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Abstract

We consider four different types of multiple domination and provide new
improved upper bounds for the k- and k-tuple domination numbers. They
generalise two classical bounds for the domination number and are better
than a number of known upper bounds for these two multiple domination
parameters. Also, we explicitly present and systematize randomized algo-
rithms for finding multiple dominating sets, whose expected orders satisfy
new and recent upper bounds. The algorithms for k- and k-tuple dominat-
ing sets are of linear time in terms of the number of edges of the input graph,
and they can be implemented as local distributed algorithms. Note that the
corresponding multiple domination problems are known to be NP -complete.

Keywords: Randomized algorithm, k-Domination, k-Tuple domination,
α-Domination, α-Rate domination

1. Introduction

Domination is one of the fundamental concepts in graph theory with var-
ious applications to wireless and ad hoc networks, biological networks, dis-
tributed computing, social networks and web graphs [1, 5, 6, 14]. Dominating
sets are also used as models for facility location problems in operational re-
search. An important role is played by multiple domination. For example,
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k- and k-tuple dominating sets are used for balancing efficiency and fault
tolerance in wireless sensor networks [6, 21, 22].

Wireless sensor networks and ad hoc mobile networks can be considered
as natural examples of applications of multiple domination. A wireless sensor
network (WSN) usually consists of up to several hundred small autonomous
devices to measure some physical parameters. Each device contains a pro-
cessing unit and a limited memory as well as a radio transmitter and a
receiver to be able to communicate with its neighbours. Also, it contains a
limited power battery and is constrained in energy consumption. There is a
base station, which is a special sensor node used as a sink to collect infor-
mation gathered by other sensor nodes and to provide a connection between
the WSN and a usual network.

A routing algorithm allows the sensor nodes to self-organize into a WSN.
As stated in [18], an important goal in WSN design is to maximize the
functional lifetime of a sensor network by using energy efficient distributed
algorithms, networking and routing techniques. To maximize the functional
lifetime, it is important to select some sensor nodes to behave as a backbone
set to support routing communications in an efficient and fault tolerant way.
The backbone set can be considered as a dominating set in the corresponding
underlying graph of the network.

Dominating sets of several different kinds have proved to be useful and
effective for modelling backbone sets. In the recent literature (e.g., see
[6, 21, 22]), particular attention has been paid to construction of m-connected
k- and k-tuple dominating sets in WSNs. Several probabilistic, approximat-
ing and deterministic approaches have been proposed and analyzed. The
backbone set of sensor nodes should be selected as small as possible and, on
the other hand, it should guarantee high efficiency and reliability of network-
ing and communications. This trade-off requires construction of multiple
dominating sets providing energy efficient and reliable data dissemination
and communications.

In this paper, we provide new upper bounds for the k- and k-tuple domi-
nation numbers and explicitly describe effective and efficient randomized al-
gorithms to construct multiple dominating sets, whose expected orders sat-
isfy the new and recently discovered upper bounds. The algorithms arise
from probabilistic constructions used to prove the corresponding bounds.
All the presented algorithms can be implemented in parallel or as local dis-
tributed algorithms in the spirit of [18]. The new upper bounds generalise
two classical bounds for the domination number and improve a number of
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known upper bounds for the multiple domination parameters presented in
[4, 8, 9, 12, 20, 23].

2. Randomized algorithms for multiple domination

2.1. Basic notions, notation, classical results and related work

We consider networks represented by undirected simple finite graphs. If
G is a graph of order n, then V (G) = {v1, v2, ..., vn} is the set of vertices of
G and di denotes the degree of vi, i = 1, . . . , n. Denote by δ = δ(G) and
∆ = ∆(G) the minimum and maximum vertex degrees of G, respectively. Let
N(v) denote the neighbourhood of a vertex v in G, and N [v] = N(v)∪{v} be
the closed neighbourhood of v. A set X ⊆ V (G) is called a dominating set if
every vertex not in X is adjacent to at least one vertex in X. The minimum
cardinality of a dominating set of G is the domination number γ(G).

A set X is called a k-dominating set if every vertex not in X has at least
k neighbours in X. The minimum cardinality of a k-dominating set of G
is the k-domination number γk(G). A set X is called a k-tuple dominating
set of G if for every vertex v ∈ V (G), |N [v] ∩ X| ≥ k. It is obvious that a
k-tuple dominating set is also a k-dominating set. The minimum cardinality
of a k-tuple dominating set of G is the k-tuple domination number γ×k(G).
The k-tuple domination number is only defined for graphs with δ ≥ k − 1.
Clearly, γ×k(G) ≥ γk(G).

Let α be a real number satisfying 0 < α ≤ 1. A set X ⊆ V (G) is called
an α-dominating set of G if for every vertex v ∈ V (G)−X, |N(v)∩X| ≥ αdv,
i.e. v is adjacent to at least dαdve vertices of X. The minimum cardinality
of an α-dominating set of G is called the α-domination number γα(G). The
α-domination was introduced by Dunbar et al. [7]. It is easy to see that
γ(G) ≤ γα(G), and γα1(G) ≤ γα2(G) for α1 < α2. Also, γ(G) = γα(G)
if α is sufficiently close to 0. In [10], we define a set X ⊆ V (G) to be an
α-rate dominating set of G if |N [v]∩X| ≥ αdv for any vertex v ∈ V (G). The
concept of α-rate domination is similar to the concept of k-tuple domination,
and an α-rate dominating set can be considered as a particular case of an
α-dominating set in the same graph. We call the minimum cardinality of an
α-rate dominating set of G the α-rate domination number γ×α(G). It is easy
to see that γα(G) ≤ γ×α(G).

The following fundamental result was independently proved by Alon and
Spencer [2], Arnautov [3], Lovász [16] and Payan [19]. Notice that a simple
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deterministic algorithm to construct a dominating set satisfying bound (1)
can be found in [2].

Theorem 1 ([2, 3, 16, 19]). For any graph G,

γ(G) ≤ ln(δ + 1) + 1

δ + 1
n. (1)

Similar upper bounds for the double and triple domination numbers are
known (see [12] and [20]). For t ≤ δ, the closed t-degree of a graph G is
defined as follows:

d̃t = d̃t(G) =
1

n

n∑
i=1

(
di + 1
t

)
.

Note that d̃1 is the average degree d = d(G) of G plus 1. Zverovich [23]
and Chang [4] have recently proved the following upper bound for the k-
tuple domination number, which originally has been stated as a conjecture
by Rautenbach and Volkmann in [20]. Both proofs independently exploit the
idea of randomly generating a k-tuple dominating set from [9].

Theorem 2 ([4, 23]). For any graph G with δ ≥ k − 1,

γ×k(G) ≤ ln(δ − k + 2) + ln d̃k−1 + 1

δ − k + 2
n. (2)

Theorems 4, 6, 8 and 9 below generalise bound (1) and also the following
Caro–Roditty bound (3), which is one of the strongest known upper bounds
for the domination number:

Theorem 3 ([14], p. 48). For any graph G with δ ≥ 1,

γ(G) ≤
(

1− δ

(1 + δ)1+1/δ

)
n. (3)

2.2. k-Tuple domination

The following theorem improves the upper bound of Theorem 2. Also, the
probabilistic construction used in the proof of Theorem 4 implies randomized
Algorithm 1 to find a k-tuple dominating set, whose order satisfies the bound
of Theorem 4 with a positive probability (Algorithm 1 is written on the same
lines with the algorithm to find an α-rate dominating set). In other words,
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the expectation of the order of the set D returned by Algorithm 1 satisfies
the upper bound of Theorem 4. For t ≤ δ, we define

δ′ = δ − k + 1, bt = bt(G) =

(
δ
t

)
, and b̃t = b̃t(G) =

(
δ + 1
t

)
.

Theorem 4. For any graph G with δ ≥ k,

γ×k(G) ≤

(
1− δ′

b̃
1/δ′

k−1(1 + δ′)1+1/δ′

)
n. (4)

Proof. For each vertex v ∈ V (G), we select δ vertices from N(v) and

denote the resulting set by N ′(v). Let p = 1 − 1/
(
b̃k−1(1 + δ′)

)1/δ′

and let

A be a set formed by an independent choice of vertices of G, where each
vertex is selected with the probability p. For m = 0, 1, ..., k − 1, we denote
Bm = {vi ∈ V (G) − A : |N ′(vi) ∩ A| = m}. Also, for m = 0, 1, ..., k − 2, we
denote Am = {vi ∈ A : |N ′(vi)∩A| = m}. For each set Am, we form a set A′m
in the following way. For every vertex v ∈ Am, we take k−m− 1 neighbours
from N ′(v)−A and add them to A′m. Such neighbours always exist because
δ ≥ k. It is obvious that |A′m| ≤ (k−m− 1)|Am|. For each set Bm, we form
a set B′m by taking k −m − 1 neighbours from N ′(v) − A for every vertex
v ∈ Bm. We have |B′m| ≤ (k −m− 1)|Bm|.

We construct the setD as follows: D = A∪
(⋃k−2

m=0A
′
m

)
∪
(⋃k−1

m=0Bm ∪B′m
)

.

It is easy to see that D is a k-tuple dominating set. The expectation of |D|
is

E(|D|) ≤ E

(
|A|+

k−2∑
m=0

|A′m|+
k−1∑
m=0

|Bm|+
k−1∑
m=0

|B′m|

)

≤ E(|A|) +
k−2∑
m=0

(k −m− 1)E(|Am|) +
k−1∑
m=0

(k −m)E(|Bm|).

We have

E(|Am|) =
n∑
i=1

P(vi ∈ Am) =
n∑
i=1

p

(
δ
m

)
pm(1− p)δ−m = pm+1(1− p)δ−mbmn and

E(|Bm|) =
n∑
i=1

P(vi ∈ Bm) =
n∑
i=1

(1− p)
(
δ
m

)
pm(1− p)δ−m = pm(1− p)δ−m+1bmn.
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Taking into account that b−1 = 0, we obtain

E(|D|) ≤ pn+
k−2∑
m=0

(k −m− 1)pm+1(1− p)δ−mbmn+
k−1∑
m=0

(k −m)pm(1− p)δ−m+1bmn

= pn+
k−1∑
m=1

(k −m)pm(1− p)δ−m+1bm−1n+
k−1∑
m=0

(k −m)pm(1− p)δ−m+1bmn

= pn+ (1− p)δ−k+2n
k−1∑
m=0

(k −m)pm(1− p)k−m−1(bm−1 + bm).

Furthermore, for 0 ≤ m ≤ k − 1,

(k −m)(bm−1 + bm) = (k −m)
(
δ + 1
m

)
≤

δ−k+2∏
j=1

(k −m+ j − 1)
j

(
δ + 1
m

)

=
(
δ −m+ 1
δ − k + 2

)(
δ + 1
m

)
=
(
k − 1
m

)(
δ + 1
k − 1

)
=
(
k − 1
m

)
b̃k−1.

We obtain

E(|D|) ≤ pn+ (1− p)δ
′+1nb̃k−1

k−1∑
m=0

(
k − 1

m

)
pm(1− p)k−m−1

= pn+ (1− p)δ
′+1nb̃k−1 ≤

(
1− δ′

b̃
1/δ′

k−1(1 + δ′)1+1/δ′

)
n,

as required. The proof of the theorem is complete.

The proof of Theorem 4 implies the following result, which improves the
bound of Theorem 2 and generalises the classical bound (1).

Corollary 5. For any graph G with δ ≥ k − 1,

γ×k(G) ≤ ln(δ − k + 2) + ln b̃k−1 + 1

δ − k + 2
n.

Proof. Using the inequality 1− p ≤ e−p, the proof of Theorem 4 implies a
weaker upper bound for E(|D|):

E(|D|) ≤ pn+ e−p(δ
′+1)nb̃k−1.

The result easily follows if we put p = min{1, ln(δ′+1)+ln b̃k−1

δ′+1
}. Note that if

p = 1, then ln(δ′+1)+ln b̃k−1

δ′+1
≥ 1 and the upper bound is obviously true.
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Algorithm 1: Randomized k-tuple dominating set (resp., α-rate dom-
inating set)

Input: A graph G and an integer k, k ≤ δ (resp., a real number α,
0 < α ≤ 1).

Output: A k-tuple (resp., α-rate) dominating set D of G.

begin

Compute p = 1− 1/
(

(1 + δ′)b̃k−1

)1/δ′

(resp., p′ = 1− 1/
(

(1 + δ̂)d̃α

)1/bδ
);

Initialize A = ∅; /* Form a set A ⊆ V (G) */

foreach vertex v ∈ V (G) do
with the probability p (resp., p′), decide if v ∈ A or v /∈ A;

end
Initialize B = ∅; /* Form a set B ⊆ V (G)− A */

foreach vertex v ∈ V (G) do
Compute r = |N [v] ∩ A|;
if r < k (resp., r < αdv) then

if v ∈ A then
add any k − r (resp., dαdve − r) vertices from N(v)− A
into B;

else /* v /∈ A */
add v and any k − r − 1 (resp., dαdve − r − 1) vertices
from N(v)− A into B;

end

end

end
Put D = A ∪B; /* D is a k-tuple (resp., α-rate)
dominating set */

return D;
end
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In some cases, Theorem 4 provides a much better upper bound than the
bound of Corollary 5, and hence the bound of Theorem 2. For example, let
G be a 20-regular graph. Then, according to Corollary 5, γ×5(G) < 0.738n,
while Theorem 4 yields γ×5(G) < 0.543n. Thus, a k-tuple dominating set
returned by Algorithm 1 in this case is expected to be much smaller than the
upper bound of Theorem 2.

2.3. k-Domination

Algorithm 2 presented below is a randomized algorithm to find a k-domin-
ating set whose order satisfies the upper bound of Theorem 6 with a positive
probability (Algorithm 2 is written on the same lines with the algorithm
to find an α-dominating set). The algorithm is based on the probabilistic
construction used in the proof of Theorem 6, and the expectation of the order
of the set D returned by Algorithm 2 satisfies the upper bound of Theorem
6.

Theorem 6. For any graph G with δ ≥ k,

γk(G) ≤

(
1− δ′

b
1/δ′

k−1 (1 + δ′)1+1/δ′

)
n.

Proof. For each vertex v ∈ V (G), we select δ vertices from N(v) and denote

the resulting set by N ′(v). Let p = 1 − 1/(bk−1(1 + δ′))1/δ′ and let A be a
set formed by an independent choice of vertices of G, where each vertex is
selected with the probability p. For m = 0, 1, ..., k − 1, let us denote

Bm = {vi ∈ V (G)− A : |N ′(vi) ∩ A| = m}.

We construct the set D as follows:

D = A ∪

(
k−1⋃
m=0

Bm

)
.

It is easy to see that D is a k-dominating set. The expectation of |D| is

E(|D|) ≤ E

(
|A|+

k−1∑
m=0

|Bm|

)
= E(|A|) +

k−1∑
m=0

E(|Bm|).
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We have

E(|Bm|) =
n∑
i=1

P(vi ∈ Bm) =
n∑
i=1

(1− p)
(
δ
m

)
pm(1− p)δ−m = pm(1− p)δ−m+1bmn.

Therefore,

E(|D|) ≤ pn+
k−1∑
m=0

pm(1− p)δ−m+1bmn

= pn+ (1− p)δ−k+2n
k−1∑
m=0

pm(1− p)k−m−1bm.

Furthermore, for 0 ≤ m ≤ k − 1,

bm =

(
δ

m

)
≤
(

δ −m
δ − k + 1

)(
δ

m

)
=

(
k − 1

m

)(
δ

k − 1

)
=

(
k − 1

m

)
bk−1.

We obtain

E(|D|) ≤ pn+ (1− p)δ
′+1nbk−1

k−1∑
m=0

(
k − 1

m

)
pm(1− p)k−m−1

= pn+ (1− p)δ
′+1nbk−1

≤

(
1− δ′

b
1/δ′

k−1 (1 + δ′)1+1/δ′

)
n,

as required. The proof of Theorem 6 is complete.

An analogue of Theorem 2 and Corollary 5 for the k-domination number
easily follows from Theorem 6:

Corollary 7. For any graph G with δ ≥ k,

γk(G) ≤ ln(δ − k + 2) + ln bk−1 + 1

δ − k + 2
n.

Proof. The proof is similar to that of Corollary 5.

It may be pointed out that Corollary 7 generalises the classical bound
(1).
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Algorithm 2: Randomized k-dominating set (resp., α-dominating set)

Input: A graph G and an integer k, k ≤ δ (resp., a real number α,
0 < α ≤ 1).

Output: A k-dominating (resp., α-dominating) set D of G.

begin

Compute p = 1− 1/((1 + δ′)bk−1)
1/δ′

(resp., p′ = 1− 1/
(

(1 + δ̂)d̂α

)1/bδ
);

Initialize A = ∅; /* Form a set A ⊆ V (G) */

foreach vertex v ∈ V (G) do
with the probability p (resp., p′), decide if v ∈ A or v /∈ A;

end
Initialize B = ∅; /* Form a set B ⊆ V (G)− A */

foreach vertex v ∈ V (G)− A do
if |N(v) ∩ A| < k (resp., |N(v) ∩ A| < αdv) then

/* v is dominated by fewer than k (resp., αdv)
vertices of A */

add v into B;
end

end
Put D = A ∪B; /* D is a k-dominating (resp.,

α-dominating) set */

return D;
end
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2.4. Related results for α-domination and α-rate domination
The concept of α-domination is different from k-domination in that a ver-

tex must be dominated by a percentage of the vertices in its neighbourhood
instead of a fixed number of its neighbours. However, the above randomized
algorithms for α-domination and k-domination are very similar. Intuitively,
in a homogeneous WSN, since sensor nodes may fail or consume all of their
energy resources in an unbalanced and poorly predictable way, it might be
more effective and reasonable to dominate a sensor node by a certain per-
centage of its neighbourhood nodes instead of a fixed number of neighbours.

The problem of deciding whether γα(G) ≤ q for a positive integer q is
known to be NP -complete [7]. Therefore, it is important to have good upper
bounds for the α-domination number and efficient algorithms to find ‘small’
α-dominating sets. The following bounds for the α-domination number are
proved in [7], wherem is the number of edges inG (note thatm = 1

2

∑n
i=1 di =

(d̃1 − 1)n/2 = dn/2):

αδn

∆ + αδ
≤ γα(G) ≤ ∆n

∆ + (1− α)δ
(5)

and
2αm

(1 + α)∆
≤ γα(G) ≤ (2− α)∆n− (2− 2α)m

(2− α)∆
. (6)

For 0 < α ≤ 1, the α-degree of a graph G is defined as follows:

d̂α = d̂α(G) =
1

n

n∑
i=1

(
di

dαdie − 1

)
.

Also, we put
δ̂ = bδ(1− α)c+ 1.

The following theorem proved in [10] generalises the upper bound (3) for
the α-domination number. Indeed, if di ≥ 1 are fixed for all i = 1, . . . , n,
and α is sufficiently close to 0, then δ̂ = δ and d̂α = 1. Notice that in some
cases Theorem 8 provides a much better bound than the upper bounds in
(5) and (6). For example, if G is a 1000-regular graph, then Theorem 8 gives
γ0.1(G) < 0.305n, while (5) and (6) yield only γ0.1(G) < 0.527n.

Theorem 8 ([10]). For any graph G,

γα(G) ≤

1− δ̂

(1 + δ̂)
1+1/bδ

d̂
1/bδ
α

n. (7)
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Algorithm 2, written on the same lines with the algorithm to find a k-
dominating set, is a randomized algorithm to find an α-dominating set D,
whose order satisfies the upper bound of Theorem 8 with a positive prob-
ability. In other words, the expectation of the order of set D returned by
Algorithm 2 satisfies the upper bound of Theorem 8 (see [10] for details).

Theorem 8 easily implies the following generalisation of the well-known
bound of Theorem 1:

γα(G) ≤ ln(δ̂ + 1) + ln d̂α + 1

δ̂ + 1
n.

The concept of α-rate domination combines the concepts of α-domination
and k-tuple domination. For 0 < α ≤ 1, the closed α-degree of a graph G is
defined as follows:

d̃α = d̃α(G) =
1

n

n∑
i=1

(
di + 1
dαdie − 1

)
.

In fact, the only difference between the α-degree and the closed α-degree is
that to compute the latter, we choose from di + 1 vertices instead of di, i.e.
from the closed neighbourhood N [vi] of vi instead of N(vi), i = 1, . . . , n.

Algorithm 1 above, written on the same lines with the algorithm to find
a k-tuple dominating set, is a randomized algorithm to find an α-rate dom-
inating set D. The expectation of the order of the α-rate dominating set D
returned by Algorithm 1 satisfies the upper bound of Theorem 9 below. This
can be easily deduced from the detailed proof of Theorem 9 in [10]. Also,
Theorem 9 provides an analogue of the Caro–Roditty bound (Theorem 3)
for the α-rate domination number.

Theorem 9 ([10]). For any graph G and 0 < α ≤ 1,

γ×α(G) ≤

1− δ̂

(1 + δ̂)
1+1/bδ

d̃
1/bδ
α

n. (8)

Note that, similar to Theorem 8, Theorem 9 also implies the following
generalisation of the classical upper bound (1):

γ×α(G) ≤ ln(δ̂ + 1) + ln d̃α + 1

δ̂ + 1
n.
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3. Complexity and implementation

For complexity analysis, we only consider sequential implementation of
the presented algorithms for k- and k-tuple dominating sets. The complexity
analysis of the algorithms for α- and α-rate dominating sets is similar – the
only difference is in the calculation of p′.

An essential part of the algorithms is to compute the binomial coefficients(
a
b

)
. By definition,

(
a
b

)
=

a!

b!(a− b)!
=
a(a− 1) . . . (a− b+ 1)

b!
=
a(a− 1) . . . (b+ 1)

(a− b)!
,

and it can be computed in O(a) time in terms of elementary operations of
multiplication, division, addition and subtraction. However, since in the
worst case scenario the required memory usage to store the products is
O(a log a), writing to (reading from) the memory would require O(a log a)
time. In practice, to overcome the memory and reading (writing) operations
requirements (e.g., see pages 93–96 in [17]), the commonly used approach
is to compute the binomial coefficient by using dynamic programming and
Pascal’s triangle. In this case, the time complexity to compute the binomial
coefficient would be O(ab) = O(a2), and the memory usage is O(b) = O(a).

We assume that computing the binomial coefficient is done in O(a2) time
and that an input graph G has no isolated vertices. It is easy to see that
the minimum vertex degree δ of G can be computed in O(m) time, where
m is the number of edges in G. We will show that Algorithm 1 can take up
to O(m) = O(m + n) time, where n = |V (G)|. More precisely, in reference
to Algorithm 1, a worst case scenario when k is close to δ/2 may require

O(δ2) steps to compute b̃k−1, and δ′ can be computed in O(1). Therefore,
in total, it takes O(δ2) steps to compute the probability p. Note that O(δ2)
does not exceed O(m). Clearly, it takes O(n) time to find the set A. The
numbers r = |N [v] ∩ A| for each v ∈ V (G) can be computed separately or
when finding the set A. In any case, we need to keep track of them only
up to r = k. Since we may need to browse through all the neighbours of
vertices in A, in total it can take O(m) steps to calculate all the necessary
r’s for each vertex v ∈ V (G). Then the set B can be also found in O(m)
steps. Thus, in total, Algorithm 1 runs in O(m) time. For Algorithm 2, a
complexity analysis similar to that of Algorithm 1 shows that it can take up
to O(m) steps to find a k-dominating set.
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Algorithms 1 and 2 are presented here in a form consistent with the
proofs of the corresponding theorems. However, when implementing these
algorithms, the output sets D can be constructed more efficiently and effec-
tively by a recursive extension of the corresponding initial set A. In other
words, instead of adding missing vertices into the sets B, we can add them
directly into A. This can result in a smaller k-tuple, k-, α- or α-rate domi-
nating set D, respectively.

It is easy to see that, as soon as probability p (resp., p′) is known to all
the vertices (sensor nodes in a WSN), Algorithms 1 and 2 can be easily and
efficiently implemented in parallel or as local distributed algorithms. This is
particularly important in case of WSNs (see [18] for details). To compute the
probability p (resp., p′) and to distribute its value to all the network nodes
(graph vertices) in a WSN, one needs to use a data gathering round and a data
distribution round coordinated from a base station or a selected super-node
(vertex). When this is done, to construct the corresponding multiple domi-
nating set for the whole network (graph), each network node (graph vertex)
only needs to gather and communicate information locally in its own neigh-
bourhood. It would be also interesting to obtain reasonable online versions
of these algorithms for a realistic case scenario when the network changes
dynamically and network nodes obtain information about the whole network
and local neighbourhoods gradually in time.

4. Final remarks

Some bounds for the connected k-domination number can be found in
[11]. To the best of our knowledge, the concept of α-domination is still to
be explored in WSNs. Intuitively, since sensor nodes may fail or consume
their energies in an unbalanced and poorly predictable way, it might be more
effective and reasonable to dominate a sensor node by a certain percentage
of its neighbourhood nodes instead of a fixed number of neighbours. Con-
struction and analysis of multiple dominating sets should lead to a better
balance between efficiency and fault tolerance in WSNs and help to extend
the functional lifetime of a network. It seems reasonable to do simulations
with random data by analogy with the models and results presented in [6].

Another direction in this research could be to use concentration bounds to
show that the probability of significant deviation of the algorithmic outputs
from their expected values are sufficiently small. However, proving some of
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the concentration bounds has shown up to be quite challenging and seems to
be a marvelous extension of this research.

We wonder if it is possible to derandomize any of the presented algorithms
or to obtain independent deterministic algorithms to find corresponding dom-
inating sets satisfying the upper bounds of Theorems 4, 6, 8 and 9. Harant
and Henning [13] have recently found a realization algorithm to find a double
dominating set satisfying the upper bound of Theorem 2. The algorithm can
be considered as a derandomization of the corresponding probabilistic con-
struction used in [12] to prove the upper bound for the double domination
number. Algorithms approximating the α- and α-rate domination numbers
up to a certain degree of precision would be interesting as well. For the k-
tuple domination number, an interesting approximation algorithm was found
by Klasing and Laforest [15].
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