
1

Mathematical Programming Modelling Tools

for Resource-Poor Countries and Organisations
1

Alistair Clark

Bristol Institute of Technology,

University of the West of England,

Bristol, BS16 1QY, England.

tel: +44 (0) 117 328 3134, fax: +44 (0) 117 328 3002

Alistair.Clark@uwe.ac.uk

ABSTRACT

In recent years, powerful mathematical modeling languages have

enabled Operational Research (OR) practitioners to rapidly develop

prototype tools capable of modeling complex managerial decisions

such as staff shift scheduling, or production & supply chain planning.

However, such tools have often required expensive commercial

optimisation solvers that are sometimes beyond the financial reach of

small companies and organizations, particularly in the low-income

and emerging economies. Fortunately, the world-wide scope of the

internet has put powerful free optimization tools within the reach of

anyone with a modest PC and even a slow internet connection. This

article will present examples showing just how beneficial such an

approach can be for resource-poor organizations.

Key words: Modelling languages, mathematical programming,

OR in developing countries, spreadsheets.

1. INTRODUCTION

The application of Operational Research (OR) has the potential

to radically enhance decision-making in organisations at the

strategic, tactical and operational levels. To emphasize the

importance of OR, the North American Institute for Operations

Research and the Management Sciences (INFORMS), the

Association of European OR Societies (EURO) and the British OR

1 This paper is an expanded and revised version of a shorter article originally
published as: Alistair Clark, 2007, Free modelling languages for linear and
integer programming, MSOR Connections, vol. 7, no. 3, pp 31-35.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UWE Bristol Research Repository

https://core.ac.uk/display/323898303?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Society have all been promoting OR to business and the public

sector through the Science of Better joint publicity campaign. Its

target audience, however, tends to be executives and managers

in more developed economies rather than in low-income

emerging economies or organisations that are poor in resources,

for example, voluntary organisations.

Emerging-economy countries differ a lot, from the

technologically advanced (e.g., Brazil, Chile, India, China) to

the relatively deprived (e.g., West Africa). Brazil & Chile have

well-developed Information and Computing Technology (ICT)

sectors, a strong OR presence with specialist university

researchers, sophisticated OR projects in agro-business and

industry [Taube 1996, Weintraub et al 2000], and reasonable

access to state-of-the-art OR software. In contrast, the poorer

emerging economies have less apparent demand for OR, a

smaller OR presence with fewer university researchers, and

correspondingly limited access to ICT. For such countries,

specialist OR software is often too expensive to buy and there is

usually little or no local technical support in the country.

Thus the question can be asked: are there less costly (or even

free) software tools for OR that resource-poor practitioners can

take advantage of? To a surprising extent, the answer turns out

to be “Yes” - particularly in the area of mathematical

programming - as is now revealed.

2. OPERATIONAL RESEARCH AND SPREADSHEETS

Spreadsheets such as Microsoft Excel are a popular way of

applying OR approaches and techniques [Martin 2000]. Their

advantages include the power and breadth of functions for

quantitative analysis, and their intuitive grid-like user interface

with which users are familiar and comfortable. Spreadsheets are

omnipresent, being widely-used in many organisations and

schools, so that there is already a large knowledge base upon

which to draw. In many organisations, the most well known

spreadsheet, Excel, is often already available and installed on a

personal computer, thus enhancing the transportability of

spreadsheet models and lowering (or even zeroing) the costs of

its use. There are even free but lesser-known spreadsheets, such

as OpenOffice’s Calc and also Gnumeric, both of which are

3

available on Windows and Linux. In addition, Google has

introduced a web-based spreadsheet that can be simultaneously

edited in real time by multiple users in different locations and

stored online. Microsoft will soon follow suite via Office Live.

Specifically for OR, spreadsheets offer a multitude of

resources: dynamic recalculation and chart updating, statistical

analysis, built-in optimisation algorithms (such as the Solver in

Excel, Gnumeric and OpenOffice Calc), programming

languages (such as Excel’s VBA), database connectivity, rapid

application development with visual components, and specialist

OR add-ins [Hillier, 2009]. As a result, much OR analysis can

potentially be carried out with spreadsheets, for example, Monte

Carlo simulation, decision trees, mixed integer and linear

programming, non-linear optimisation, multi-criteria decision

analysis [Taha 2008] and data envelopment analysis [Zhu 2008].

In addition, a well-structured spreadsheet model greatly aids

sensitivity analysis [Markham and Palocsay 2006]. This

capability has led to the concept end-user modelling [Powell

1997, Grossmann 1997] whereby the decision maker directly

constructs a model, without the help of an OR specialist, in order

to perform analysis and obtain insight.

However, spreadsheets have their limitations when applied

to OR analysis. It is easy and tempting to quickly create obscure

and unintelligible models. Spreadsheets cannot easily represent

OR models that are complex, or change frequently. They are also

too slow to analyse or optimise models with very large amounts

of data. Calculation time is usually (much) slower than in

specialist software and OR functionality is more limited. For

example, Excel Solver can only handle relatively small

optimisation models whose coefficient matrix has already been

generated.

Moreover, spreadsheets are notoriously prone to errors

[Finlay & Wilson 2000, Caulkins et al 2007] which are

frequently not obvious, creating a dangerous over-confidence in

calculation results. Even if detected, errors hidden in

spreadsheet formulas can be difficult to find. To overcome this,

in-built programming languages, such as VBA, enable the

automation of behind-the-worksheet processing and allow

intermediate calculations to be hidden off-sheet enabling a

clearer spreadsheet. VBA code can replace long formulas or

4

many cells, resulting in fewer errors and enabling more complex

applications such as discrete event simulation [Elizandro and

Taha 2007]. There is a VBA programme development and

debugging facility within Excel, so that further development

software is not needed. In addition, VBA allows Excel

applications to be automatically integrated with Word and

Powerpoint.

However, VBA code is often neither obvious to understand

nor transparent. The learning-curve is steep, slow, and easily

forgotten. Certain mundane tasks are difficult, for example, it is

complicated to read a text file word-by-word rather than line-by-

line as in VBA. As a result it is often cumbersome, limiting and

time-consuming to build, modify and maintain a large error-free

spreadsheet model. These quality and effort concerns argue

against the use of spreadsheets in prototyping and implementing

complex models. A faster, more flexible and less error-prone

alternative for optimisation is the modelling language approach,

described next.

3. MODELLING LANGUAGES

Algebraic modelling languages for optimisation overcome many

of the disadvantages of spreadsheets for OR. Model and data are

specified quite separately, facilitating model development,

prototyping, and maintenance. Multi-dimensional index-based

variables can be easily specified and modified. Extra

dimensions can quickly be added to variables and data,

something that is very time-consuming and messy to do in a

spreadsheet. Most modelling languages can be linked to a

variety of optimisation solvers, as we shall see below.

Furthermore, it is straightforward to use both internal and

external procedures to read in data from text files or databases,

pre-process it in preparation for optimisation, and then output

formatted results. Multiple models can co-exist simultaneously,

so that output from one can be inputs to another, iteratively if

need be.

There are several such languages and systems, including

AIMMS [aimms.com], GAMS [gams.com], XPRESS-MP

[dashoptimization.com], OPL [ilog.com] and AMPL

[ampl.com]. The rest of this paper focuses on AMPL (A

5

Mathematical Programming Language) which the author has

used in a variety of projects.

3.1 The AMPL modeling language

An effective way to illustrate a modelling language is to use a

simple example, albeit artificial. Consider a company that

manufactures two products, Xyk and Yok, at its three plants in

Arn, Bim and Cam. The following data is available:

 Hours needed per batch Hours available

Plant / Product Xyk Yok
Arn 1 0 4
Bim 0 2 12
Cam 3 2 18
Profit/batch $3,000 $5,000

The problem of deciding how many Xyks and Yoks to produce

with the objective of maximizing total profit can be formulated

as a linear programme (LP) as follows:

Decision Variables:

x1 = number of batches of Xyks produced

x2 = number of batches of Yoks produced

Objective Function:

Maximize 3x1 + 5x2 [total profit in $000s]

Constraints:

 x1  4 [Arn capacity]

2x2  12 [Bim capacity]

3x1 + 2x2  18 [Cam capacity]

 x1, x2  0 [non-negativity constraints]

In AMPL (as in most modeling languages), data is separated

from the model whereas they are missed together in the

formulation above. Thus the AMPL model for the above

formulation is generic:

set Plants;

set Products;

param Avail {Plants};

6

param UnitProfit {Products};

param Usage {Plants, Products};

var Amount {Products} >= 0;

maximize Profit:

 sum {j in Products} UnitProfit[j]*Amount[j];

subject to Capacity {i in Plants}:

 sum {j in Products} Usage[i,j]*Amount[j]

 <= Avail[i];

The model above declares the necessary indices (set), and then

the indexed data structures (param) and decision variables

(var). The LP’s objective function called Profit is declared,

and specified accordingly. Take note of the sum function.

Finally, a set of indexed constraints is declared, called

Capacity is specified, making use of the sum function.

Observe the complete absence of instance data in the AMPL

model – it merely specifies the logical structure of the LP

formulation. The model is supplied in a file on its own (named,

for example, product.mod). The data is supplied separately in

another file (named, for example, product.dat):

data;

set Plants := Arn Bim Cam;

set Products := Xyk Yok;

param Avail :=

Arn 4

Bim 12

Cam 18;

param UnitProfit := Xyk 3 Yok 5;

param Usage: Xyk Yok :=

Arn 1 0

Bim 0 2

Cam 3 2;

The AMPL solution run commands are specified in a third file

(called, for example, product.run):

model product.mod; # load model file

data product.dat; # load data file

option solver cplex; # use CPLEX to solve model

7

solve; # solve the model

display Amount, Profit; # display solution values

Note that the run file loads model and data files, specifies that

the solver to use is CPLEX [cplex.com], issues an instruction to

solve the model, and finally displays the values of the decision

variables Amount, and the resulting value of the objective

function Profit. Any text after a # symbol is a comment

(useful for annotating a file) and so ignored by the AMPL

processor.

AMPL (and many other mathematical programming

languages) can interface with a variety of optimization solvers

for problems of the following types: Linear (simplex, interior or

network), Quadratic (simplex or interior), Nonlinear (various),

and Mixed Integer-Continuous (linear or nonlinear).

In Microsoft Windows, it is simple to execute the AMPL run

file by first creating a batch file product.bat containing a

single-line (ampl product.run > product.out),

executing it and then examining the output file product.out.

The run output for the above example is

CPLEX 10.0.1: optimal solution; objective 36

0 dual simplex iterations (0 in phase I)

Amount [*] := Xyk 2 Yok 6;

Profit = 36

This output shows that an optimal solution was obtained with

objective value $36,000 and the results outputted using the

display command.

3.2 Increasing the instance size

To solve a larger instance with 5 plants and 6 products, the

model file product.mod is used unchanged, but the data file

product.dat must be edited:

data;

set Plants := Arn Bim Cam Dod Eam;

set Products := Xyk Yok Mun Nen Pel Que;

param Avail :=

8

Arn 4 Bim 12 Cam 18 Dod 30 Eam 40;

param UnitProfit :=

Xyk 3 Yok 5 Mun 2.4 Nen 1.2 Pel 3.5 Que 2.6;

param Usage: Xyk Yok Mun Nen Pel Que :=

Arn 1 0 0 1.5 0 1.5

Bim 0 2 0 1.6 2.1 0

Cam 0 2.1 2 1.3 2 0

Dod 0 2 2.1 0.8 2 0

Eam 1.1 0 2.2 0.7 1.9 0;

The new instance resulted in the following output:

CPLEX 10.0.1: optimal solution; objective 48.48

2 dual simplex iterations (1 in phase I)

Amount [*] :=

Pel 0 Nen 0 Que 0 Xyk 4 Mun 2.7 Yok 6;

Profit = 48.48

Note that the number of Mun batches produced is fractional at

2.7.

3.3 Integer variables

To impose integer production values, the keyword integer is

inserted in the variable declaration in the model file:

var Amount {Products} integer >= 0;

resulting in an integer solution and a less profitable objective

value of $46,800:

CPLEX 10.0.1: optimal integer solution;

objective 46.8

2 MIP simplex iterations

0 branch-and-bound nodes

Amount [*] :=

Pel 0 Nen 0 Que 0 Xyk 4 Mun 2 Yok 6;

Profit = 46.8

3.4 A more complex example

This example uses two linked linear programmes (LP) to apply

critical path analysis to a project with 26 activities (A-Z). Many

readers will know that the use of LP is overkill for this purpose,

9

but the LPs are readily understandable and serve nicely to

illustrate more advanced features of modelling languages.

To calculate the Earliest Start Times (ESTs) of the activities

and thus the project’s shortest possible duration, a minimising

LP is solved. To calculate the Latest Start Times (LSTs) of the

activities, and thus identify the project’s critical path, a

maximizing LP is solved, using as input the project duration that

was output by the first LP.

In AMPL, this is achieved as follows. The model file EST-

LST.mod is:

var ActivityStartTime {i in Activities} >= 0;

(earliest/latest) start time of activity i

minimize Minimize_Start_Times:

 sum {i in Activities} ActivityStartTime[i];

maximize Maximize_Start_Times:

 sum {i in Activities} ActivityStartTime[i];

subject to Activity_Precedence_Constraints

 {i in Activities, j in Activities : j in P[i]}:

 ActivityStartTime[i]

 >= ActivityStartTime[j] + d[j];

subject to Fix_Project_Duration:

 ActivityStartTime["End"] = EST["End"];

Observe that two objective functions have been declared and

specified. Note also that the set Activities has not

(apparently) been declared, nor has the parameter P. In fact, both

are declared in the run file:

option solver cplex; option show_stats 1;

option cplex_options 'timing=1 mipdisplay=1';

set Activities;

param d {Activities} >= 0 integer;

 # Duration of activity

set P {Activities} within Activities;

 # Predecessor activities

Activity Earliest & Latest Start Times:

param EST {Activities} >= 0;

param LST {Activities} >= 0;

model EST-LST.mod;

data Project.dat;

10

problem Find_ESTs: ActivityStartTime,

Minimize_Start_Times,

Activity_Precedence_Constraints;

problem Find_LSTs: ActivityStartTime,

Maximize_Start_Times,

Activity_Precedence_Constraints,

Fix_Project_Duration;

problem Find_ESTs; solve;

let {i in Activities} EST[i] :=

ActivityStartTime[i];

printf "\nProject duration = %d days\n",

EST["End"];

printf "\nEarliest Activity Start Times ";

display EST;

problem Find_LSTs; solve;

let {i in Activities} LST[i] :=

ActivityStartTime[i];

printf "\nLatest Activity Start Times ";

display LST;

This run file illustrates several powerful features of AMPL. Note

the

 show_stats option with value 1;

 cplex timing and display options, both with value 1;

 declaration and definition of two distinct problems (with

names Find_ESTs and Find_LSTs) by specifying the

objective function and constraints associated with each

problem;

 the activation, solving and output of the solution of problem

Find_ESTs;

 the activation and solving of problem Find_LST, using the

value of EST["End"] output by the solution of problem

Find_ESTs;

 the output of the solution of problem Find_LSTs.

The data file Project.dat is:

11

data;

set Activities := A B C … Z End;

param d := A 10 B 1 C 1 … Z 1;

set P[A] := ; set P[B] := A;

set P[C] := ; set P[D] := C;

…

set P[End] := B J Z;

The solution output is:

27 variables, all linear

26 constraints, all linear; 52 nonzeros

1 linear objective; 27 nonzeros.

CPLEX 11.0.0: timing=1 mipdisplay=1

Times (seconds):

Input = 0.165 Solve = 0.047 Output = 0.01

CPLEX 11.0.0: optimal solution; objective 245

6 dual simplex iterations (2 in phase I)

Project duration = 22 days

Earliest Activity Start Times EST [*] :=

A 0 D 1 F 3 I 14 L 1 O 4 R 10 U 14 X 19

B 10 E 2 G 5 J 15 M 2 P 8 S 11 V 15 Y 20

C 0 End 22 H 6 K 0 N 3 Q 9 T 12 W 18 Z 21

Presolve eliminates 23 constraints and 17

variables.

Adjusted problem:

10 variables, all linear

8 constraints, all linear; 16 nonzeros

1 linear objective; 10 nonzeros.

CPLEX 11.0.0: timing=1 mipdisplay=1

Times (seconds):

Input = 0.024 Solve = 0.001 Output = 0.009

CPLEX 11.0.0: optimal solution; objective 309

4 dual simplex iterations (2 in phase I)

Latest Activity Start Times LST [*] :=

A 11 D 5 F 7 I 20 L 1 O 4 R 10 U 14 X 19

B 21 E 6 G 12 J 21 M 2 P 8 S 11 V 15 Y 20

C 4 End 22 H 13 K 0 N 3 Q 9 T 12 W 18 Z 21;

12

The activity floats (and hence the critical activities) can now be

output with a few more lines of AMPL code:

param Float {Activities} >= 0;

for {i in Activities} {

 let Float[i] := LST[i] - EST[i];

 printf "Float(%s) = %d \n", i, Float[i];

};

giving:

Float(A) = 11

…

Float(Z) = 0

Float(End) = 0

Note just above that data and solution values can be formatted as

wished using C-like syntax. The values also exported within

AMPL to a text file with an .xls extension that tricks Excel into

reading it and then splitting tab-separated values into different

columns.

3.5 How to do it for free

The free student version of AMPL (available at ampl.com), can

handle up to 300 variables and 300 constraints. Any attempt to

run a model instance that exceeds these limits will result in an

error message such as:

Sorry, the student edition is limited to 300

variables and 300 constraints and objectives (after

presolve). You have 656 variables, 332 constraints,

and 1 objective.

The full unlimited version of AMPL is not cheap [although there

are academic discounts for research and teaching], but there are

free (legal) ways to get around this, as shown in the next

sections, and in a 2005 review of non-commercial software for

Mixed-Integer Linear Programming [Linderoth & Ralphs 2005].

13

3.6 GNU Linear Programming Kit

The GNU Linear Programming Kit (GLPK)

[gnu.org/software/glpk] is free (and legal). It contains the

MathProg language (a subset of AMPL) and the GLPSol solver

which is much slower than CPLEX; It is in fact a set of routines

organized into a callable library within the C programming

language, but MathProg and GLPSol can be used alone without

using C.

3.7 The NEOS Server

The NEOS server [Czyzyk et al 1998, www-neos.mcs.anl.gov,] is

open and free to the public for the optimization of large models

within certain time or solver-dependent iteration limits. A user

submits online a model specified in one of the input formats

accepted by a solver (such as AMPL), a data set and a run file as

shown in Figure 1.

Figure 1: Example of a NEOS input screen.

The output appears on the screen (eventually) and, more

reliably, is also emailed to you. The NEOS server is very useful

not just for research, teaching, and student coursework, but also

prototyping if you work in an organization that does not have

access to the commercial version of AMPL and its default (and

excellent) solver CPLEX. The NEOS server offers a huge variety

14

of solvers, but not all take input from AMPL. One which does is

MINTO [coral.ie.lehigh.edu/minto], but it is slower than

CPLEX.

Clark and Walker (2008) used both CPLEX 11.0 and MINTO to

solve an integer linear programme that allocates 20 nurses to 26

pre-selected shift patterns to provide cover for three shifts a day

over 28-day. CPLEX 11.0 took 0.23 seconds to find an optimal

zero-valued solution, i.e., all 20 nurses’ shifts fitted

requirements exactly with no shortages or surpluses. The MINTO

solver on the NEOS server took only a little longer at 1.62

seconds. Under tighter conditions that require cover by an extra

nurse in each shift, CPLEX took 33 seconds to an optimal non-

zero-valued solution as a schedule. Imposing a maximum

solution time of 10 minutes, MINTO used up all this time,

finishing with a solution that was within 17% of optimality.

Table 1 shows the results obtained when scaling up the problem

size under tight conditions. Observe that a quality commercial

solver such as CPLEX can give near-optimal solutions for large

realistically-sized instances, while MINTO on the NEOS server

clearly struggles and would require alternative solution methods

or decomposition into smaller problems.

Scheduling Problem

Instance

CPLEX 11.0 (full

version)

MINTO on the NEOS

server

Weeks Nurses CPU

Time

Gap CPU

Time

Gap

4 30 174 sec Optimal 10 mi 7.6%

6 20 229 sec Optimal 10 min 6.3%

8 20 10 min 0.01% 10 min 15%

4 40 10 min 3% 10 min Infeasible

Table 1: Results after scaling up under tight conditions

3.6 COIN-OR

After prototyping a linear programming model, a free

operational version can be implemented that relies neither on

commercial software nor the NEOS server, yet can easily take

advantage of commercial solvers (such as CPLEX), if available.

15

This is achieved by using the open-source solver CLP of the

Computational Infrastructure for Operations Research (COIN-OR)

project [coin-or.org], an initiative to spur the development of

open-source software for the OR community. The development

effort in the C programming language, can be substantial as the

CLP model data have to be jointly specified element by element

in the unfriendly MPS format, a time-consuming task requiring

detailed attention. Thus CLP is not suitable for prototyping, but

rather for stable models.

 COIN-OR also includes many other optimisation tools.

including the CBC branch-&-cut solver that is available as a

library or standalone solver, as well as on NEOS, using MPS or

AMPL input.

4. CONCLUSION

This article has shown that sophisticated decision-making

technology is available to persons and organisations worldwide

without having to purchase expensive optimisation software.

The use of such technology often involves the judicious

combination of tools from disparate sources, but usually not in

the seamless manner that a lay-user desires. It does requires

competence, confidence and patience in the use of the internet, a

little command-line programming, and text file editing, being

qualities possessed by most technically competent persons.

5. REFERENCES

Caulkins J P, Morrison E L, Weidemann T (2007). Spreadsheet

Errors and Decision Making: Evidence from Field Interviews.

Journal of Organizational and End User Computing, 19: 1-23.

Clark A R, Walker H (2008). Nurse Rescheduling, 18th

Triennial Conference of the International Federation of

Operational Research Societies, Johannesburg. 13-18 July 2008.

Available online at http://tinyurl.com/ojhm3e.

Czyzyk J, Mesnier M, Moré J (1998). The NEOS Server. IEEE

Journal on Computational Science and Engineering 5: 68-75.

16

Elizandro D , Taha H (2007). Simulation of Industrial Systems:

Discrete Event Simulation Using Excel/VBA. Auerbach

Publications.

Finlay P N, Wilson J M (2000). A survey of contingency factors

affecting the validation of end-user spreadsheet-based decision

support systems. Journal of the Operational Research Society

51: 949-958.

Grossman T A (1997). End-user modeling. OR/MS Today,

24(5).

Hillier F A (2009). Introduction to Operations Research. 9
th

 ed.,

McGraw-Hill.

Linderoth J T, Ralphs T K (2005). Noncommercial Software for

Mixed-Integer Linear Programming. In Integer Programming:

Theory and Practice. John Karlof (ed), CRC Press Operations

Research Series. pp 253-303.

Markham I S, Palocsay S W (2006). Scenario Analysis in

Spreadsheets with Excel's Scenario Tool, Informs Transactions

on Education. 6(2), 23-31. Available online at

http://ite.pubs.informs.org/.

Martin A (2000). An integrated introduction to spreadsheet and

programming skills for operational research students. Journal of

the Operational Research Society 51:1399-1408.

Powell S G (1997). End-user modeling. OR/MS Today, 24(4).

Taha H A (2008). Operations Research: An Introduction.

Pearson,

Taube M (1996). Integrated Planning for Poultry Production at

Sadia. Interfaces, 26: 38-53.

Zhu J (2008). Quantitative Models for Performance Evaluation

and Benchmarking - Data Envelopment Analysis with

Spreadsheets. 2nd Edition, Springer.

Weintraub A C, Church R L C, Murray A T C, Guignard M C

(2000). Forest management models and combinatorial

algorithms: analysis of state of the art. Annals of Operations

Research, 96: 271-285.

-o0o-

