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ABSTRACT 
 

In recent years, powerful mathematical modeling languages have 

enabled Operational Research (OR) practitioners to rapidly develop 

prototype tools capable of modeling complex managerial decisions 

such as staff shift scheduling, or production & supply chain planning. 

However, such tools have often required expensive commercial 

optimisation solvers that are sometimes beyond the financial reach of 

small companies and organizations, particularly in the low-income 

and emerging economies. Fortunately, the world-wide scope of the 

internet has put powerful free optimization tools within the reach of 

anyone with a modest PC and even a slow internet connection. This 

article will present examples showing just how beneficial such an 

approach can be for resource-poor organizations.  
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OR in developing countries, spreadsheets. 
 

1. INTRODUCTION 

The application of Operational Research (OR) has the potential 

to radically enhance decision-making in organisations at the 

strategic, tactical and operational levels. To emphasize the 

importance of OR, the North American Institute for Operations 

Research and the Management Sciences (INFORMS), the 

Association of European OR Societies (EURO) and the British OR 
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Society have all been promoting OR to business and the public 

sector through the Science of Better joint publicity campaign. Its 

target audience, however, tends to be executives and managers 

in more developed economies rather than in low-income 

emerging economies or organisations that are poor in resources, 

for example, voluntary organisations. 

Emerging-economy countries differ a lot, from the 

technologically advanced (e.g., Brazil, Chile, India, China) to 

the relatively deprived (e.g., West Africa). Brazil & Chile have 

well-developed Information and Computing Technology (ICT) 

sectors, a strong OR presence with specialist university 

researchers, sophisticated OR projects in agro-business and 

industry [Taube 1996, Weintraub et al 2000], and reasonable 

access to state-of-the-art OR software. In contrast, the poorer 

emerging economies have less apparent demand for OR, a 

smaller OR presence with fewer university researchers, and 

correspondingly limited access to ICT. For such countries, 

specialist OR software is often too expensive to buy and there is 

usually little or no local technical support in the country. 

Thus the question can be asked: are there less costly (or even 

free) software tools for OR that resource-poor practitioners can 

take advantage of? To a surprising extent, the answer turns out 

to be “Yes” - particularly in the area of mathematical 

programming - as is now revealed. 

2. OPERATIONAL RESEARCH AND SPREADSHEETS 

Spreadsheets such as Microsoft Excel are a popular way of 

applying OR approaches and techniques [Martin 2000]. Their 

advantages include the power and breadth of functions for 

quantitative analysis, and their intuitive grid-like user interface 

with which users are familiar and comfortable. Spreadsheets are 

omnipresent, being widely-used in many organisations and 

schools, so that there is already a large knowledge base upon 

which to draw. In many organisations, the most well known 

spreadsheet, Excel, is often already available and installed on a 

personal computer, thus enhancing the transportability of 

spreadsheet models and  lowering (or even zeroing) the costs of 

its use. There are even free but lesser-known spreadsheets, such 

as OpenOffice’s Calc and also Gnumeric, both of which are 
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available on Windows and Linux. In addition, Google has 

introduced a web-based spreadsheet that can be simultaneously 

edited in real time by multiple users in different locations and 

stored online. Microsoft will soon follow suite via Office Live. 

Specifically for OR, spreadsheets offer a multitude of 

resources: dynamic recalculation and chart updating, statistical 

analysis, built-in optimisation algorithms (such as the Solver in 

Excel, Gnumeric and OpenOffice Calc), programming 

languages (such as Excel’s VBA), database connectivity, rapid 

application development with visual components, and specialist 

OR add-ins [Hillier, 2009]. As a result, much OR analysis can 

potentially be carried out with spreadsheets, for example, Monte 

Carlo simulation, decision trees, mixed integer and linear 

programming, non-linear optimisation, multi-criteria decision 

analysis [Taha 2008] and data envelopment analysis [Zhu 2008]. 

In addition, a well-structured spreadsheet model greatly aids 

sensitivity analysis [Markham and Palocsay 2006]. This 

capability has led to the concept end-user modelling [Powell 

1997, Grossmann 1997] whereby the decision maker directly 

constructs a model, without the help of an OR specialist, in order 

to perform analysis and obtain insight. 

However, spreadsheets have their limitations when applied 

to OR analysis. It is easy and tempting to quickly create obscure 

and unintelligible models. Spreadsheets cannot easily represent 

OR models that are complex, or change frequently. They are also 

too slow to analyse or optimise models with very large amounts 

of data. Calculation time is usually (much) slower than in 

specialist software and OR functionality is more limited. For 

example, Excel Solver can only handle relatively small 

optimisation models whose coefficient matrix has already been 

generated. 

Moreover, spreadsheets are notoriously prone to errors 

[Finlay & Wilson 2000, Caulkins et al 2007] which are 

frequently not obvious, creating a dangerous over-confidence in 

calculation results. Even if detected, errors hidden in 

spreadsheet formulas can be difficult to find. To overcome this, 

in-built programming languages, such as VBA, enable the 

automation of behind-the-worksheet processing and allow 

intermediate calculations to be hidden off-sheet enabling a 

clearer spreadsheet. VBA code can replace long formulas or 
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many cells, resulting in fewer errors and enabling more complex 

applications such as discrete event simulation [Elizandro and 

Taha 2007]. There is a VBA programme development and 

debugging facility within Excel, so that further development 

software is not needed. In addition, VBA allows Excel 

applications to be automatically integrated with Word and 

Powerpoint. 

However, VBA code is often neither obvious to understand 

nor transparent. The learning-curve is steep, slow, and easily 

forgotten. Certain mundane tasks are difficult, for example, it is 

complicated to read a text file word-by-word rather than line-by-

line as in VBA. As a result it is often cumbersome, limiting and 

time-consuming to build, modify and maintain a large error-free 

spreadsheet model. These quality and effort concerns argue 

against the use of spreadsheets in prototyping and implementing 

complex models. A faster, more flexible and less error-prone 

alternative for optimisation is the modelling language approach, 

described next. 

3. MODELLING LANGUAGES 

Algebraic modelling languages for optimisation overcome many 

of the disadvantages of spreadsheets for OR.  Model and data are 

specified quite separately, facilitating model development, 

prototyping, and maintenance.  Multi-dimensional index-based 

variables can be easily specified and modified.  Extra 

dimensions can quickly be added to variables and data, 

something that is very time-consuming and messy to do in a 

spreadsheet.  Most modelling languages can be linked to a 

variety of optimisation solvers, as we shall see below.  

Furthermore, it is straightforward to use both internal and 

external procedures to read in data from text files or databases, 

pre-process it in preparation for optimisation, and then output 

formatted results. Multiple models can co-exist simultaneously, 

so that output from one can be inputs to another, iteratively if 

need be. 

There are several such languages and systems, including 

AIMMS [aimms.com], GAMS [gams.com], XPRESS-MP 

[dashoptimization.com], OPL [ilog.com] and AMPL 

[ampl.com]. The rest of this paper focuses on AMPL (A 
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Mathematical Programming Language) which the author has 

used in a variety of projects. 

 

3.1 The AMPL modeling language 
 

An effective way to illustrate a modelling language is to use a 

simple example, albeit artificial. Consider a company that 

manufactures two products, Xyk and Yok, at its three plants in 

Arn, Bim and Cam. The following data is available: 
 

 Hours needed per batch Hours available 

Plant / Product Xyk Yok  
Arn 1 0 4 
Bim 0 2 12 
Cam 3 2 18 
Profit/batch $3,000 $5,000  

 

The problem of deciding how many Xyks and Yoks to produce 

with the objective of maximizing total profit can be formulated 

as a linear programme (LP) as follows: 
 

Decision Variables:  

x1  =  number of batches of Xyks produced 

x2  =  number of batches of Yoks produced 
 

Objective Function: 

Maximize 3x1 + 5x2    [total profit in $000s] 
 

Constraints: 

 x1           4 [Arn capacity] 

2x2    12 [Bim capacity] 

3x1  +   2x2    18 [Cam capacity] 

 x1,   x2   0 [non-negativity constraints] 
 

In AMPL (as in most modeling languages), data is separated 

from the model whereas they are missed together in the 

formulation above. Thus the AMPL model for the above 

formulation is generic: 
 

set Plants;   

set Products;  

 

param Avail {Plants}; 
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param UnitProfit {Products}; 

param Usage {Plants, Products}; 

 

var Amount {Products} >= 0; 

 

maximize Profit:  

  sum {j in Products} UnitProfit[j]*Amount[j]; 

 

subject to Capacity {i in Plants}: 

  sum {j in Products} Usage[i,j]*Amount[j]  

  <= Avail[i]; 

 

The model above declares the necessary indices (set), and then 

the indexed data structures (param) and decision variables 

(var). The LP’s objective function called Profit is declared, 

and specified accordingly. Take note of the sum function. 

Finally, a set of indexed constraints is declared, called 

Capacity is specified, making use of the sum function.  

Observe the complete absence of instance data in the AMPL 

model – it merely specifies the logical structure of the LP 

formulation. The model is supplied in a file on its own (named, 

for example, product.mod). The data is supplied separately in 

another file (named, for example, product.dat): 
 

data; 
 

set Plants := Arn Bim Cam; 

set Products := Xyk Yok; 
 

param Avail := 

Arn   4 

Bim   12 

Cam   18; 
 

param UnitProfit := Xyk 3  Yok 5; 
 

param Usage: Xyk Yok := 

Arn           1   0 

Bim           0   2 

Cam           3   2; 
   

The AMPL solution run commands are specified in a third file 

(called, for example, product.run): 
 

model product.mod;       # load model file 

data product.dat;        # load data file 

option solver cplex;     # use CPLEX to solve model 
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solve;                   # solve the model 

display Amount, Profit;  # display solution values 
 

Note that the run file loads model and data files, specifies that 

the solver to use is CPLEX [cplex.com], issues an instruction to 

solve the model, and finally displays the values of the decision 

variables Amount, and the resulting value of the objective 

function Profit. Any text after a # symbol is a comment 

(useful for annotating a file) and so ignored by the AMPL 

processor. 

AMPL (and many other mathematical programming 

languages) can interface with a variety of optimization solvers 

for problems of the following types: Linear (simplex, interior or 

network), Quadratic (simplex or interior), Nonlinear (various), 

and Mixed Integer-Continuous (linear or nonlinear). 

In Microsoft Windows, it is simple to execute the AMPL run 

file by first creating a batch file product.bat containing a 

single-line (ampl product.run > product.out), 

executing it and then examining the output file product.out. 

The run output for the above example is 
 

CPLEX 10.0.1: optimal solution; objective 36 

0 dual simplex iterations (0 in phase I) 
 

Amount [*] := Xyk 2  Yok 6; 

Profit = 36 

 

This output shows that an optimal solution was obtained with 

objective value $36,000 and the results outputted using the 

display command. 

 

3.2 Increasing the instance size  
 

To solve a larger instance with 5 plants and 6 products, the 

model file product.mod is used unchanged, but the data file 

product.dat must be edited: 
 

data; 

 

set Plants := Arn Bim Cam Dod Eam; 

 

set Products := Xyk Yok Mun Nen Pel Que; 

 

param Avail :=   
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Arn 4  Bim 12  Cam 18  Dod 30  Eam 40; 

 

param UnitProfit :=   

Xyk 3  Yok 5  Mun 2.4  Nen 1.2  Pel 3.5  Que 2.6; 
 

param Usage: Xyk Yok Mun Nen Pel Que := 

Arn           1   0   0  1.5  0  1.5 

Bim           0   2   0  1.6 2.1  0 

Cam           0  2.1  2  1.3  2   0 

Dod           0   2  2.1 0.8  2   0 

Eam          1.1  0  2.2 0.7 1.9  0; 

 

The new instance resulted in the following output: 
 

CPLEX 10.0.1: optimal solution; objective 48.48 

2 dual simplex iterations (1 in phase I) 
 

Amount [*] :=   

Pel 0  Nen 0  Que 0  Xyk 4  Mun 2.7 Yok 6; 

Profit = 48.48 
 

Note that the number of Mun batches produced is fractional at 

2.7. 

 

3.3 Integer variables 
 

To impose integer production values, the keyword integer is 

inserted in the variable declaration in the model file: 
 

var Amount {Products} integer >= 0; 
 

resulting in an integer solution and a less profitable objective 

value of $46,800: 
 

CPLEX 10.0.1: optimal integer solution;  

objective 46.8  

2 MIP simplex iterations     

0 branch-and-bound nodes 
 

Amount [*] :=   

Pel 0  Nen 0  Que 0  Xyk 4  Mun 2  Yok 6; 

Profit = 46.8 
 

 

3.4 A more complex example 
 

This example uses two linked linear programmes (LP) to apply 

critical path analysis to a project with 26 activities (A-Z). Many 

readers will know that the use of LP is overkill for this purpose, 
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but the LPs are readily understandable and serve nicely to 

illustrate more advanced features of modelling languages. 

To calculate the Earliest Start Times (ESTs) of the activities 

and thus the project’s shortest possible duration, a minimising 

LP is solved. To calculate the Latest Start Times (LSTs) of the 

activities, and thus identify the project’s critical path, a 

maximizing LP is solved, using as input the project duration that 

was output by the first LP.  

In AMPL, this is achieved as follows. The model file EST-

LST.mod is: 
 

var ActivityStartTime {i in Activities} >= 0;    

# (earliest/latest) start time of activity i 
 

minimize Minimize_Start_Times: 

  sum {i in Activities} ActivityStartTime[i]; 

 

maximize Maximize_Start_Times: 

  sum {i in Activities} ActivityStartTime[i]; 
 

subject to Activity_Precedence_Constraints 

  {i in Activities, j in Activities : j in P[i]}: 

     ActivityStartTime[i]  

     >= ActivityStartTime[j] + d[j]; 

 

subject to Fix_Project_Duration: 

    ActivityStartTime["End"] = EST["End"]; 
 

Observe that two objective functions have been declared and 

specified. Note also that the set Activities has not 

(apparently) been declared, nor has the parameter P. In fact, both 

are declared in the run file:  
 

option solver cplex; option show_stats 1; 

option cplex_options 'timing=1 mipdisplay=1'; 
 

set Activities;  

param d {Activities} >= 0 integer;   

                      # Duration of activity 

set P {Activities} within Activities;   

                      # Predecessor activities 

# Activity Earliest & Latest Start Times: 

param EST {Activities} >= 0;   

param LST {Activities} >= 0;   

 

model EST-LST.mod; 

data  Project.dat; 
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problem Find_ESTs: ActivityStartTime, 

Minimize_Start_Times,  

Activity_Precedence_Constraints;  
 

problem Find_LSTs: ActivityStartTime, 

Maximize_Start_Times,  

Activity_Precedence_Constraints, 

Fix_Project_Duration;  
 

problem Find_ESTs; solve; 

 

let {i in Activities} EST[i] := 

ActivityStartTime[i]; 
 

printf "\nProject duration = %d days\n", 

EST["End"];  

printf "\nEarliest Activity Start Times "; 

display EST;    
 

problem Find_LSTs; solve; 
 

let {i in Activities} LST[i] := 

ActivityStartTime[i]; 

printf "\nLatest Activity Start Times "; 

display LST;    
 

This run file illustrates several powerful features of AMPL. Note 

the 

 show_stats option with value 1; 

 cplex timing and display options, both with value 1; 

 declaration and definition of two distinct problems (with 

names Find_ESTs and Find_LSTs) by specifying the 

objective function and constraints associated with each 

problem; 

 the activation, solving and output of the solution of problem 

Find_ESTs; 

 the activation and solving of problem Find_LST, using the 

value of EST["End"] output by the solution of problem 

Find_ESTs; 

 the output of the solution of problem Find_LSTs. 

 

The data file Project.dat is: 
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data; 

 

set Activities := A B C … Z End; 

 

param d :=  A 10  B 1  C 1  …  Z 1; 

 

set P[A] := ; set P[B] := A; 

set P[C] := ; set P[D] := C; 

… 

set P[End] := B J Z; 

 

The solution output is: 
 

27 variables, all linear 

26 constraints, all linear; 52 nonzeros 

1 linear objective; 27 nonzeros. 

 

CPLEX 11.0.0:  timing=1 mipdisplay=1 

 

Times (seconds): 

Input = 0.165  Solve = 0.047  Output = 0.01 

CPLEX 11.0.0: optimal solution; objective 245 

6 dual simplex iterations (2 in phase I) 

 

Project duration = 22 days 

 

Earliest Activity Start Times EST [*] := 

A 0  D 1  F 3  I 14  L 1  O 4  R 10  U 14  X 19 

B 10  E 2  G 5  J 15  M 2  P 8  S 11  V 15  Y 20 

C 0 End 22  H 6  K 0  N 3  Q 9  T 12  W 18  Z 21 
 

Presolve eliminates 23 constraints and 17 

variables. 

Adjusted problem: 

10 variables, all linear 

8 constraints, all linear; 16 nonzeros 

1 linear objective; 10 nonzeros. 
 

CPLEX 11.0.0:  timing=1  mipdisplay=1 
 

Times (seconds):  

Input = 0.024  Solve = 0.001  Output = 0.009 

CPLEX 11.0.0: optimal solution; objective 309 

4 dual simplex iterations (2 in phase I) 

 

Latest Activity Start Times LST [*] := 

A 11  D 5  F 7  I 20  L 1  O 4  R 10  U 14  X 19 

B 21  E 6  G 12  J 21  M 2  P 8  S 11  V 15  Y 20 

C 4 End 22  H 13  K 0  N 3  Q 9  T 12  W 18  Z 21; 

 



12 

 

The activity floats (and hence the critical activities) can now be 

output with a few more lines of AMPL code: 

 
param Float {Activities} >= 0; 

for {i in Activities} { 

  let Float[i] := LST[i] - EST[i]; 

  printf "Float(%s) = %d \n", i, Float[i]; 

}; 

 

giving: 

 
Float(A) = 11 

… 

Float(Z) = 0  

Float(End) = 0 

 

Note just above that data and solution values can be formatted as 

wished using C-like syntax.  The values also exported within 

AMPL to a text file with an .xls extension that tricks Excel into 

reading it and then splitting tab-separated values into different 

columns. 
 
 

3.5 How to do it for free 
 

The free student version of AMPL (available at ampl.com), can 

handle up to 300 variables and 300 constraints. Any attempt to 

run a model instance that exceeds these limits will result in an 

error message such as:  
 

Sorry, the student edition is limited to 300 

variables and 300 constraints and objectives (after 

presolve). You have 656 variables, 332 constraints, 

and 1 objective. 
 

The full unlimited version of AMPL is not cheap [although there 

are academic discounts for research and teaching], but there are 

free (legal) ways to get around this, as shown in the next 

sections, and in a 2005 review of non-commercial software for 

Mixed-Integer Linear Programming [Linderoth & Ralphs 2005]. 
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3.6 GNU Linear Programming Kit 
 

The GNU Linear Programming Kit (GLPK) 

[gnu.org/software/glpk] is free (and legal). It contains the 

MathProg language (a subset of AMPL) and the GLPSol solver 

which is much slower than CPLEX;   It is in fact  a set of routines 

organized into a callable library within the C programming 

language, but MathProg and GLPSol can be used alone without 

using C. 

 

3.7 The NEOS Server 
 

The NEOS server [Czyzyk et al 1998, www-neos.mcs.anl.gov,] is 

open and free to the public for the optimization of large models 

within certain time or solver-dependent iteration limits. A user 

submits online a model specified in one of the input formats 

accepted by a solver (such as AMPL), a data set and a run file as 

shown in Figure 1. 

 
 

 

Figure 1:  Example of a NEOS input screen. 

 

 

The output appears on the screen (eventually) and, more 

reliably, is also emailed to you.  The NEOS server is very useful 

not just for research, teaching, and student coursework, but also 

prototyping if you work in an organization that does not have 

access to the commercial version of AMPL and its default (and 

excellent) solver CPLEX. The NEOS server offers a huge variety 
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of solvers, but not all take input from AMPL. One which does is 

MINTO [coral.ie.lehigh.edu/minto], but it is slower than 

CPLEX. 

Clark and Walker (2008) used both CPLEX 11.0 and MINTO to 

solve an integer linear programme that allocates 20 nurses to 26 

pre-selected shift patterns to provide cover for three shifts a day 

over 28-day. CPLEX 11.0 took 0.23 seconds to find an optimal 

zero-valued solution, i.e., all 20 nurses’ shifts fitted 

requirements exactly with no shortages or surpluses.  The MINTO 

solver on the NEOS server took only a little longer at 1.62 

seconds. Under tighter conditions that require cover by an extra 

nurse in each shift, CPLEX took 33 seconds to an optimal non-

zero-valued solution as a schedule.  Imposing a maximum 

solution time of 10 minutes, MINTO used up all this time, 

finishing with a solution that was within 17% of optimality. 

Table 1 shows the results obtained when scaling up the problem 

size under tight conditions. Observe that a quality commercial 

solver such as CPLEX can give near-optimal solutions for large 

realistically-sized instances, while MINTO on the NEOS server 

clearly struggles and would require alternative solution methods 

or decomposition into smaller problems.   

 

 
Scheduling Problem 

Instance 

CPLEX 11.0 (full 

version) 

MINTO on the NEOS 

server 

Weeks Nurses CPU 

Time 

Gap CPU 

Time 

Gap 

4 30 174 sec Optimal 10 mi 7.6% 

6 20 229 sec Optimal 10 min 6.3% 

8 20 10 min 0.01% 10 min 15% 

4 40 10 min 3% 10 min Infeasible 

Table 1: Results after scaling up under tight conditions 

     
 

3.6 COIN-OR 
 

After prototyping a linear programming model, a free 

operational version can be implemented that relies neither on 

commercial software nor the NEOS server, yet can easily take 

advantage of commercial solvers (such as CPLEX), if available. 
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This is achieved by using the open-source solver CLP of the 

Computational Infrastructure for Operations Research (COIN-OR) 

project [coin-or.org], an initiative to spur the development of 

open-source software for the OR community.  The development 

effort in the C programming language, can be substantial as the 

CLP model data have to be jointly specified element by element 

in the unfriendly MPS format, a time-consuming task requiring 

detailed attention. Thus CLP is not suitable for prototyping, but 

rather for stable models.  

 COIN-OR also includes many other optimisation tools. 

including the CBC branch-&-cut solver that is available as a 

library or standalone solver, as well as on NEOS, using MPS or 

AMPL input. 

 

4. CONCLUSION 

This article has shown that sophisticated decision-making 

technology is available to persons and organisations worldwide 

without having to purchase expensive optimisation software. 

The use of such technology often involves the judicious 

combination of tools from disparate sources, but usually not in 

the seamless manner that a lay-user desires. It does requires 

competence, confidence and patience in the use of the internet, a 

little command-line programming, and text file editing, being 

qualities possessed by most technically competent persons. 
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