type X?” as opposed to the
typical “what type is this?.”

N -fold CV assumes a fixed data set and so is not an appro-
priate measure here. Instead, the CD imprint data set was split
into three. The first third of the images is used for initial offline
training. The middle third is used to simulate incremental online
training of the classifier and is sent sample per sample into
eVQ-Class and FLEXFIS-Class. The final third is used as a
test set for evaluating the trained classifiers. This is an ap-
propriate way of estimating the true online accuracy as the
whole CD imprint data were recorded and stored online, so
the test samples do represent the most recent images. Table II
shows the performance of the incremental classifiers versus
their corresponding batch versions, i.e., trained in initial offline
mode with the first batch of data and not further updated (kept
static): It can be seen that by doing an adaptation during online
mode, the performance on new unseen samples significantly
increases by 10%–15% for all operators. Furthermore, Table II
also shows us that, when retraining CART in batch mode on
all training samples, the accuracy on the new unseen samples
is only marginally higher than for the incrementally trained
approaches; in this sense, the computationally intensive retrain-
ing does not really pay off. Because we have used a different
method for estimating the classifier accuracy, it is not possible
to directly compare the exact values, but it is interesting to
consider the effect of switching from shuffled data sets (used
in N -fold CV), where all classes may be represented, to time-
ordered data, where some operators perceive that certain classes
of defects only occur after a certain time. Closer inspection
shows that, for those operators such as Operator 1 where there
is a time imbalance in the class distribution, the gap between
the “shuffled” results and the “time-ordered” ones is less for
the incrementally adapting eVQ-Class than it is for even the
retrained CART. From an HMI perspective, online learning
highlights some interesting points. In a batch-mode model, the
user is asked to perform repeated interactions for image labeling
without feedback or reward. This can make the process seem
time consuming and possibly pointless. In contrast to this, on-
line training means that the user can “see” the system learning
from their input, building a progressively more accurate model,
which can help to motivate them and increase their focus and
attention. Similar findings have been found in a range of other
HMI studies (e.g., see [39]).

V. HANDLING INPUT FROM MULTIPLE USERS

When learning systems are applied to industrial applica-
tions and the operators are actively involved in the training
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process, the fact that usually multiple operators will be working
on the system needs to be taken into account. Similarly, in
the fields of medicine and science, it may be desirable to
incorporate inputs from a wide range of people in order to
broaden the range of data examples and human perspectives
available. Inevitably, every time a person makes a decision,
they implicitly consider and weight multiple competing criteria
such as the desire to reduce the risk by wrongly classifying
“defective” samples as “OK,” or vice versa. One approach
to this problem is to combine the inputs and train multiple
versions of classifiers with different parameter and then select
a global “winner” (e.g., by inspecting the receiver operating
characteristic curves or by a systematic fuzzy decision-making
process [43]). However, this still assumes a consistent behavior
between and within user’s inputs. It also assumes a fixed
weighting of each user’s inputs. In the proposed framework, we
take a different approach based on the assumption that some
stage decisions will be taken to define, e.g., company policy
or diagnostic standards and that these can be captured as a
set of examples labeled by some “expert.” In the first stage of
our system, each operator trains his own personal classifier in
the way he thinks is the best. In the second stage, the outputs
of these individual classifiers are then combined into the final
decision. Note that this approach could, in principle, work
equally well whether the individual classifiers are trained by
the users’ labeling the same or disjoint sets of examples.

The idea of classifier ensembles is to train not one but a set
(ensemble) of classifiers. Most research has considered the case
where there is only a single data set for which a diverse set of
classifiers is trained. Here, these ensemble methods are used in
a different context: They are used to combine the outputs of
classifiers which are trained by different operators (i.e., using
different training sets). This means that the ensembles are used
to resolve the contradictions between the operators. Two levels
of contradiction among the operators can be distinguished.

1) Interoperator contradictions: systematic contradictions
between the decisions of different operators. They can be
caused, e.g., by different levels of experience, training,
skill, etc.

2) Intraoperator contradictions: contradictions (often more
random) between the decisions of a single operator. They
can be caused by “personal” factors, such as the level of
fatigue, attention, stress, boredom, etc., or “environmen-
tal” factors, such as a changed company policy concern-
ing the quality control, recent customer complaints, etc.

The intraoperator contradictions, which are mostly random,
are dealt with by the operators’ own classifiers themselves.
Several learning techniques can naturally handle noisy data
(e.g., see [13]). To handle the systematic interoperator contra-
dictions, the operators train their own classifiers, the outputs
of which are combined by an ensemble method. An advantage
of having each operator train his “own” classifier is that these
classifiers will be easier to train (provided that sufficient data
are available), since only the intraoperator contradictions need
to be handled by these classifiers. Furthermore, it is clear what
has been taught to the system by which operator, making it
possible to provide operator-specific feedback.

Ensemble methods can be divided into two classes: gener-
ative and nongenerative [52]. Generative ensemble methods

generate sets of classifiers by acting on the learning algorithm
or on the structure of the data set, trying to actively improve
the diversity and accuracy of the classifiers. These include well-
known methods such as “Boosting” [16]. In general, these algo-
rithms build different classifiers iteratively, with each iteration
focusing on the data points that were hard to classify by the
classifier in the previous iteration by weighing them appropri-
ately. When a new data item is to be classified, the decisions of
the classifiers from the different iterations are combined using a
weighted majority vote. This kind of procedure is not applicable
here since there is a fixed set of classifiers (exactly one per
operator). These classifiers cannot be modified by the ensemble
algorithm (as they represent the decisions of an operator), and
the ensemble method cannot create additional classifiers.

In contrast, nongenerative ensemble methods do not actively
generate new classifiers but try to combine a set of different
existing classifiers in a suitable way. Clearly, the nongenerative
approach is necessary for the application in this paper: The
operators train their own classifiers in the way they think is
the best, and there is no way for the system to intervene in this
process. Nongenerative ensembles can be generally divided into
two groups: classifier selection and classifier fusion [54]. The
assumption of the former is that each classifier is “an expert”
in some local area of the feature space. The latter assumes that
all classifiers are trained over the whole feature space. For the
application in this paper, classifier fusion is more appropriate,
since the operators train the system with the data which are
provided by the vision system, which could be spread over the
entire data space. The fusion of the outputs of the different
classifiers (trained by the different operators) can be done
using fixed or, if a “supervisor” has labeled the data, trainable
classifier fusion methods. In the latter case, the ensembles are
optimized to best represent the decisions of the supervisor (i.e.,
these data are considered to be the ground truth), taking into
account only the decisions of the operators. The fixed classifier
fusion methods include Voting methods [27] and algebraic
connectives such as maximum, minimum, product, mean, and
median [24]. Trainable classifier fusion methods include the
Fuzzy Integral [10], Decision Templates [26], Dempster-Shafer
combination [40], and Discounted Dempster-Shafer combina-
tion [41]. In addition, the Oracle, a hypothetical ensemble
scheme that provides the correct result if at least one of the
classifiers in the ensemble outputs the correct classification,
was considered. The accuracy of the Oracle can be seen as
a “soft bound” on the accuracy, which can be achieved by
the classifiers and classifier fusion methods (for a detailed
survey of these methods, see for example, [25]). We also
considered Grading [17], a different approach to classifier
fusion. Here, a so-called “Grading” classifier is trained for
each base-level classifier to predict whether the classifier will
be correct for a given data sample. The classifiers, which are
estimated to be correct, are considered in a majority voting
scheme to provide the final output. Thus, Grading forms a
nonlinear weighting over the feature space for each classifier. In
this sense, it could be considered akin to the selection methods
for classifier fusion. The difference is that, in this case, the
weighting implicitly captures the preferences and opinions of
the superoperator in terms of conflicting risks, etc. Thus, in
different regions of the feature space, it will adapt to give
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TABLE III
CLASSIFICATION ACCURACY (IN PERCENTAGE) OF CART CLASSIFIERS

FOR THE CD DATA SETS. CLASSIFIERS ARE TRAINED USING DATA FROM

ONE OPERATOR (ROW) AND EVALUATED FOR THE ABILITY TO PREDICT

LABELS PROVIDED BY ANOTHER (COLUMN). BOLD TYPE INDICATES

CLASSIFIERS TESTED AND TRAINED ON SAME DATA SET

more weight to those classifiers representing operators whose
decisions and weights agree with the superoperator.

The CD data with 17 aggregate features described in
Section II were labeled by four different operators. To inves-
tigate the HMI issues arising from the interoperator contradic-
tions, a fifth operator (Operator05) was included in the tests,
who has a different position in the company than the other
operators and thus has a different subjective view on the quality
criteria, as will be demonstrated next. As Operator05 is not
involved in the day-to-day quality control, this operator is not
considered in the other sections of this paper (describing the
other HMI issues—not considering the effect of training the
system using the inputs of multiple operators). To investigate
the effect of the interoperator contradictions, each of these five
operators is considered as the “supervisor” in turn. Classifiers
are trained for the other operators, and their outputs are then
combined by the ensembles in order to better model the de-
cisions of the supervisor. Note that this implies evaluating the
classifiers on data which they were not trained for.

In Table III, the effect of training a classifier with the input
from one operator (row) and then evaluating this classifier
using the input from another operator (column) is shown. It
can be seen that three operators make very similar decisions
(Operators 02, 03, and 04), one operator differs slightly from
these three operators (Operator01), and one operator makes
decisions which are very different from all other operators
(Operator05). Note that the results of about 90%–95% on the
diagonal of this table (shown in bold) denote the evaluation
of the classifiers on the same data they were trained on (i.e.,
a normal classification task) as shown in Section III.

In Table IV, the effect of training a classifier for four
operators and then combining them using different ensemble
methods to predict the labels provided by the fifth operator (con-
sidered as the supervisor) is shown. From these results, we can
see that the ensembles are able to represent the supervisor better
than the classifiers trained by the different operators them-
selves. The improvements range up to approximately 3%. In
these experiments, the Grading ensemble method performed the
best, outperforming the other classifier fusion methods (both
fixed and trainable) in all experiments, except when Operator05
is considered as the supervisor (in this case, there is a marginal
difference with the Decision Templates method of 0.06%. Note
that, if all operators do not agree well with the supervisor, a
drop in the accuracy is recorded—e.g., approximately 20% of
the decisions of Operator05 (the operator who has a different
position in the company than the other operators) do not agree
with any of the other operators. In this case, even the hypo-

TABLE IV
CLASSIFICATION ACCURACY (IN PERCENTAGE) OF THE DIFFERENT

ENSEMBLE METHODS (ROWS) FOR THE CD DATA SETS. DIFFERENT

OPERATORS ARE CONSIDERED TO BE THE SUPERVISOR (COLUMNS);
TRAINING INPUT FOR THE ENSEMBLES IS PROVIDED

BY THE OTHER OPERATORS

thetical Oracle does not perform well, bounding the achievable
accuracy below 80%. From these results, we can conclude that
the ensemble methods can effectively be used to combine the
decisions of different operators, in order to model the decisions
of a supervisor better, with improvements of up to 3%.

Another interesting result is that by combining the outputs of
the classifiers trained for the different operators and combining
them by an appropriate ensemble method (in this case, the
Grading ensemble); in several cases, the performance is even
higher than the performance of a classifier specifically trained
on the labels provided by the supervisor (the results on the
diagonal of Table III). This is caused by the interoperator con-
tradictions among the operators, creating a diverse ensemble
of classifiers which is able to perform well, as shown in these
results. The only experiment in which this was not the case is
when Operator05 is considered to be the supervisor (again due
to the large deviations with all of the other operators).

VI. HANDLING VARIABLE LEVELS

OF DETAIL IN USER INPUTS

A major problem of image classification is the fact that it
is not known in advance how many ROIs may be segmented
from images occurring in the future, and yet, most classification
algorithms assume a fixed-size input data space.

As noted earlier, for each segmented ROI, we calculate a
fixed number of features (57). The most straightforward way
to tackle this issue is to preprocess the ROI and characterize its
distribution within the object feature space by a fixed number
of descriptors. In practice, this requires first a preprocessing
stage prior to training the image-level classifier and then also
during testing/validation, an additional step to process the
information about the ROI within each image. When operator-
assigned labels are present, supervised object-level classifiers
can be constructed [7]. These created a labeled partition of the
object feature space. When presented with the ROI from a new
image, their outputs—i.e., the number of each type of object
present on an image—are added to the aggregate image data
features, and then, image-level classifiers are trained and tested
in an n-fold CV regime. Such supervised learning methods
are highly useful and may be easily interpreted, but obtaining
this information requires significant operator input which may
not be available offline or may simply be infeasible online
due to the speed of production. When object-level labels are
not available, it is necessary to use different approaches to
represent the distribution of object features. Such methods do
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TABLE V
CLASSIFICATION ACCURACY USING DIFFERENT LEVELS OF USER INPUT

not require operator input but are highly reliant on the choice of
input features. One approach is to apply first-order statistics to
this distribution to produce extra image-level descriptors. After
some experimentation, it was found that using the maximum
value of the object-level features was most useful—e.g., the
size/intensity of the biggest/brightest object in an image.

An alternative approach is to apply unsupervised object-
level learning to produce a reduced set of extra features which
describe the distribution in a different way [6]. In this case, we
have proceeded as follows. During the preprocessing stage, a
clustering algorithm is applied to all the objects from all the
images in the training set. This provides us with C centroids
in the object feature space, and also, for each training object,
a label from the set {1, . . . , C}. Then, for each image in the
training set, we can obtain C extra features denoting the number
of objects of each type it contains. After this preprocessing
stage, the image classifier is then trained using the 17 + C
features for each labeled image. During testing/validation, each
of the segmented ROIs in a new image is assigned to the object
class with the nearest centroid, and the appropriate hit-count
incremented, to create the 17 + C dimensional vector that is
input to the classifier. In these experiments, we used a relatively
simple clustering algorithm—k-means. As this is prone both to
settling in local optima and to the effect of redundant features,
we applied a Tabu search to perform “wrapper-style” feature
selection in the object space (more details can be seen in [49]).

The results of adding different levels of information from
the operators are shown in Table V. Table VI shows the effect
of augmenting the 17 image-level features with C cluster-
based object features and how this changes with C. As can be
seen, in each case, the two-level supervised classifier approach
improves the results over our baseline. This is not surprising,
given that the extra levels of operator input are available,
although it is worth noting that training an object classifier is
a complex multiclassification approach, where just an accuracy
of about 80% can be achieved at the object level. When this
level of information was not present, then simply using the first-
order statistics to describe the distribution of objects on each
image gave significant benefits. This is despite the fact that the
result was a 74-D space for the image classifier to learn. As

TABLE VI
CLASSIFICATION ACCURACY (IN PERCENTAGE) WITH 17 IMAGE

FEATURES PLUS C CLUSTER-BASED OBJECT FEATURES

Table VI shows, the results of using the clustering approach to
partition the object-level feature space depend on an appropriate
choice for C. More importantly, the results demonstrate that,
with C = 12, the unsupervised cluster-based approach actually
does as well, if not better than the supervised approaches. The
fact that 12 clusters were found in the data suggests that the
problem is one of correctly assigning an object to a class, rather
than that those different classes do not actually exist in the data.

VII. ACCOMMODATING PARTIAL

CONFIDENCE OF OPERATORS

During the setup phase of an image classification frame-
work, the labeling of several images can be a difficult task
for the operators, particularly in cases where real faults are
hard to distinguish among themselves or between the so-called
pseudoerrors. This problem can become even worse when the
operators are not working in the relative calm of an offline
setting but are providing real-time decisions at a speed driven
by other factors. In this sense, it is promising, sometimes
even necessary for the operators to provide information about
how confident they are when assigning the labels to certain
images or objects. Here, only the confidences in the whole
image labels are taken into account. The simplest way is to
represent the users’ confidence as a value in a range of 0.0 (very
unconfident) to 1.0 (very confident). This raises two issues: with
what precision should the confidence be used and how should
this information be obtained from the users? In keeping with
research from other fields about how many categories people
can typically discriminate, rather than asking users to spend
time thinking of an exact value to assign, we ask them for
one of the five values. This means that we can avoid the need
to enter those data either via typing or by a mouse click and
drag on a slider, both of which are time-consuming operations.
The choice of five distinct values, i.e., {20%, 40%, 60%, 80%,
100%} confidence, is also partially driven by the needs of
the GUI (see Fig. 2), resulting from an intensive round of
discussion and design iteration with industrial users from a
range of fields. Based on this, we worked out two principal
approaches for incorporating the confidence values for training
the classifiers.

The first approach is to apply regression approaches to con-
fidence values transformed by

conf_transformed =
(1 + η · conf)

2
(1)

where η takes the value +1/ − 1 for “good”/“bad” samples.
Because this model treats the problem as a regression problem
rather than a classification one, it is only directly applicable in a
two-classification scenario. For multiclass problems, indicator
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TABLE VII
CLASSIFICATION ACCURACIES AND IMPROVEMENTS WHEN

APPLYING THE REGRESSION APPROACH TO THE

74 AGGREGATED + SUPERVISED FEATURES

matrices have to be applied (see [20]). Table VII shows
the results obtained. We applied the regression variants of
CART [5]. This type of regression is not possible with C4.5.
For kNN, the confidence values of the nearest neighbors of a
new incoming instance are averaged, and if being greater than
0.5, label “good” is assigned. For eVQ-Class, the hit rate, i.e.,
the relative proportion of samples, is calculated for each class
in the nearest cluster of the new incoming sample by simply
summing up all confidence values for each class. The class with
the highest sum is assigned to the new incoming instance. The
improvement over the results without including the confidence
values is clearly visible using CART and eVQ-Class. For 1NN
and 9NN, there are no improvements. As this method does not
provide benefits for several classifiers and does not tackle the
multiclass problems, other approaches were investigated.

The second approach tried is based on duplicating the (ex-
tended) aggregated feature vectors according to the assigned
confidence values. Thus, a feature vector from an image, which
is labeled with 1.0 confidence, is duplicated five times, another
one labeled with 0.8 confidence is duplicated four times, etc.
This means that feature vectors, which are labeled with a higher
confidence, are more highly weighted in the training process
than those labeled with a lower confidence. In principle, this
may not necessarily affect a training process of a classifier;
however, the approaches used in this paper (CART, C4.5,
kNN, and eVQ-Class) are definitely affected by the density
(respectively, relative proportions) of the classes. It should be
noted that the idea of creating training sets by sampling from
a given data set is not new, e.g., the well-known algorithm
bootstrapping [14] does this. However, in one case, the sam-
pling is weighted uniformly, and in the other case, the sampling
weights are determined iteratively according to the performance
of classifiers built from the initial training sets. What we are
proposing is somewhat different, in that the following are true:
1) The weights governing sampling probabilities are a function
of the operators’ confidence—thus incorporating information
which would be lost or ignored by traditional approaches, and
2) the sampling is deterministic, rather than stochastic.

Applying the duplicating feature vector approach on the two-
level CD feature data set gives the results shown in Table VIII.
As can be seen, the results improve for all classifiers except
1NN and can outperform the regression approach significantly
(see Table VII). It is to be expected that no difference is
observed with 1NN, as, of course, duplication has no effect
when only one instance is considered to make each decision.
In contrast, when larger groups of neighbors are used (9NN—

TABLE VIII
CLASSIFICATION ACCURACY USING TWO-LEVEL APPROACH AND

DUPLICATING FEATURE VECTORS ACCORDING TO CONFIDENCE LEVELS

OF OPERATORS. RESULTS IN BRACKETS SHOW THE IMPROVEMENT IN

PERCENTAGE BY EACH CLASSIFIER OVER TWO-LEVEL

APPROACH WITHOUT DUPLICATION

column 5), the increase can be dramatic as “confident” images
outvote others. Not only does this technique give improvements
for all the different types of classifiers but also it does so for all
operators: toward 98% for operators #2 and #3 and toward 97%
for operator #4.

VIII. PROVIDING INSIGHT INTO CLASSIFIER STRUCTURES

The operator may wish to have more insight into the classifier
structures in order to obtain a better understanding of the
classifier decisions as well as the characteristics of the faulty
situations at the systems. Sometimes, he may even wish to
interact with the classifier’s training process, i.e., to modify
some structural components of the classifier (e.g., rules, leafs,
neurons, etc.). This is because he has some intrinsic knowledge
about the fault and nonfault characteristics in the recorded
images. Note that this will lead finally to a kind of gray-box
modeling behavior [34] in an alternating scheme, which is to
train an initial classifier based on some training data, then to
modify the trained classifier by an expert knowledge, and then
to adapt further the classifier with new online data. In order to
gain more insight into the classifier structure, a first issue is to
consider which model architecture is a reliable one to do so, i.e.,
yielding transparent classifiers. From the repertoire of methods
that were used in this paper, the decision-tree approaches seem
to be most convenient, as they produce a classifier with a tree
structure, where each path from the root to the terminal node
can be transferred to a linguistically readable classification rule
[32], [37].

A second important issue is to consider complexity reduction
processes for making trained complex models slimmer and
hence more transparent and interpretable. For decision trees,
this is achieved by so-called pruning techniques, which perform
complexity reduction based on nested tree sequences (from
simple to more complex trees) [33]. For an example of a simple
(pruned) tree structure, see the right image in Fig. 5, whereas
the left image represents the unpruned (quite unclear) tree. For
the pruned tree, the classification rules can be read as follows
(xi denotes the ith feature).
IF x7 ≥ 4.72 THEN Image is “BAD.”
IF x7 ≤ 4.72 AND x12 < 3384.5 THEN Image is “GOOD.”
IF x7 ≤ 4.72 AND x12 ≥ 3384.5 AND x2 ≥ 3.38 THEN

Image is “GOOD” and so on.
In fact, this means that if feature x7 is greater or equal than

4.72, the image is already classified as “BAD.” In order to
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Fig. 5. (Left) Complex decision tree not being pruned. (Right) By applying a pruning step, the tree gets much easier to interpret by loosing only a fraction of its
predictive power.

give these rules a better linguistic representation, they can be
cross-checked what 4.72 means with respect to the range of
the feature x7, which is, in this case, the aggregated feature
“maximal intensity of an object,” whereas intensity is defined
by multiplying the size with the average (normalized) gray
values of the object: 4.72 is a quite low value when taking
into account that this feature ranges from 0.078 to 98.14; this
means that the rule “IF x7 ≥ 4.72 THEN Image is BAD” can
be transferred to the linguistic rule “IF the maximal intensity
of an object is NOT LOW THEN Image is BAD” as well as
“IF there are any ROIs in the (contrast) image which are clearly
visible THEN image is BAD.” In this sense, the user can decide
whether it is a correct or wrong rule.

Please note that pruning is not only for obtaining a better
transparency of the classification rules and more compact rep-
resentation of the intrinsic knowledge in the training data but
also for improving the accuracies of the classifiers, as complex
trees tend to overfit on new unseen samples. In this sense,
pruning is definitively always a successful step when designing
a decision-tree-based classifier. The results in Table VIII with
respect to the CART algorithm were also achieved with an
implicit pruning step, with the pruning level set to 1 in this
case, leading to a still quite complex tree with a depth of 11
and number of nonterminal nodes of 37. It was also examined
how a stronger pruning improves the transparency (measured in
terms of two numbers: tree depth and number of nodes) while
weakening the predictive powers. This is underlined in Fig. 6,
where, for the training data labeled by Operator 6, the number
of nonterminal nodes versus the elicited accuracy is visualized.
Here, it can be seen that, indeed, by using a pruning level of 1,
the best accuracy can be obtained; however, when increasing
the pruning level to a value of 6 and decreasing the number of
nonterminal nodes (i.e., the number of rules) to just 9, only a
fraction (i.e., 0.8%) of the accuracy is lost. In this sense, this
pruned tree represents a good tradeoff between performance in
terms of accuracy and transparency of the classifier.

IX. CONCLUSION AND OUTLOOK

As ML systems move out of the laboratory and into real-
world applications such as vision and image processing, it is
valuable to reconsider some of the assumptions that have been

Fig. 6. Complexity versus accuracy of the pruned decision tree.

made about how such systems can best learn from users. In this
paper, we have discussed some important issues and suggested
how they can be handled. Experiments conducted with “real”
data within the context of a generic image processing system
show that, when properly handled, the human factors can
represent an additional form of information to these systems
for improving performance and may widen the applicability
and usability, rather than to be a disagreeable source of noise.
The key issues of these factors include online guidance and
feedback, a diversity of user skills, and uncertainties as well as
different levels of knowhow and detail in users’ input. Crucial
to this change is paying a proper consideration to the way
that the users actually interact with the system. They can be
distilled to two questions. The first of these is as follows: What
should the users be shown and how? Many years of experience
of the project partners have taught us that maintaining users’
involvement in the value of the system is crucial, so particularly
during online training, it is vital for the interface to show that
the system is actually learning from their input. The second
question is as follows: What information should the users
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provide, and how? We have shown how asking for too much
information—e.g., object-level labels—can sometimes cause
complications and may not always be possible. In contrast,
other information such as the human’s uncertainty can be easily
obtained and lead to significant performance improvements.
The improvements are made possible by recent advances in the
speed with which GUIs can operate. The next generation of user
interaction devices offers the potential to build on this research,
creating much richer human–machine learning interaction.
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