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Abstract

The ‘Signal plus Noise’ model for nonparametric regression can be ex-

tended to the case of observations taken at the vertices of a graph. This

model includes many familiar regression problems. This article discusses the

use of the edges of a graph to measure roughness in penalized regression.

Distance between estimate and observation is measured at every vertex in

the L2 norm, and roughness is penalized on every edge in the L1 norm. Thus

the ideas of total-variation penalization can be extended to a graph. The

resulting minimization problem presents special computational challenges,

so we describe a new, fast algorithm and demonstrate its use with examples.

The examples include image analysis, a simulation applicable to discrete

spatial variation, and classification. In our examples, penalized regression

improves upon kernel smoothing in terms of identifying local extreme values

on planar graphs. In all examples we use fully automatic procedures for

setting the smoothing parameters. Supplemental materials are available

online.
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1 INTRODUCTION

There are a number of statistical models that contain some sort of graphical struc-

ture. Examples include image analysis, disease risk mapping and discrete spatial

variation. We focus on those for which penalized regression is appropriate, and

can be thought of in terms of the ‘signal + noise’ framework.

We consider the regression of a continuous response variable on one or more ex-

planatory variables. Often there is some sort of graphical structure in and between

the observations, or some obvious neighboring scheme that gives rise to a graph.

We think of the locations of the observations as the vertices of the graph. The

edges may be suggested by the neighboring scheme or by explanatory observations,

if they exist. We will see some examples in this section.

A model for data on the graph (V , E), which has vertices in the set V and edges

in the set E , is

Data = Signal + Noise

yi = fi + σzi, i ∈ V .

The noise terms, zi, are usually assumed to be independent realizations of a random

variable with zero mean and unit variance. Under this model regression on a graph

involves estimating the underlying signal values fi, based on the observations yi,

at all vertices i in the set V . We assume that f describes a smooth function on

the graph, e.g.
∑

(i,j)∈E |fj − fi| is small. Hence we use the edges to measure the

complexity of the estimate.

Figure 1 shows an example of regression on a graph: a small, noisy image

with 64 pixels. The responses are the grey levels of the pixels, so each pixel is

a vertex of the graph. A natural choice of edges connects each pixel with its

neighbors, resulting in the graph superimposed on the left-hand image in Figure 1.

Regression on this graph involves estimating the underlying signal image, which is
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Figure 1: Example of a graphical structure present in a regression situation. The noisy
image (left) shows a suitable graph for regression, based on the 4-neighborhood. On the
noiseless version (right) only the edges in the active set are shown.

displayed in the right-hand image.

In this article we discuss penalized regression on the graph (V , E) and the

estimate that minimizes

Q(f) :=
1

2

∑
i∈V

wi(fi − yi)2 +
∑

(i,j)∈E
λi,j|fj − fi|

for appropriate weights wi ≥ 0, for i ∈ V , and smoothing parameters λi,j > 0,

for (i, j) ∈ E . This is the sum of a term that penalizes distance from the data

plus a term that penalizes roughness. The first term is the distance from the data,

measured at every vertex in the L2 norm. The second term is the weighted sum

of roughness at every edge, measured in the L1 norm. Our model allows for a

different weight or smoothing parameter at each vertex and each edge.

Although it is usual, in graph theory, to denote the edges by unordered pairs,

we will treat E as a set of ordered pairs for convenience of notation. This does

not mean that (V , E) is a directed graph, since the ordering can be completely

arbitrary. We do, however, consider there to be at most one edge that joins any
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pair of vertices. This is because it makes no sense to split the penalty between two

vertices over more than one edge.

It is possible to have multiple observations at every vertex. Suppose that

we have ni observations yi1, . . . , yini
with associated weights wi1, . . . , wini

for all

vertices i ∈ V . Then minimizing

1

2

∑
i∈V

ni∑
k=1

wik(fi − yik)2 +
∑

(i,j)∈E
λi,j|fj − fi|

is equivalent to minimizing Q(f) with weights wi =
∑ni
k=1wik and observations

yi =
∑ni
k=1wikyik/wi. This includes the special case where ni = 0, which might

happen if there are missing observations, or vertices at which we wish to predict the

response. Therefore vertices without observations are given zero weight and the

minimization of Q(f) provides an estimate at all vertices that have observations

and a prediction at all vertices that do not.

1.1 Motivating examples

As a first motivating example, we consider the problem of nonparametric regres-

sion between two continuous variables. Suppose we have response observations

y1, . . . , yn taken at strictly ordered design points. There is a natural neighboring

structure: the first observation is adjacent to the second, the second next to the

third, and so on. Hence a natural graphical structure is given by (V2, E2), where

V2 = {1, 2, . . . , n} and E2 = {(1, 2), (2, 3), . . . , (n− 1, n)} .

The minimization of Q(f) provides an estimate of fi at every observation. If

we let wi = 1 for all i ∈ V2 and use the convenient shorthand λi = λi,i+1, then

Q(f) becomes

1

2

n∑
i=1

(yi − fi)2 +
n−1∑
i=1

λi|fi+1 − fi| (1)
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and the roughness penalty is the weighted total variation of the estimate.

Total variation can be extended to higher dimensions to tackle, for example,

image analysis. An image can be thought of as an n1 × n2 grid of pixels, with

observations at each pixel. Then the set of vertices of the graph is the set of pixels

V4 = {(i1, i2) : i1 = 1, . . . , n1, i2 = 1, . . . , n2} .

There are a number of neighboring structures in use in image analysis. The

simplest is the 4-neighborhood (Winkler 2003, p. 57) in which a pixel has neighbors

immediately above, below, to the left and to the right. This neighboring scheme

suggests the set of edges

E4 =
{

((i1, i2), (i1, i2 + 1)) ∈ V2
4

}
∪
{

((i1, i2), (i1 + 1, i2)) ∈ V2
4

}
.

Figure 1 shows a picture of this graph. Using (V4, E4), we can find a denoised image

by minimising Q(f). Now the roughness penalty is a measure of the total variation

in the horizontal direction plus the total variation in the vertical direction.

1.2 Review of existing methods

Mammen and van de Geer (1997) first discussed the estimator obtained by min-

imising (1) where λ is a global smoothing parameter. Some authors have allowed

the smoothing parameters to differ. For example Davies and Kovac (2001) alter

them during their local squeezing procedure. There are fast algorithms that find

the solution to this specific minimization problem, in particular the taut string

algorithm of Davies and Kovac (2001), which has O(n) computational complexity.

The estimator that minimizes (1), in which error is measured in the L2 norm

and roughness in the L1 norm, is a nonparametric version of the lasso (least ab-

solute shrinkage and selection operator) estimator (Tibshirani 1996). Therefore
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the estimator that minimizes Q(f) can be seen as a generalization of the non-

parametric lasso to any graph. There are other methods of penalized regression,

with different roughness measures, that have been applied to observations on a

graph. Belkin, Matveeva and Niyogi (2004) describe an algorithm for Tikhonov

regularization. Their algorithm measures roughness at every edge in the L2 norm.

Koenker and Mizera (2004) employ a penalty term for triograms. Given irregularly-

spaced observations, they create a graph by computing a Delaunay triangulation

of the observations. Their penalty term is also a weighted sum over all edges of

the triangulation. However they measure roughness as the squared (L2) differences

between gradients. Jansen, Nason and Silverman (2009) have discussed wavelet

lifting as a method for regression on a graph. Like Koenker and Mizera, the authors

use a Delaunay triangulation.

All of the methods above require the selection of a smoothing parameter. In the

case of minimizing Q(f) this means choosing wi for i ∈ V and λi,j for (i, j) ∈ E , but

simpler estimators may have only one smoothing parameter. There are many differ-

ent automatic ways to choose the smoothing parameter, including cross-validation

and the multiresolution criterion (Davies and Kovac, 2001). In Section 4.1 we

describe an automatic choice attributed to Rudin, Osher and Fatemi (1992).

In the context of Bayesian statistics, Besag, Green, Higdon and Mengersen

(1995) examine pairwise interaction Markov random fields, which describe a prior

distribution on the edges of an undirected graph. The special case of an L1 prior

was discussed by Besag (1989) and leads to the minimization of Q(f), which is

solved by a probabilistic algorithm, such as Markov chain Monte Carlo.

Observations on the vertices of a graph have been studied in the literature on

semi-supervised or transductive learning. Regression on a graph is a version of the

metric labeling problem (Kleinberg and Tardos 2002). Most graph-labeling meth-
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ods are concerned with classification, such as graph mincuts (Blum and Chawla

1998), label propagation (Zhu and Ghahramani 2002) and the perceptron (Herb-

ster and Pontil 2006). However there are some methods, such as spectral graph

transducer (Joachims 2003), harmonic energy minimization (Zhu, Ghahramani and

Lafferty 2003), label spreading (Zhou, Bousquet, Lal, Weston and Scholkopf 2004)

and the work of Culp and Michailidis (2008) that may be adapted to regression.

Indeed the work by Belkin, Niyogi and Sindhwani (2006) on manifold regulariza-

tion and Culp, Michailidis and Johnson (2009) on self-training is formulated within

the regression framework, although the examples are of classification.

Our algorithm is based on ideas similar to active set methods, which features

in a number of algorithms, including that of Goldfarb and Idnani (1983).

2 OPTIMIZATION ALGORITHM

In Theorem 1 below we give necessary and sufficient conditions for f to minimize

Q(f) and in Subsection 2.2 we present a fast algorithm for finding such a minimizer.

The minimum exists because Q(f), as a sum of convex functions, is convex itself

although not necessarily strictly convex. Therefore any local minimum of Q(f)

will be a global minimum, and the set of all global minima will be a convex set.

In the important case where all the weights wi are strictly positive a unique global

minimum exists, because Q(f) is strictly convex.

2.1 Necessary and sufficient condition for minimization

The solution to the minimization problem is characterized by regions of constant

value, that is, sets of neighboring vertices that share the same value of f . We define

such regions by use of a special active set of edges, indexed by A. This consists of

edges (i, j) ∈ E for which fi = fj, such that the graph (V ,A) is acyclic. Note that,
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unlike the definition of active set used in many optimization algorithms, there can

still be edges (i, j) /∈ A such that fi = fj.

We will denote by R(k) the entire region of constant value that contains the

vertex k. More formally let

R(k) = {i ∈ V : i is connected to k in (V ,A)} .

We will also denote by A(k) that subset of the active set that holds the region

R(k) together, so

A(k) = {(i, j) ∈ A : i ∈ R(k), j ∈ R(k)} .

Figure 1 shows an example of an active set in the graph (V4, E4). Note how the

edges in the active set join together vertices that share the same value, thus holding

together regions of constant value.

Since (V ,A) is acyclic, the graph (R(k),A(k)) is a connected, acyclic graph.

This feature is crucial as it allows the region R(k) to be split into two subregions

by removing just one edge (I, J) from A(k). We will denote these two subregions

by R(I, J) and R(J, I), where

R(I, J) = {i ∈ R(I) : i is connected to I in (V ,A \ (I, J))} .

We associate with the (sub)region R(a) (where a = k or a = I, J) the quantities

ma =
∑

i∈R(a)

wiyi +
∑

j:(i,j)∈E
ci,jλi,j −

∑
j:(j,i)∈E

cj,iλj,i

 and ua =
∑

i∈R(a)

wi.

Theorem 1 A fit f minimizes Q(f) if and only if there are values ci,j and a set

of edges A, such that (V ,A) is acyclic, fi = fj for all (i, j) ∈ A and the following
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conditions hold:

ci,j = sign(fj − fi) or fi = fj for all (i, j) ∈ E , (2)

|ci,j| = 1 if (i, j) ∈ A, (3)

ukfk = mk for all k ∈ V , (4)

and |uI,JfI − (mI,J − cI,JλI,J)| ≤ λI,J for all (I, J) ∈ A. (5)

A proof is given in the Appendix. These conditions can be shown to be similar

to the taut string of Davies and Kovac (2001). When the graph is (V2, E2) the

condition (5) describes a tube and (4) describes a string threaded through the

tube and pulled taut (Mammen and van de Geer 1997).

2.2 Algorithm

The algorithm that we describe below can be considered to search for the graph

(V ,A) and vector c described in Theorem 1, and hence the minimizer f of Q(f).

To explain it fully we must define the working objective function

Q(f ; c) :=
1

2

∑
i∈V

wi(fi − yi)2 +
∑

(i,j)∈E
|ci,j|λi,j|fj − fi|,

which is parameterized by c. A slightly modified version of Theorem 1 says that

for f to minimize Q(f ; c) we must have

sign(ci,j) = sign(fj − fi) when fi 6= fj, (6)

(3) and (4) must hold, and

0 ≤ − sign(cI,J)(uI,JfI −mI,J) ≤ 2|cI,J |λI,J for all (I, J) ∈ A. (7)

During the course of the algorithm, the current value of f will always minimize

Q(f ; c). The algorithm changes c until (2), a stronger version of (6), is satisfied.
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When this occurs (7) becomes equivalent to (5) and the value of f that minimizes

Q(f ; c) will also minimize Q(f). This event will occur in a finite time, as stated

by Theorem 2 below, which is proven in the Appendix.

Theorem 2 The algorithm described below will terminate in a finite time, and

find a minimizer of Q(f), for any graph, data, weights and smoothing parameters.

Step 0 Set c = 0. Then Q(f ; c) = 1
2

∑
i∈V wi(fi − yi)2, so set f = y as this is a

minimizer. Let A be empty.

Step 1 Choose an edge for which (2) is not satisfied, i.e. choose an edge (k, l) ∈ E

such that fk 6= fl and ck,l = 0.

The current value of f minimizes Q( · ; c).

Step 1.1 For every possible change to the active set (listed in Subsections 2.2.1–

4; no change, merging, amalgamation, splitting) calculate the corre-

sponding step sizes δfk and δfl.

Step 1.2 Choose the event for which |δfk| and |δfl| are both smallest. Let

∆fi = δfk for i ∈ R(k), ∆fi = δfl for i ∈ R(l) and ∆fi = 0 otherwise,

and ∆ci,j = 0 for (i, j) 6= (k, l) and ∆ck,l = ukδfk/λk,l.

At this moment f + δf minimizes Q( · ; c+ δc).

Step 1.3 Update f ← f + δf and c← c + δc. If R(k) and R(l) have been

merged, add (k, l) to A and let ck,l = 1. If R(k) or R(l) has been

amalgamated with a neighboring region, then add the relevant edge to

A. If R(k) or R(l) has been split at an edge (I, J), remove this edge

from A and let cI,J = sign(fJ − fI).
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Now f minimizes Q( · ; c).

Repeat Steps 1.1–3 until |ck,l| = 1. This means that (2) is satisfied for (k, l),

and will remain satisfied for this edge.

Repeat Step 1 until there is no such edge. Now (2) is fully satisfied, and we have

Q(f ; c) ≡ Q(f). Since f minimizes Q(f ; c) it also minimizes Q(f).

Our algorithm gradually increases the penalty on each edge. As ck,l changes,

the penalty on the edge (k, l) increases, so we must reduce |fl − fk| in order to

move to the minimum of Q( · ; c + δc). This change must take place within the

constraints of the active set. Therefore we alter fk and fl uniformly on the whole

of the regions R(k) and R(l).

As the regions move closer together there may need to be changes to the active

set. To make sure that these changes happen we increase the penalty on (k, l)

in small steps. We alter f and c only enough to trigger the first change in the

active set. We describe the possible changes below, giving the associated values of

δfk and δfl and conditions for each event to be possible. The Appendix contains

proofs of these values.

2.2.1 No change to active set

There may be no disruption necessary to the active set before ck,l+δck,l = sign(fl−

fk) is satisfied. This event can only occur if uk > 0 and ul > 0. The associated

changes in fk and fl are

δfk =
(sign(fl − fk)− ck,l)λk,l

uk
and δfl =

(sign(fk − fl) + ck,l)λk,l
ul

.
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2.2.2 Merging of the two regions

Before we reach the target value of ck,l = sign(fl − fk), the regions R(k) and R(l)

might meet each other in value. This would mean that |fl − fk| can be decreased

no further. The changes in fk and fl are

δfk =
ul

uk + ul
(fl − fk) and δfl =

uk
uk + ul

(fk − fl). (8)

If uk = ul = 0 then we can choose δfk = (fl − fk)/2 and δfl = (fk − fl)/2.

Since we now have fk = fl we merge the two regions R(k) and R(l) by adding

(k, l) to the active set. If there are other edges that join R(k) and R(l), then they

will not be added to A, even though they share the same value of f . This will

ensure that the graph (V ,A) remains acyclic.

2.2.3 Amalgamation of a neighboring region

Before we reach the minimizer of Q( · ; c + δc), the value of f in the region R(k)

may meet the value in a neighboring region that is not R(l). More formally there

may be a vertex i ∈ R(k) and K /∈ R(k)∪R(l) for which ci,K 6= 0 or cK,i 6= 0, and

fk ≤ fK < fl or fk ≥ fK > fl.

This event is only possible if ul > 0, or if ul = uk = 0, or if ul = 0 and fK = fk.

The changes to f associated with this event are

δfk = fK − fk and δfl =

 uk(fk − fK)/ul ul > 0,

0 otherwise.
(9)

We now have fi = fK and if we proceed to alter f we may break the constraint

(6) at the edge (i,K) or (K, i). Therefore, if sign(ci,K) = sign(δfk) or sign(cK,i) =

− sign(δfk), we add this edge to the active set. This will amalgamate the region

R(K) into R(k). If there are other edges that join R(k) and R(K) then they will
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not be added to A. This ensures that the graph (V ,A) remains acyclic. Of course

a similar amalgamation might occur with a neighbor of R(l).

2.2.4 Splitting a region

Before arriving at the minimizer of Q( · ; c + δc) we must test whether an edge

(I, J) ∈ A(k) ∪ A(l) should be removed from the active set. This will split the

regionR(k) orR(l) into two subregions. If the split takes place it may be necessary

to swap the sign of cI,J , in order to preserve the constraint (6) at (I, J). This will

not affect Q(f ; c). We use condition (7) to tell us when an edge should be removed,

once we have accounted for the possible sign change.

This event can only occur if uk > 0 and ul > 0. The values of f and c at which

(I, J) ∈ A(k) should be removed are given by

δfk =
mI,J − uI,Jfk − cI,JλI,J ± sign(fl − fk)|cI,J |λI,J

uI,J
and δfl = −uk

ul
δfk,

with + for k ∈ R(J, I) and − for k ∈ R(I, J). The corresponding values for

(I, J) ∈ A(l) are obtained by swapping k and l.

3 COMPUTATIONAL COMPLEXITY

We now discuss the computational complexity of our algorithm in the setting of

image analysis, in which the graph, (V4, E4), is planar. For the sake of simplicity we

consider a square image, letting V4 be an η × η grid of vertices. We are interested

in the computational complexity in terms of the number of observations n = η2.

Suppose we were to use a generic active set method, such as that of Goldfarb

and Idnani (1983), to minimize Q(f ; c) subject to (2). This would be very compu-

tationally expensive, mainly because we may need to try all possible combinations
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of c in {−1, 1}2n−2n1/2
, which leads to exponential complexity. Our algorithm does

not do this, and has polynomial complexity in the number of edges, even for non-

planar graphs.

We can reduce the computational complexity even further by working with

small sub-images that gradually increase in size. We control the order in which

the edge constraints (2) are satisfied in order to keep |R(k)| and |R(l)| as small

as possible. Here we describe an implementation of our algorithm in which the

maximum size of a region grows dyadically. For the sake of simplicity we will

consider η to be an integer power of 2. It is easy to adapt this method for other

values of η, and for non-square images.

The edge constraints are satisfied in stages, there being log2 η stages in total.

At stage p we consider those edges in the set

{(
(i, 2pq − 2p−1), (i, 2pq − 2p−1 + 1)

)
∈ E4 : q = 1, . . . , η/2p

}
followed by those in the set

{(
(2pq − 2p−1, i), (2pq − 2p−1 + 1, i)

)
∈ E4 : q = 1, . . . , η/2p

}
.

The effect is that as the edges are considered the graph of satisfied edges grows

dyadically. At the first stage the graph looks like pairs of vertices, followed by

squares of 2 × 2 vertices. At the second stage the graph looks like connected

rectangles of 2 × 4 vertices, followed by squares of 4 × 4 vertices. The process

continues until all edges are satisfied and the whole η × η image is connected.

The advantage of this implementation is that our algorithm will never allow

an edge (k, l) in the active set if ck,l = 0. Therefore R(k) and R(l) can never be

larger than the rectangle connected by satisfied edges that contains k and l. At

stage p this rectangle will contain at most 22p vertices and 2p+1(2p − 1) edges.
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At each stage we perform Step 1 on O(η22−p) edges. During each iteration

of Step 1 we may need to change the active set many times, through repeated

splitting or amalgamation in Step 1.3. Since |fl − fk| decreases monotonically,

once an edge has been removed from A(k) or A(l) it cannot be included again

during this iteration of Step 1. Therefore during each iteration the algorithm will

consider at most 2p+2(2p − 1) active sets and perform Steps 1.1–3 O(22p) times.

There are some calculations to make in Steps 1.1–3. It is possible to calcu-

late all necessary values ua and ma without visiting a vertex in R(k) ∪R(l) more

than twice. The algorithm must check for possible neighboring regions to amal-

gamate with. It must also check condition (7) at every edge in A(k) and A(l).

Since (R(k),A(k)) and (R(l),A(l)) are connected, acyclic graphs, there will only

be |R(k)| − 1 and |R(l)| − 1 edges to check. Therefore the complexity of Steps

1.1–3 is O(|R(k)|+ |R(l)|). We know that |R(k)| and |R(l)| are contained inside

the connected rectangle with 22p vertices, so Steps 1.1–3 have O(22p) computa-

tional complexity. The total computational complexity of this implementation is

therefore

O

log2 η∑
p=1

η22−p22p22p

 = O(η5) = O(n5/2).

4 EXAMPLES

4.1 Image analysis

Figure 2 shows, on the left, a noisy image that was used as an example by Polzehl

and Spokoiny (2000). This example demonstrates the use of our algorithm in the

case where the graph is (V4, E4), which is suggested by the 4-neighborhood.

14



Figure 2: Noisy (top left) and denoised versions of the signal image (top right) of
Polzehl and Spokoiny (2000). The estimates shown are the minimizer of Q(f) (top cen-
ter), wavelet thresholding (bottom left), kernel smoothing (bottom center) and adaptive
weights smoothing (bottom right).

This particular image exhibits areas of solid colour, with sharp discontinuities

between them, as is typical of many images (Polzehl and Spokoiny 2003). Our

algorithm works well on this kind of image, because the areas of solid colour can

be represented by regions of constant value.

There are many proposed methods for choosing the smoothing parameters.

As, at this point, we are only interested in demonstrating our algorithm, we have

employed a simple method suggested by Rudin, Osher and Fatemi (1992). It uses

a global smoothing parameter, λ, and is based around an estimate of the global

variance, σ2. Of course our algorithm allows different smoothing parameters at
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every edge, so we can make use of more elaborate methods if we wish.

In order to find the simplest image for which the residuals behave as expected,

we increase λ until
∑
i∈V4

(fi − yi)
2 = σ̂2|V4|. According to Chambolle (2004)

this value of λ will always exist. Of course we require an estimate of σ2 that is

independent of the residuals. We can use, for example, one similar to that proposed

by Davies and Kovac (2001):

σ̂ =
1.48√

2
median (|yj − yi| : (i, j) ∈ E4) .

In Table 1 we compare this implementation of our algorithm with some other

automatic image denoising algorithms: kernel smoothing, adaptive weights smooth-

ing and wavelet thresholding. The kernel estimate uses a Gaussian kernel with

bandwidth chosen by cross-validation. The adaptive weights smoothing and wavelet

thresholding estimates are, respectively, the defaults of the aws (see Polzehl and

Spokoiny 2000) and wavethresh (see Nason 2008, p. 143) R packages. Adaptive

weights smoothing provides the only estimate that is closer to the signal image, g,

than the minimizer of Q(f). However, the minimizer of Q(f) is not as rough as

the other estimates. The output of our algorithm, the image estimated by use of

the graph (V4, E4), is shown in the top center image of Figure 2.

4.2 Irregularly-spaced data

We compare our algorithm to some other regression methods in a simulation ex-

periment. In each simulation we generated 1000 points uniformly on [0, 1]2 and

connected them via the Delaunay triangulation. At each of these points we calcu-

lated a value from one of the following functions

g1(x1, x2) = exp
(
−100

(
(x1 − 0.5)2 + (x2 − 0.5)2

))
,
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g2(x1, x2) = I[0,1]

(
10(x1 − 0.5)2 + 10(x2 − 0.5)2

)
,

g3(x1, x2) = I[0,0.5](x2),

g4(x1, x2) = (I[0,0.5](x2)− 1)x1 + 1.

To each of these values we added Gaussian noise with zero mean and standard

deviation 0.05, to make 1000 noisy response observations. We then removed half

the observations at random to simulate 500 missing values.

In Table 2 we examine the performance of our estimate, with global smoothing

parameter selected by the same automatic method as the image analysis example.

As there are missing values and hence vertices with zero weight, the minimizer of

Q(f) is not unique. Therefore we let the estimate at every missing value equal the

mean of the estimate at neighboring values. This can be thought of as the limit of

a nonparametric elastic net estimator (Zou and Hastie 2005) as the L2 smoothing

parameter tends to zero. Since we are interested in judging the performance in

terms of both prediction and estimation, Table 2 reports the average, over 100

simulations, mean square error MSE = 1
1000

∑
i∈V(fi − g(x1i, x2i))

2. Davies and

Kovac (2001) mention a mean correction that we have also applied to our estimator.

∑
i∈V4

(fi − gi)2 ∑
(i,j)∈E4 |fj − fi|

Noisy image 65146 147769

Wavelet thresholding 5193 3462

Gaussian kernel estimate 3650 2371

Minimizer of Q(f) 2896 1696

Adaptive weights smoothing 1907 4762

Clean image 0 3787

Table 1: Performance measurements for estimates of the image in Figure 2.
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It typically results in a decrease in MSE. We have compared our estimator with

the graph-based regularization method of Belkin et al. (2004), which uses an L2

penalty term for roughness, and with a kernel estimator (Nadaraya, 1964). These

competing methods had smoothing parameter and bandwidth chosen by 10-fold

cross-validation and also chosen to minimize the average MSE.

Table 2 shows that our algorithm is competitive when compared with other

estimators. The minimizer of Q(f), with an automatic choice of the smoothing

parameter, gives smaller MSE than the estimator with the L2 roughness penalty,

in all examples. Once the mean correction has been applied the minimizer of Q(f)

also has smaller MSE than the kernel smoother.

g1 g2 g3 g4

Minimizer of Q(f)

automatic global smoothing parameter 1.14 11.7 6.43 3.17

mean correction 0.59 11.1 6.18 2.60

L2 roughness penalty

10-fold cross-validation 1.80 12.8 8.04 3.65

minimum MSE 1.31 12.8 7.98 3.47

Gaussian kernel estimator

10-fold cross-validation 0.88 14.8 8.02 3.20

minimum MSE 0.87 12.8 7.18 2.97

Minimizer of Q(f)

automatic edge length smoothing parameter 0.96 9.8 5.23 2.55

mean correction 0.50 9.3 5.01 2.12

Table 2: MSE× 10−3 for different estimators, evaluated for four functions.
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Figure 3: Estimates for one simulation. The original functions (top left) are shown com-
pared with the estimate obtained by minimising Q(f) (top right). The kernel estimate
(bottom left) and estimate with L2 roughness penalty (bottom right) have bandwidth
and smoothing parameters that minimize MSE.

The kernel estimator performs very well when compared to the graph-based

estimators. This is to be expected since the kernel estimator knows the distance

between observations, not just their neighbors. To demonstrate how our algorithm

performs when these distances are known, we let the smoothing parameter at each

edge be proportional to the reciprocal of the length of that edge. The last section of

Table 2 compares the MSE for this enhanced estimator with the kernel estimator

with optimum global bandwidth. Incorporating the edge lengths results in an

improvement over both the original L1 penalty estimator and the kernel estimator.

A further advantage of using the L1 roughness penalty over the L2 roughness

penalty and kernel smoothing is qualitative. Figure 3 shows the estimated surfaces
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from one simulation. When the L2 norm is used as a roughness penalty, very

small smoothing parameters are required to minimize the MSE. Hence the L2

roughness penalty estimate exhibits many additional bumps in locations where the

true function is flat. This is also a problem for the kernel estimator. However the

minimizer of Q(f) produces much simpler functions, without these extra bumps.

There are large regions of constant value where the true functions are flat, so the

estimate is also flat in these locations.

4.3 Classification

If the response observations are binary then a straightforward argument shows

that the minimizer of Q(f) provides an estimate for penalized logistic regression,

and hence can be used for classification (Dümbgen and Kovac 2009). We feed the

algorithm values in {0, 1}, with unit weight, according to the class of the training

data, and give vertices with missing values zero weight, then classify depending on

whether or not the resulting minimizer of Q(f) is greater than 1/2.

We demonstrate our algorithm on the Ionosphere dataset (Frank and Asuncion

2010), which consists of 341 observations of a binary class label and 34 explanatory

variables. We constructed a non-planar graph in which each vertex is connected

to its 6 nearest neighbors in the 34 dimensional space. This graph was used to

demonstrate the L2 penalty method of Belkin et. al (2004) and we will compare

our method with this, and the label spreading method of Zhou et. al (2004).

We performed 100 simulations each for probabilities of missingness between 0.1

and 0.9. Figure 3 shows the test error for the three methods at different proba-

bilities of missing. The L2 penalty method and label spreading have both been

given the smoothing parameter that minimizes the test error. However the results

of our algorithm are based on a crude automatic method of choosing the largest
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smoothing parameter that gives 5% training error. Our algorithm, with L1 rough-

ness penalty, shows an improvement over the method with L2 roughness penalty

and also performs quite well when compared with label spreading, which is better

than both regression-based methods when there are lots of missing observations.
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SUPPLEMENTAL MATERIALS

Appendix: Proofs of all the theorems above, and also proofs of the values asso-

ciated with the events described in Subsection 2.2. (Regression on a Graph

Probability of missingness

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

L2 roughness 0.19 0.20 0.20 0.20 0.21 0.23 0.25 0.28 0.35

penalty (.07) (.04) (.03) (.03) (.02) (.03) (.04) (.06) (.03)

Minimizer 0.14 0.15 0.15 0.15 0.15 0.15 0.15 0.17 0.32

of Q(f) (.07) (.04) (.04) (.03) (.03) (.02) (.02) (.06) (.09)

Label 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.16 0.19

spreading (.07) (.04) (.03) (.03) (.02) (.02) (.02) (.03) (.03)

Table 3: Test errors (standard deviations) at different probabilities of missingness for
three classification methods.
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Appendix.pdf, portable document file)

Computer Code: R and C code that implements our algorithm for all the above

examples. See the file readme.txt for further details. (roag.zip, zip archive)

REFERENCES

Belkin, M., Matveeva, I., and Niyogi, P. (2004), “Regularization and Semi-

supervised Learning on Large Graphs,” in Learning Theory, eds. J. Shawe-

Taylor and Y. Singer, Berlin: Springer-Verlag, pp. 624–638.

Belkin, M., Niyogi, P., and Sindhwani, V. (2006), “Manifold Regularization: A

Geometric Framework for Learning from Labeled and Unlabeled Examples,”

Journal of Machine Learning Research, 7, 2399–2434.

Besag, J. (1989), “Towards Bayesian Image Analysis,” Journal of Applied Statis-

tics, 16, 395–407.

Besag, J., Green, P., Higdon, D., and Mengersen, K. (1995), “Bayesian Compu-

tation and Stochastic Systems,” Statistical Science, 10, 3–66.

Blum, A., and Chawla, S. (2001), “Learning from Labeled and Unlabeled Data

using Graph Mincuts,” in Proceedings of the Eighteenth International Con-

ference on Machine Learning.

Chambolle, A. (2004), “An Algorithm for Total Variation Minimization and Ap-

plications,” Journal of Mathematical Imaging and Vision, 20, 89–97.

Culp, M., and Michailidis, G. (2008). “Graph-Based Semi-Supervised Learning,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, 30, 174–

179.

22



Culp, M., Michailidis, G., and Johnson, K. (2009). “On Multi-view Learning

with Additive Models,” The Annals of Applied Statistics, 3, 292–318.

Davies, P. L., and Kovac, A. (2001), “Local Extremes, Runs, Strings and Mul-

tiresolution,” The Annals of Statistics, 29, 1–65.
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