
Majority adder implementation by competing
patterns in Life-like rule B2/S2345

Genaro J. Mart́ınez1,3, Kenichi Morita2, Andrew Adamatzky3, and
Maurice Margenstern4

1 Instituto de Ciencias Nucleares and Centro de Ciencias de la Complejidad,
Universidad Nacional Autónoma de México, México DF.

genaro.martinez@uwe.ac.uk
2 Hiroshima University, Higashi-Hiroshima 739-8527, Japan.

morita@iec.hiroshima-u.ac.jp
3 Bristol Institute of Technology, University of the West of England, Bristol, United

Kingdom. andrew.adamatzky@uwe.ac.uk
4 Laboratoire d’Informatique Théorique et Appliquée, Université de Metz, Metz

Cedex, France.
margens@univ-metz.fr

Abstract. We study Life-like cellular automaton rule B2/S2345. This
automaton exhibits a chaotic behavior yet capable for purposeful com-
putation. The automaton implements Boolean gates via patterns which
compete for the space when propagate in channels. Values of Boolean
variables are encoded into two types of patterns — symmetric (False)
and asymmetric (True). We construct basic logical gates and elementary
arithmetical circuits by simulating logical signals using glider reactions
taking place in the channels built of non-destructible still lifes. We design
a binary adder of majority gates realised in rule B2/S2345.

1 Introduction

There is a plenty of computing devices ‘made of’ Conway’s Game of Life (GoL)
cellular automaton [13]. Examples include a complete set of logical functions [32],
register machine [8], direct simulation of Turing machine [9, 31], and design of
a universal constructor [16]. These implementations use principles of collision-
based computing [8, 1] where information is transferred by gliders propagating
in an architecture-less medium. Theoretical result regarding GoL universality
is only a tiny step in a long journey towards real-world implementation of the
collision-based computers [33].

GoL has a long history where a number of dedicated researchers obtained
significant results on its complex dynamics and computing devices. The first one
was published by Gardner [13] followed for a newsletter edited by Wainwright
[35, 3]. A number of results in GoL is published, some of them really complicated
as for example universal computers/constructors [1, 6, 8, 9, 12, 14–16, 26, 30, 31].

On the way, we have reported in phenomenological studies of semi-totalistic
CA [5], a selected set rules named as Life 2c22, identified by periodic struc-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UWE Bristol Research Repository

https://core.ac.uk/display/323898664?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


tures [28]. The clan closest to the family 2c22 and the Diffusion Rule (Life rule
B2/S7) [21], all they also into of a big cluster named as Life dc22.5

In this paper we will exploit previous results on the constructions of feed-
back channels with still life patterns (previous studies since B2/S23456 [20] and
B2/S2345678 [22]), reducing the number of cells in state 1 on the evolution rule.
Hence every pattern propagation is stimulated since a glider reaction that will
produce a specific static geometric pattern, thus their interactions when they
compete shall yield a binary value representation. Finally we design specific ini-
tial configurations to get implementations of universal logic gates and a binary
adder based on majority gates inside B2/S2345.

2 Life rule B2/S2345

Dynamics of Life rule B2/S2345 is described for the next conditions. Each cell
takes two states ‘0’ (‘dead’) and ‘1’ (‘alive’), and updates its state depending on
its eight closest neighbours (Moore neighborhood):

a) Birth: a central cell in state 0 at time step t takes state 1 at time
step t + 1 if it has exactly two neighbours in state 1.

b) Survival: a central cell in state 1 at time t remains in the state 1 at
time t + 1 if it has two, three, four or five live neighbours.

c) Death: all other local situations.

Once a resting lattice is perturbed in B2/S2345 (few cells are assigned live
states), patterns of states 1 emerge, grow and propagate on the lattice quickly.
The main characteristic is that gliders and oscillators emerge but they do not
survive for long time.

(a) (b) (c) (d)

Fig. 1. Basic periodic structures in B2/S2345: (a) glider, (b) oscillator (flip-flop), (c)
oscillator (blinker), and (d) still life configuration.

A set of minimal particles, or basic periodic structures, in rule B2/S2345
include one glider (period one), two oscillators (one blinker and one flip-flop, pe-
riod two), and finally one still life configuration (see Fig. 1). The still life pattern
[23, 11] in B2/S2345 has a relevant characteristic. They are not affected by their
environment however they do affect their environment [20, 22]). Therefore the
still life patterns can be used to build channels, or wires, for signal propagation.
5 http://uncomp.uwe.ac.uk/genaro/Life_dc22.html



2.1 Indestructible still life pattern in B2/S2345

Some patterns amongst still life patterns in the rule B2/S2345 belong to a class
of indestructible patterns (sometimes referred to as ‘glider-proof’ patterns in
GoL) which cannot be destroyed by any perturbation, including collisions with
gliders. A minimal indestructible pattern, still life occupying a square of 6 × 6
cells, is shown in Fig. 1d.

(a) (b) (c)

(d)

Fig. 2. Containment of growing pattern by indestructible patterns. (a) First example
display an explosion reaction started from a collision between four gliders (see center),
(b) display the final configuration stopping this growing pattern. (c) Display initial
positions of a fleet of gliders outside the box walled by still life configurations in our
second example, (d) show how interior of the box is protected from the growing pattern.

The indestructible patterns can be used to stop ‘supernova’ explosions in
some Life-like rules. Usually a Life-like automaton development started at an ar-
bitrary configuration exhibits unlimited growth (generally related to some kind



of nucleation phenomenon [17]). Hence a suitable concatenation of still life con-
figurations avoid a continuos expansion.

In rule B2/S2345 such an ‘uncontrollable’ growth can be prevented by a
regular arrangement of indestructible patterns. Examples are shown in Fig. 2.
In the first example (Fig. 2a) four gliders collide inside a ‘box’ made of still life
patterns. The collision between the gliders lead to formation of growing pattern.
The propagation of the pattern is stopped by the indestructible wall (Fig. 2b).
In the second example, a fleet of gliders collide outside the box (Fig. 2c) however
interior of the box remains resting (Fig. 2c) due to impenetrable walls. Similarly,
one can construct a colony of still life patterns immune to local perturbations.

Thus the indestructibility exemplified above allows us to use still life patterns
to construct channel information in logical circuits.

3 Computing by competing patterns

The easiest way to control patterns propagating in a non-linear medium cir-
cuits is to constrain them geometrically. Constraining the media geometrically
is a common technique used when designing computational schemes in spatially
extended non-linear media. For example ‘strips’ or ‘channels’ are constructed
within the medium (e.g. excitable medium) and connected together, typically
using arrangements such as T -junctions. Fronts of propagating phase (excita-
tion) or diffusive waves represent signals, or values of logical variables. When
fronts interact at the junctions some fronts annihilate or new fronts emerge. The
propagation in the output channels represent results of the computation.

Hence we built a computing scheme from channels — long areas of ‘0’-state
cells walled by still life blocks, and T -junctions6 — sites where two or more
channels join together.

A B

C

Fig. 3. T -shaped system processing information.

Each T -junction consists of two horizontal channels A and B (shoulders),
acting as inputs, and a vertical channel, C, assigned as an output (Fig. 3).
Such type of circuitry has been already used to implement xor gate in chemical
laboratory precipitating reaction-diffusion systems [4], and precipitating logical
gates imitated in CA [20, 22]. A minimal width of each channel equals three
widths of the still life block (Fig. 1d) and width of a glider (Fig. 1a).
6 T -junction based control signals were suggested also in von Neumann [34] works,

and used by Banks [7] and Codd [10] as well.



(a) (b)

(c) (d)

Fig. 4. Feedback channels constructed with still life patterns ((a) and (c)) show the
initial state with the empty channel and one glider respectively. The symmetric pattern
represent value 0 (b), and non-symmetric pattern represent value 1 (d) late of glider
reaction.

Boolean values are represented by position of gliders, positioned initially in
the middle of channel, value 0 (Fig. 4a), or slightly offset, value 1 (Fig. 4c).
The initial positions of the gliders determine outcomes of their reaction. Glider,
corresponding to the value 0 is transformed to a regular symmetric pattern,
similar to frozen waves of excitation activity (Fig. 4b). Glider, representing signal
value 1, is transformed to transversally asymmetric patterns (Fig. 4d). Both
patterns propagate inside the channel with constant, advancing unit of channel
length per step of discrete time.

3.1 Implementation of logic gates

(a) (b)

(c) (d)

Fig. 5. Configurations of delay element for signal ‘0’ (a) and (b), and signal ‘1’ (c) and
(d). Thus (a) and (c) shows initial configurations, (b) and (d) final states.

Our first stage is implement basic universal logic gates. When patterns, repre-
senting values 0 and 1, meet at T -junctions they compete for the output channel.
So depending on initial distance between gliders, one of the patterns wins and
propagates along the output channel.

On the way we can design a delay element as shown in Fig. 5. Useful to
delay signals (wave propagations) and synchronize multiple collisions.



1 1

10

(a)

0 1

00

(b)

Fig. 6. Implementations of or and and gates at the Life rule B2/S2345. Input binary
values A and B they are represented as ‘In/0’ or ‘In/1,’ output result C is represented
by ‘Out/0’ or ‘Out/1.’ Thus (a) display or gate, and (b) and gate implementation.

Figure 6a shows a way to implement an or gate. Due to different locations
of gliders in initial configurations of gates, patterns in both implementations of
gates are different however, results of computation are the same. Similarity a
codification to implement and gate is shown in Fig. 6b.

(a) (b) (c) (d)

Fig. 7. not gate implementation for input ‘1’ (a,b) and input ‘0’ (c,d). This way (a)
and (c) display initial configurations, (b) and (d) display final configurations.

The not gate is implemented using additional channel (as a trick), where
control pattern is generated, propagate and interfere with data-signal pattern.
Initial and final configurations of not gate are shown in Fig. 7. A consequence
with this idea is that the number of control channels growth proportionally to
number of gates in the circuit. Of course, we accept that it could not be the most
elegant and efficient way of constructing not gate, but useful for our purposes
at the moment.

3.2 Majority gate

Majority gate implementation on three input values can be represented as a
logical proposition: (a ∧ b) ∨ (a ∧ c) ∨ (b ∧ c), where the result is precisely the
most frequently value on such variables [24].



(a) (b)

Fig. 8. (a) initial configuration: majority input values In/0 (first column), and majority
input values In/1 (second column), and (b) final configurations of the majority gates.



Implementation of majority gate in B2/S2345 is shown in Fig. 8. The gate
has three inputs: North, West and South channels, and one output: East channel.
Three propagating pattern, which represent inputs, collide at the cross-junction
of the gate. The resultant pattern is recorded at the output channel.

3.3 Implementation of binary adder with not-majority gates

Here we will implement a binary adder constructed of three not-majority
gates and two inverters. Such type of adder appears in several publications,
particularly in construction of the arithmetical circuits in quantum-dot cellular
automata [29, 36]. Original version of the adder using not-majority gates was
suggested by Minsky in his designs of artificial neural networks [24].

MAJ

MAJ

MAJ

a
b
cin

cout

sum

(a)

MAJ1

MAJ2

MAJ3

MAJaux

b

a

a

a

cin

b

cin

cin

cout

sum

(b)

Fig. 9. Circuit and schematic diagram of a full binary adder comprised of not-
majority gates. Delay elements are not shown.

Figure 9a shows the classic circuit illustrating the dynamics of this adder.
This way Fig. 9b represents a scheme of the adder to implement in B2/S2345.
The scheme highlights critical points where some extra gates/wires are necessary
to adjust inputs and synchronize times of collisions.

Figure 10a presents most important stages of the full adder on B2/S2345
evolution space standing out delays stages and not gates. The adder is im-
plemented on 1, 402 × 662 lattice that relates an square of 928,124 cells lattice
with an initial population of 56,759 cells in state ‘1.’ Final configurations of the
adder for every initial configuration of inputs are shown in Figs. 10b–i with a
final population of 129,923 alive cells on an average of 1,439 generations.7

7 To look enlarge pictures or videos of the simulations please visit http://uncomp.

uwe.ac.uk/genaro/Life_dc22.html



a

b

c
in

n
o
t

n
o
t

n
o
t

n
o
t

d
e
la
y

d
e
la
y

d
e
la
y

d
e
la
y

d
e
la
y

d
e
la
y

d
e
la
y

d
e
la
y

d
e
la
y

a

b

c
in

a

c
in

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 10. Final configuration of the adder for inputs: (a) main stages; (b) a = 0, b = 0,
cin = 0; (c) a = 0, b = 1, cin = 0; (d) a = 1, b = 0, cin = 0; (e) a = 1, b = 1, cin = 0;
(f) a = 0, b = 0, cin = 1; (g) a = 0, b = 1, cin = 1; (h) a = 1, b = 0, cin = 1; (i) a = 1,
b = 1, cin = 1.



4 Conclusions

We have demonstrated that chaotic rule B2/S2345 supports complex patterns.
That relates another case where a chaotic CA contains non evident complex
behaviour [21, 25], and how such systems could have some computing on its
evolution space from particular initial conditions.

We have shown how construct basic logical gates and arithmetical circuits by
restricting propagation of patterns in channels, constructed indestructible still
life blocks.

However we have recognized a number of limitations on this model. Dis-
advantage of the approach presented is that computing space is geometrically
constrained and the computation is one-time-use. Also actually we do not have a
way to develop a crossing signal and fanout gate that are essential to complete
a feedback full circuit operation.

Nevertheless the geometrical constraining brings some benefits as well. Most
computing circuits in Life-like automata are using very complex dynamics col-
lisions between gliders and still life [9, 31, 16]. In this case gliders are used only
to ‘ignite’ propagating patterns in the channels [4, 35].

Fig. 11. Simulating a radius 1
2

CA by an infinite (but periodic) cascade circuit.

Let us check how to exploit computations on one-time-use. We could employ
the known cascade circuits concept (see Fig. 11). The cascade circuit is a one
without feedback where each box contains a logic circuit that realizes a local
function of the CA, which is also a cascade one. Since it has a no feedback
because each logic gate is used only once. This way, an initial state of each cell
should be set at the position of t = 0.



These results are potentially useful in the search of control of big volume
on data in non-linear medium. Life-like rule B2/S2345 in this case is only an
example of how is possible controller data as a single bit value in a deterministic
version.

Also we will explore and develop more complex flows of data as were done
in reversible devices [19, 27]. You can see the problem to control chemical wave
propagation in reaction-diffusion computers [4] hence a competing pattern can
represent a fragment of each wave.

In future studies we are planning to implement the computing architecture
designed in the paper to manufacture experimental prototypes of precipitating
chemical computers; they will be based on crystallization of ‘hot ice’ [2].

Implementations and constructions are done with Golly system.8 Source con-
figurations and specific initial condition (RLE files) to reproduce these results
are available in ‘Life dc22’ home page.9

Acknowledgement

Genaro J. Mart́ınez was partially funded by Engineering and Physical Sciences
Research Council (EPSRC), United Kingdom, grant EP/F054343 and DGAPA
UNAM, Mexico. Kenichi Morita was partially funded by Grant-in-Aid for Sci-
entific Research (C) No. 21500015 from JSPS.

References

1. A. Adamatzky (Ed.): Collision-Based Computing, Springer (2002).
2. A. Adamatzky: Hot ice computer, Physics Letters A 374(2), 264–271 (2009).
3. A. Adamatzky (Ed.): Game of Life Cellular Automata, Springer (2010).
4. A. Adamatzky, B. L. Costello, T. Asai: Reaction-Diffusion Computers, Elsevier

(2005).
5. A. Adamatzky, G. J. Mart́ınez, J. C. Seck-Tuoh-Mora: Phenomenology of reaction-

diffusion binary-state cellular automata, Int. J. Bifurcation and Chaos 16(10), 1–21
(2006).

6. S. Adachi, F. Peper, J. Lee, H. Umeo: Occurrence of gliders in an infinite class of
Life-like cellular automata, Lecture Notes in Computer Science 5191, 32–41 (2008).

7. E. R. Banks: Information Processing and Transmission in Cellular Automata,
Ph.D. thesis Department of Mechanical Engineering, MIT (1971).

8. E. R. Berlekamp, J. H. Conway, R. K. Guy: Winning Ways for your Mathematical
Plays, Academic Press, (vol. 2, chapter 25) (1982).

9. P. Chapman: Life Universal Computer, http://www.igblan.free-online.co.uk/
igblan/ca/ (2002).

10. E. F. Codd: Cellular Automata, Academic Press (1968).
11. M. Cook: Still Life Theory, In [15], 93–118 (2003).
12. D. Eppstein: Growth and decay in Life-like cellular automata, arXiv:0911.2890v1

[nlin.CG], (2009).

8 http://golly.sourceforge.net/
9 http://uncomp.uwe.ac.uk/genaro/Life_dc22.html



13. M. Gardner: Mathematical Games — The fantastic combinations of John H. Con-
way’s new solitaire game Life, Scientific American 223, 120–123 (1970).

14. D. Griffeath, C. Moore: Life Without Death is P-complete, Complex Systems 10,
437–447 (1996).

15. D. Griffeath, C. Moore (Eds.): New constructions in cellular automata, Oxford
University Press (2003).

16. A. Goucher: Completed Universal Computer/Constructor (2009). In: http://

pentadecathlon.com/lifeNews/2009/08/post.html.
17. J. Gravner: Growth Phenomena in Cellular Automata, In [15], 161–181 (2003).
18. S. R. Hameroff: Ultimate Computing: Biomolecular Consciousness and Nanotech-

nology, Elsevier Science Publishers BV (1987).
19. K. Imai, K. Morita: A computation-universal two-dimensional 8-state triangular

reversible cellular automaton, Theoret. Comput. Sci. 231, 181–191 (2000).
20. G. J. Mart́ınez, A. Adamatzky, B. L. Costello: On logical gates in precipitating

medium: cellular automaton model, Physics Letters A 1(48), 1–5 (2008).
21. G. J. Mart́ınez, A. Adamatzky, H. V. McIntosh: Localization dynamic in a binary

two-dimensional cellular automaton: the Diffusion Rule, arXiv:0908.0828v1 [cs.FL],
2009.

22. G. J. Mart́ınez, A. Adamatzky, H. V. McIntosh, B. L. Costello: Computation by
competing patterns: Life rule B2/S2345678, In Automata 2008: Theory and Appli-
cations of Cellular Automata, Adamatzky, A. et. al (Eds.), Luniver Press (2008).

23. H. V. McIntosh: Life’s Still Lifes, http://delta.cs.cinvestav.mx/~mcintosh

(1988).
24. M. Minsky: Computation: Finite and Infinite Machines, Prentice Hall (1967).
25. M. Mitchell: Life and evolution in computers, History and Philosophy of the Life

Sciences 23, 361–383 (2001).
26. M. Magnier, C. Lattaud, J.-K. Heudin: Complexity Classes in the Two-dimensional

Life Cellular Automata Subspace, Complex Systems 11(6), 419–436 (1997).
27. K. Morita, M. Margenstern, K. Imai: Universality of reversible hexagonal cellular

automata, Theoret. Informatics Appl. 33, 535–550 (1999).
28. G. J. Mart́ınez, A. M. Méndez, M. M. Zambrano: Un subconjunto de autómata

celular con comportamiento complejo en dos dimensiones, http://uncomp.uwe.

ac.uk/genaro/Papers/Papers_on_CA.html (2005).
29. W. Porod, C. S. Lent, G. H. Bernstein, A. O. Orlov, I. Amlani, G. L. Snider, J.

L. Merz: Quantum-dot cellular automata: computing with coupled quantum dots,
Int. J. Electronics 86(5), 549–590 (1999).

30. N. Packard, S. Wolfram: Two-dimensional cellular automata, J. Statistical Physics
38, 901–946 (1985).

31. P. Rendell: Turing universality of the game of life, In [1], 513–540 (2002).
32. J. P. Rennard: Implementation of Logical Functions in the Game of Life, In [1],

491–512 (2002).
33. T. Toffoli: Non-Conventional Computers, Encyclopedia of Electrical and Electronics

Engineering (John Webster Ed.) 14, 455–471, Wiley & Sons, (1998).
34. J. von Neumann: Theory of Self-reproducing Automata (edited and completed by

A. W. Burks), University of Illinois Press, Urbana and London (1966).
35. R. Wainwright (Ed.): Lifeline - A Quaterly Newsletter for Enthusiasts of John

Conway’s Game of Life, Issues 1 to 11, March 1971 to September 1973.
36. K. Walus, G. Schulhof, R. Zhang, W. Wang, G. A. Jullien: Circuit design based on

majority gates for applications with quantum-dot cellular automata. In Proceedings
of IEEE Asilomar Conference on Signals, Systems, and Computers (2004).


