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ABSTRACT 1 

Every individual traveler makes route choices in an inherently uncertain environment, 2 
due to random disruptions to the traffic system such as incidents and bad weather, and random 3 
behavior of his/her fellow travelers. The premise underlying the development of Advanced 4 
Traveler Information Systems (ATIS) that better-informed travelers make better route choices 5 
both at the individual and system levels should not be taken as granted but rigorously tested. This 6 
paper studies two types of information, namely en route real-time information on the occurrence 7 
of an incident and ex post information on foregone payoffs (FPs), i.e., travel times on non-chosen 8 
routes. Data were collected from an interactive experiment, where human subjects made multiple 9 
rounds of route choices in a hypothetical network subject to random capacity reductions, and 10 
travel times were determined by performance functions of route flows from the previous round. 11 
Preliminary results and bootstrap statistical tests are presented. It is indicated that en route real-12 
time information increases the network’s travel time saving and reliability under the specific 13 
setting of the experiment, yet FP information has the opposite impact. The most efficient 14 
information structure in terms of travel time saving is a combination of real-time information and 15 
no FP information. Furthermore, the availability of real-time information at downstream nodes 16 
encourages participants’ strategic behavior at the origin. Last but not least, FP information seems 17 
to increase risk-seeking behavior, and it encourages route switching without real-time 18 
information, but suppresses them with real-time information. These results are potentially 19 
valuable for policy evaluations regarding further developments of ATIS. 20 

Keywords: Route choice behavior, real-time information, forgone payoff, interactive experiment, 21 
stochastic network, strategic route choice, learning 22 

 23 
24 
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INTRODUCTION 1 

Every individual traveler makes route choices in an inherently uncertain environment. 2 
The sources of uncertainties in a traffic network can be broadly divided into two categories. At 3 
one hand, there are unpredictable disturbances to the system that usually result in capacity 4 
reductions, such as incidents, vehicle breakdowns, bad weather, special events, and work zones. 5 
On the other hand, a more prevalent although probably less disruptive source is his/her fellow 6 
travelers’ unpredictable behavior, where the collective random individual departure time and 7 
route choices result in the random shifting of traffic flows in time and space.  8 

A traveler can reduce the uncertainty in his/her decision-making by acquiring more 9 
information. The natural source of information is the traveler’s own experience, obtained through 10 
explorations of alternative routes over a relatively long time period on regular traffic conditions. 11 
However personal experience is likely not enough given the large scale of the decision problem, 12 
in terms of the number of alternative routes and the myriad of sources of uncertainties. 13 
Information beyond personal experience can come from fellow travelers, and more recently, 14 
advanced traveler information systems (ATIS) that makes use of the fast developing sensor, 15 
telecommunication and computing technologies. Information provided by an ATIS can be 16 
divided into three categories: historical, prevailing, and predictive (1).  For example, Google 17 
Maps provide archived average traffic conditions by time-of-the-day and day-of-the-week, which 18 
could help travelers reduce the uncertainties from unknown alternatives. Google Maps also 19 
provides information on prevailing conditions that are useful to travelers who are already 20 
familiar with the area and need to know, for example, whether there are constructions on his/her 21 
usual route today. Predictive information concerns the traffic conditions in the near future, which 22 
have to be calculated by prediction models and not as widely available as the other two types.  23 
Prevailing and predictive information could potentially reduce the uncertainties from disruptive 24 
disturbances and day-to-day demand fluctuations.  25 

In this paper, we focus on the impacts of two types of information, namely the en route 26 
real-time information on the occurrence of an incident (prevailing) and the ex post information 27 
on foregone payoffs (FPs), which are the travel times on un-chosen alternative routes (historical). 28 
We study the impacts at both the individual and system levels. Specially, we are interested in the 29 
following three questions: 30 

1) How does FP information affect a traveler’s route choice learning process? 31 

2) Does a traveler make strategic route choices, i.e., planning ahead for real-time 32 
information downstream?   33 

3) How does real-time information affect the performance of a traffic system subject to 34 
random capacity reductions? 35 

The rest of the paper is organized as follows. Related research is reviewed in the next 36 
section underlying the contribution of this paper. The methodologies are then presented 37 
including the experimental setup and analysis procedures. Preliminary results based on bootstrap 38 
statistics are discussed in the following section.  Finally we conclude with major findings and 39 
future research directions. 40 

  41 

LITERATURE OVERVIEW  42 
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In this section, we provide a literature overview along the lines of the aforementioned 1 
three research questions. The review is limited to empirical research with stated preference (SP), 2 
experimental and/or revealed preference (RP) data. Theoretical modeling and simulation studies 3 
are out of the scope.  4 

Decision makers can learn (over time) from their own experience i.e. feedback 5 
information from their actual choices. Experience leads to reinforced learning but, at the same 6 
time, it is also a function of sampling available information on the basis of the past experience. 7 
Psychologists have been long aware of the “payoff variability effect” which suggests increasing 8 
the level of variability in the decision environment inhibits reinforced learning. It occurs when 9 
the decision maker receives no specific information describing the possible outcomes of choice 10 
and has to rely on feedback from past experience (see e.g., 2). Descriptive information that 11 
provides a more complete picture of the decision environment could potentially affect the 12 
learning process, however, the resulting behavior varies. Several studies (e.g. 3, 4) assert that 13 
travelers will tend to exhibit risk aversion when faced with static pre-trip travel time information.  14 
Combining both experiential and descriptive information in the experiment setup, (5,6) have 15 
shown that descriptive information expedites travelers’ learning but may also encourage them to 16 
exhibit risk prone behavior. The exception is the study by (7) involving travelers’ interaction in a 17 
competitive game setting. They show that travelers with access to FP information have less 18 
capricious behavior (in terms of route switching). (8) also shows people perform best under the 19 
most elaborate information scenario, though the benefit of ex post information decreasing over 20 
time.  21 

The literature saw a large body of studies on diversion or compliance under real-time 22 
information, e.g., at a variable message sign (VMS). See (9)(10) for two recent reviews on this 23 
topic. However, the modeled adaptation behavior is basically reactive – meaning that the 24 
traveler’s decisions before arriving at a VMS do not consider the fact that the VMS will provide 25 
updated traffic conditions in the future. In reality, travelers might decide to acquire information 26 
as long as there is a reasonable prospect of reward from it (11).  Therefore the fact that a branch 27 
of the network has VMS installed could make it more attractive even before the traveler arriving 28 
at the VMS location.  A strategic traveler, in this case, is one that considers the availability of 29 
information in all later decision stages, not just the current one.  (12) and (13) verified that a 30 
significant portion of subjects made strategic route choices, using PC- and driving-simulator-31 
based experiments respectively. However, these studies were static in nature and did not account 32 
for experiential or FP information. 33 

A main drawback of all the aforementioned individual-based studies is that travel times 34 
were usually obtained from underlying probability distributions that were not affected by the 35 
travelers’ choices. Thus, the inherent link occurring on congested networks (recurring and non-36 
recurring) between travelers’ route choices and travel times is missing in the current literature. 37 
(14) (15) (16) (7) (17) (18)(19) carried out route choice experiments in congested networks 38 
where travel times are determined by subjects’ route choices through either travel performance 39 
functions or traffic simulations.  However, their networks were deterministic and the day-to-day 40 
variations in travel times resulted purely from travelers’ departure time and/or route choice 41 
variations, not disturbances that brought forth random capacity reductions. In the domain of RP 42 
data, (20) showed that by broadcasting expected travel times, VMSs can improve the network 43 
performance. However, such studies do not have detailed data on individual learning processes.   44 
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As such, it is the purpose of this paper to overcome some of the drawbacks of previous 1 
work by accounting for individual strategic route choices and learning processes and the 2 
resulting system-wide outcomes in an experimental setting involving random disturbances and 3 
an array of information types: en route real-time, experiential through feedback and FP. To the 4 
best of the authors’ knowledge, this setup, which provides a conceivably more realistic 5 
environment to study route choice behavior under uncertainty, has never been explored before in 6 
the travel behavior literature.  7 

 8 

METHODOLOGY 9 

Experimental set up and design 10 

In this research we adopted the network structure from (12), which allows strategic 11 
routing behavior and also provides en route real-time information relating to incidents. A web-12 
based non-cooperative interactive route choice experiment was carried out on a congested 13 
hypothetical network with occurring random incidents. Figure 1 presents a screen shot of the 14 
experiment lay out containing three possible routes from origin to destination, whereby Park 15 
Avenue is a stochastic link with random incidents; other links all have deterministic link 16 
performance functions.  17 

There are in total four scenarios with two control variables, real-time and FP information.  18 
The real-time information relates to an incident indicator via a VMS located just before the 19 
second branch, which tells drivers whether there is an incident on Park Avenue. This 20 
information, however, is not available at any other node and only those passing the VMS are 21 
exposed to it. A scenario without the real-time information is named an incident case, while that 22 
with the real-time information is named an information case. Note that random incidents exist in 23 
any of the cases. The FP information gives travelers the ex post travel times on their non-chosen 24 
alternatives after each choice trial, and otherwise, only the chosen alternative’s travel time (i.e. 25 
experiential information) was given. One session of the experiment consisted of two cases, 26 
incident and information, both with FP. Another session of experiment consisted of the incident 27 
and information cases under the without (w/o) FP situation.  Twelve participants were allocated 28 
randomly between the two sessions respectively with six participants each. In both sessions, 29 
participants first took the incident case and then information case. Participants took a break and 30 
received another round of instructions before a new scenario began to minimize the carryover 31 
effect. Each combined experiment consisted of sixty trial days in the incident case followed by 32 
sixty trial days in the information case. 33 
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 1 

FIGURE 1 Screen shot of Initial Experiment's Presentation 2 

Following the recruiting method of (5)(6)(7)(17), which conducted human subject 3 
experiments using university students for transportation or economic research, most of our 4 
participants were students from the University of Massachusetts Amherst. In our two experiment 5 
sessions, there are a total of twelve subjects, including six undergraduates, four graduates, one 6 
professor and one from outside of the university. Each had to be at least eighteen years old and 7 
hold a valid U.S. driver’s license with at least one year of driving experience. Our research is of 8 
an exploratory nature that deals with human mental processes, and thus we adopted the common 9 
approach in cognitive and behavioral studies where major breakthroughs were generally first 10 
made in experiments conducted with university students and later further verified in field studies 11 
(21).  Future studies involving more diversified population groups are required if conclusions 12 
from the exploratory phase are to be generalized to the general population. 13 

The payment is $30 for each participant regardless of the performance during the 14 
experiment. Our primary goal is to let the subjects apply their real life experience in making the 15 
route choices. We try to avoid creating a sense of ‘winning’ during their trip making as in reality 16 
travelers are not competing for monetary rewards. Moreover, providing a performance-based 17 
incentive in a non-cooperative setting with a rather limited number of participants may induce 18 
them to try to maximize personal gains by influencing equilibrium conditions, which they would 19 
not be doing in reality where the ability of one driver to influence traffic conditions is negligible.  20 
Therefore, the fixed payment is a compensation for them to take part in the experiment. 21 
Secondly, if performance-based incentives are given, it is implicitly assumed that the same value 22 
of time applies to every participant, which is not always the case and might bring unnecessary 23 
complications. Moreover, there is no solid proof that people would have the same risk attitude 24 
towards monetary gains (or losses) and travel time savings (or losses) and we are cautious in 25 
equating these two. Additionally, existing literature reveals (22) that monetary incentives are 26 
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neither necessary nor sufficient to ensure subjects' cooperativeness, thoughtfulness, or 1 
truthfulness.   2 

Before experiment, participants were instructed to complete a set of trips from work to 3 
home on a day-to-day basis, and informed regarding the characteristic of each road in the 4 
network. The free flow travel time on each road was shown on the map and the corresponding 5 
congested coefficient was also explained during the instructions, whereby inter-state highways 6 
have the lowest congested coefficient, local roads have the largest and the shortcut arterial Park 7 
Avenue has the value in between. Participants were informed that incidents could occur on Park 8 
Avenue with a probability of 0.25, which may results in significant congestion. However, the 9 
exact cost functions were not revealed to them. The numbers in the yellow boxes were the links’ 10 
actual travel times on the previous day. In day 1, those numbers reflected free flow link travel 11 
times. A table provided participants with the previous day’s actual route travel times. Note that, 12 
in the without FP case, only the information of the route traveled in the last day was shown. 13 
Participants were required to make a choice at each of the two nodes by determining which link 14 
to take next. Note that at the first step, if I-99 was chosen no other choice was made and the trip 15 
was continued by taking Local 2 to the destination. Routes were chosen by clicking the 16 
appropriate radio button and then the “submit” button to confirm. At the end of each trial-day, all 17 
participants' route choices were recorded and the resulting actual travel time for each alternative 18 
route was calculated by plugging the number of choices into the link performance functions. The 19 
actual link and route travel times was presented at the beginning of the next day.  20 

   21 

Equilibrium design 22 

The link travel time depends on the numbers of participants choosing the link.  23 

We use the following notation: 24 

a :   name of link  25 
i :   index of path (routing policy)  26 
xa :   flow on link a  27 
fi :   flow on path (routing policy) i  28 
Ca(xa) :  link travel time as a function of flow on link a  29 
ei :   (mean) travel time of path (routing policy) i 30 

The travel time (in minutes) on a given link is a function of the link flow specified as 31 
follows:  32 

CI-99(xI-99) = 80 + xI-99, CI-55(xI-55) = 80 + xI-55, Clocal1(x local1) = 4xlocal1,  33 

Clocal2(x local2) =4x local2,  34 

CPark_ave(xpark_ave) = 26+ 3xpark_ave, with probability 0.75 (normal condition) 35 

       26+55xpark_ave, with probability 0.25 (incident condition) 36 

The three paths are defined as follows: 37 

Path 1: I-99-Local 2,  38 
Path 2: Local 1-Park Avenue.-Local 2  39 
Path 3: Local 1-I-55.  40 
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We use a routing policy to describe the strategic route choice, which will be manifested 1 
as paths under different network conditions. For example, one routing policy (Routing Policy 4) 2 
can be defined as: “first take Local 1, and if the incident has occurred, take I-55, otherwise take 3 
Park Avenue and then Local 2”. It will be manifested as Path 2 under the normal condition and 4 
Path 3 under the incident condition. A path can be viewed as a specialized routing policy, e.g., 5 
Path 2 can be described as follows: “take ‘Local 1’ at the origin, and take ‘Park Avenue’ no 6 
matter what the VMS shows”. Notwithstanding, such adaptive strategies exist only under the 7 
information case. This is because real-time information provided at the second branch allows 8 
meaningful route changes, which helps participants update their route choice in response to 9 
incident information. However, in the incident case, no such cognitive mechanism exists to 10 
improve their choices. Therefore, only three fixed paths are available to a participant. 11 

Route choice behavior can be compared to the theoretical results under the assumption of 12 
user equilibrium principles. Under the incident case the resulting user equilibrium condition will 13 
be generalized as such that all used paths have equal and minimum mean travel times. The 14 
equilibrium solution’s flows are: f1 = f3 = 1.784, f2 =2.432, with the corresponding path travel 15 
times are: e1 = e2 = e3 =98.65.  16 

In contrast under the information case, we hypothesize routing-policy-based user 17 
equilibrium where all used routing policies have equal and minimum mean travel times. There 18 
are five possible routing policies in the network.  Routing Policy 1 through 3 are Paths 1 through 19 
3, and Routing Policy 4 is the one just discussed.  Routing Policy 5 is the opposite of Routing 20 
Policy 4, i.e. “first take Local 1, and if the incident has occurred, take Park Avenue and then 21 
Local 2, otherwise take I-55”.  Routing Policy 5 is conceivably inefficient. The equilibrium 22 
solution’s flows are: f1 = f3 = f5 = 0, f2 =1, f4=5. We can verify that under these routing policy 23 
flows, the network is in equilibrium such that Routing Policies 2 and 4 have equal and minimum 24 
mean travel times of 96.25 minutes.    25 

  26 

Bootstrap statistical tests 27 

Since the decisions of the participants are inherently dependent upon each other, in a 28 
sense each scenario provides just observations from one “compound subject” formed by six 29 
element subjects. Moreover since the same group participated in both the incident and 30 
information cases (i.e. repeated measurements), these are also dependent. These 31 
complications restricted us from doing conventional statistical testing using a random 32 
sample of subjects (both parametric and nonparametric).  33 

Even though there is in a sense only one “compound subject” for each scenario, the 34 
observations were obtained from a day-to-day random learning process. In order to draw 35 
valid conclusions for the two specific “compound subjects”, we need to carry out statistical 36 
testing that accounts for the random process over the sixty trial days. Instead of making 37 
hypothesis over a random sample of subjects, all of our null hypotheses regarding no-38 
difference are between two random processes using bootstrap techniques (23). These include 39 
the following variables: average travel times, route shares and route switches. Bootstrap 40 
simulation is an approximate method to derive statistics by re-sampling from the original 41 
data - the approximation lies on the fact that the original data is treated as the true empirical 42 
distribution.  43 

TRB 2011 Annual Meeting Paper revised from original submittal.



9 

 

The block bootstrap method is used due to the data dependencies from day to day 1 
(20). Blocks are re-sampled with block lengths having a geometric distribution with a mean 2 
of 5, the number of weekdays in a week. We conduct the bootstrap of the time series 10,000 3 
times and obtain 10,000 new time series, each with a length of sixty days. We can then 4 
calculate the sample average from each bootstrap sample, which can be viewed as one 5 
realization of the distribution of the sample average. The p-value for a null hypothesis of 6 
equal mean between the two random processes can be obtained by counting the frequency at 7 
which the difference between each pair of sample average realizations from the two random 8 
processes is greater than or equal to the difference between the original sample averages. 9 
Note that the “compound subject” remained intact and the re-sampling applied only to the 10 
day-to-day process.    11 

 12 

RESULTS 13 

Route Shares 14 

Table 1 summarizes the average route shares over the first and second thirty-day period 15 
and all sixty days respectively, in each of the four scenarios. It can be seen that none of the 16 
scenarios reached the theoretical equilibrium within the span of sixty days. Note that, the 17 
equilibriums here refer to those we calculated in the equilibrium design, which are based on a 18 
simplified traffic assignment model by assuming a minimum and equal mean travel time on each 19 
used path/routing policy. Route shares in the information case with FP, are the closest to the 20 
equilibrium pattern, and comparing the first and last thirty trials, we can also observe that route 21 
shares are approaching the network equilibrium. This is because the information case with FP 22 
has the lowest level of uncertainty among all scenarios, which makes it easier to get to the 23 
equilibrium. Based on our previous assumptions, the equilibriums in the incident and information 24 
cases are quite different, as there are only three paths in the incident case, compared to five 25 
routing policies in the information case where real-time information is provided at the branch 26 
allowing for a detour from prospective incidents. Such incident information does in fact affect 27 
the individual behavior pattern, where more participants tend to choose the stochastic branch at 28 
the origin node and the stochastic shortcut at the intermediate node in the information case than 29 
in the incident case, regardless of FP, which indicates that travelers would take strategic 30 
responses to the information en route. Table 2 summarizes the complete statistic results in route 31 
shares, network travel time and switches, and it shows that there are significant differences on 32 
road shares between the information and incident cases (with or without FP) at the level of 1% 33 
(one-sided). However, according to conventional route choice models, this difference should 34 
only exist at the intermediate node, where travelers are assumed to react on the spot to en route 35 
information rather than plan strategically. Thus, the strategic advantage of the provided 36 
information can be recognized as in the static study of (12)(13).  37 

 38 

Iterations 
Path 1 Path 2 Path 3 

With FP W/o FP With FP W/o FP With FP W/o FP 
W/o Info Info W/o Info Info W/o Info Info W/o Info Info W/o Info Info W/o Info Info 

0-30 1.70 0.40 1.57 1.17 2.97 4.23 2.63 3.33 1.33 1.37 1.80 1.50 
30-60 1.60 0.33 1.37 1.10 2.90 4.57 3.20 3.53 1.50 1.10 1.43 1.37 

Overall 1.65 0.37 1.47 1.13 2.93 4.40 2.92 3.43 1.42 1.23 1.62 1.43 
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TABLE 1 Average Route Shares in the Four Scenarios 1 

 2 

Performance 
Measure 

Real-Time         FP Information? 
Information? 

With 
FP 

Without 
FP 

Between Subjects 
P-value (one-sided) 

Travel Time (min) 
Without real-time information 116 105.3 > 5% 
With real-time information 96.8 92.7 1.32% 
P-value (one-sided) 0.08% 0.67%  

Route Shares at the 
Origin  
(Users on Path 1) 

Without real-time information 1.65 1.46 > 5% 
With real-time information 0.37 1.13 0% 
P-value (one-sided) 0% 0.69%  

Route Shares at the 
Branch  
(Users on Path 2) 

Without real-time information 2.93 2.92 > 5% 
With real-time information 4.4 3.43 0.16% 
P-value (one-sided) 0% 2.87%  

Number of 
Switches per Day 
at the Origin 

Without real-time information 2.43 2.05 3.75% 
With real-time information 0.7 2.01 0% 
P-value (one-sided) 0% > 5%  

Number of 
Switches per Day 
at the Branch 

Without real-time information 1.47 1.25 > 5% 
With real-time information 1.9 1.45 2.5% 
P-value (one-sided) 1.47% > 5% 

 
 Within Subjects 

TABLE 2 Bootstrap Statistic Test Results 3 

As for the impacts of FP, average route shares with FP are closer to the designed 4 
equilibrium than those without FP, in both incident and information cases, which indicates that 5 
providing FP helps push the network towards user equilibrium to some extent. However, for the 6 
information scenario, participants in the FP case seem to be more risk-seeking than those in the 7 
without FP sessions whereby more people choose the stochastic shortcut through Park Avenue. 8 
Participants in the without FP group are more inclined to choose Path 1, which is the 9 
deterministic route. According to the bootstrap statistical test, there is a significant difference 10 
between the average route shares with and without FP at the origin at the level of 1% (one-11 
sided). Moreover, the percentage of participants at the intermediate node who choose the 12 
deterministic detour is also higher in the without FP cases than with FP. The bootstrap statistic 13 
result shows a significant difference at the level of 5% (one sided). This can be explained that 14 
without FP, participants become more sensitive when stuck in traffic, whereas the deterministic 15 
route/detour is not too bad. Thus providing travel time information on all alternative routes could 16 
potentially motivate more competition and risk-seeking behavior as suggested by (5,6). 17 
Conversely, no such observation exists in the incident scenario.  The bootstrap test fails to find a 18 
significant difference in the shares at origin and intermediate node between the case with and 19 
without FP. This may be due to the increase in the level of uncertainty, which may offset the 20 
impact of FP.      21 

To find out how the network system performs over time, we plot in Figures 2 the average 22 
route shares for every five trials at the origin and intermediate nodes in both incident and 23 

information cases respectively. In Figure 2(1), shares are more stable over time with FP than 24 
without FP in the incident case. This is probably related to an expedited learning rate with a 25 

complete feedback on all possible alternatives. The same trend can be observed in Figure 2(2) for 26 
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the information case. Comparing the charts in Figures 2(1) and 2(2) with the same index, we find 1 
that shares in the information case are generally more stable compared to the incident case. This 2 

indicates that real-time incident information can improve the system’s reliability.  3 

  4 
       5 

(a) Route Shares at Origin Incident case with FPs    (b) Route Shares at Stochastic Branch Incident case with FPs 6 

 7 
(c) Route Shares at Origin Incident case w/o FPs   (d)Route Shares at Stochastic Branch Incident case w/o FPs 8 

 (1) Route Shares at Two Decision Nodes in Incident Case with and without FP 9 

 10 

TRB 2011 Annual Meeting Paper revised from original submittal.



12 

 

 1 
(a) Route Shares at Origin Information case with FPs  (b) Route Shares at Stochastic Branch Information case with FPs 2 

 3 
(c) Route Shares at Origin Information case w/o FPs (d) Route Shares at Stochastic Branch Information case w/o FPs 4 

(2) Route Shares at Two Decision Nodes in Information Case with and without FP 5 

FIGURE 2 Route Shares at Two Decision Nodes  6 

 7 

Network Travel Time 8 

The overall network travel time is presented in Figure 3, taking the average over every 9 
five trials. Overall network travel time is the average experienced travel time accounting for all 10 
participants’ choices.  Both Figure 3(a) and 3(b) show that average travel times are higher and 11 
have larger volatility in the incident cases than in the information cases. This result indicates that 12 
real-time incident information increases the efficiency and reliability of the network’s 13 
performance. We also employed the bootstrap statistics to check the significance of average 14 
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travel time differences when providing incident information. In both with and without FP cases, 1 
both differences are significant at the level of 1% (one-sided).  Although  in our designed user 2 
equilibrium, the difference of mean travel times between the incident and information cases was 3 
relatively small, with approximately 2.5 minutes difference, the actual observed difference is 4 
much larger -  19.16 (with FP) and 12.6 (without FP) minutes respectively. In our cases, the 5 
benefit that real-time information contributes to the network seems to be quite significant. It also 6 
seems that without complete feedbacks, travel time is even lower under information cases. The 7 
difference between the travel times with and without FP is significant at the level of 5% (one- 8 
sided) under real-time information cases. This can be explained as a result of the higher tendency 9 
to take the stochastic route in the FP group (more risk seeking). It also suggests that it may not 10 
always be advisable to provide full feedbacks on non-chosen alternatives.  11 

 12 
(a)  With FP     (b)Without FP 13 

FIGURE 3 Overall Network Travel Time 14 

Route Switching 15 

Route switches during the whole trip have been divided into two decision stages: one at the 16 
origin, and the other at the intermediate node. A switch at origin is counted when a participant 17 
switches to/from Path 1 from/to the stochastic branch, Path 2 or 3. A switch at stochastic branch 18 
is counted only when a participant switches to/from Path 2 from/to Path 3. Results from the four 19 
scenarios have been plotted in Figures 4 and 5.  20 
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 1 
(a)Switch at Origin Incident case                    (b) Switch at Stochastic Branch Incident case  2 

  3 
(c) Switches at Origin Information case            (d) Switches at Stochastic Branch Information case  4 

 5 

FIGURE 4 Switches at Two Decision Nodes in Information and Incident Cases 6 

 7 
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 1 
(a)Switches at Origin Information case  (b) Switches at Stochastic Branch Information case 2 

FIGURE 5 Daily Route Switches in the Information Cases 3 

In Figure 4(a), in the incident scenarios the number of switches with FP is higher than 4 
that of without FP at the origin node, with the difference significant at the level of 5% (one-5 
sided) from the bootstrap statistical test. This is because participants with FP may experience two 6 
situations; first - if no incident happens, travel time on Park Avenue is much lower than the other 7 
two alternatives; second - if there is an incident and most participants choose the stochastic 8 
branch, the deterministic route (I-99 –Local 2) has the least travel time. Without an incident 9 
indictor assisting in making strategic choices, participants have to take their decision at the origin 10 
and stick to it. For participants with neither information nor FP, if they find that the deterministic 11 
route is acceptable, they tend to avoid unnecessary risk given that congestion is quite significant 12 
when an incident occurs. This result is similar to those from previous studies relating to 13 
individual choices (e.g., 6) that the lack of information increases risk-averse behavior.  14 

However, under the information scenario in Figure 4(c) the trend is opposite, whereby 15 
with FP provided, participants tend to switch less than without FP at the origin. This has also 16 
been verified by a p-value of 0%. This is because real-time information at the branch allows 17 
participants to make adaptive route choices to avoid the incident. When FP is provided, they 18 
realize that choosing the branch also turns out to be an optimal decision. The impact of FP on 19 
switching behavior is more significant at the origin than at the intermediate node, where incident 20 
information has the decisive effect. In our experiments, the four scenarios stand for four 21 
uncertainty levels. Participants tend to switch less in the two extreme conditions, when the 22 
uncertainty level is either very low (with information and FP) or significantly high (without 23 
information and without FP). Under the former condition, the situation becomes pretty clear, so 24 
switching is unnecessary once participants learn which alternative is the optimal one. However, 25 
in the latter condition, switches are avoided because very little feedback is provided, learning is 26 
more difficult and participants tend to avoid unnecessary risks. The latter follows the predictions 27 
of the payoff variability effect.     28 
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Finally, in Figure 5 we present the number of switches in each trial rather than an average 1 
over five trials for the information case. It can been seen that, regardless of the FP, most 2 
participants respond and take advantage of the information provided at the intermediate node, 3 
which indicates that strategic behavior (Routing Policy 4) has been widely adopted in the 4 
information case. 5 

 6 

CONCLUSION AND FUTURE DIRECTIONS  7 

In this paper, experimental observations of a day-to-day traffic pattern evolution are 8 
obtained in a simple congested network under exogenous disruptions with a given probability 9 
distribution. The effects of en route real-time traveler information and ex post FP information are 10 
assessed by comparing traffic patterns in the presence of uncertain disruptions. The comparison 11 
is in route flows, total system travel time, and the numbers of switches. Due to the limited 12 
number of experiment sessions and the small number of participants in each session, preliminary 13 
results and bootstrap statistics are provided in this paper. The hypotheses are between two 14 
random processes rather than over a random sample of subjects. Bootstrap statistical analysis 15 
sheds some light on the trends of the route choice random process over sixty ‘days’. Based on the 16 
1000 Bootstrap resampling samples, it is valid to draw statistical conclusions between two 17 
random processes. 18 

 It is observed that en route real-time information leads to travel time savings. Providing FP 19 
information makes the route flows closer to the user equilibrium pattern. However, this seems to 20 
cause network travel time to increase and bootstrap statistics verify the trend in the information 21 
case (but not in the incident case). The least network travel time is obtained under the scenario 22 
‘with en route information and without FP’. Therefore, travel time saving also depend to a 23 
certain extent on the network’s design. This adds to the empirical evidences that more 24 
information in not necessarily better in a congested network. Route shares at the origin show 25 
significant differences between with and without real-time information, which indicate that 26 
travelers would plan in advance for the future availability of a VMS system. Last but not least, it 27 
shows that participants in with FP scenarios are more risk seeking than those in without FP 28 
scenarios regardless of information provision.  FP information encourages route switching 29 
without real-time information, but suppresses them with real-time information. 30 

We are now conducting more experiment sessions with a larger sample size so that 31 
statistical tests over the subject population can also be carried out.  Another interesting direction 32 
is to develop a traffic prediction model that can provide reasonably accurate predictions of the 33 
experimental results. Such a model needs to explicitly work in a stochastic network, capture 34 
travelers’ risk attitudes, strategic behavior, and learning behavior.  35 
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