THE UNIVERSITY OF THE WEST OF ENGLAND, BRISTOL

FORM RD14

CANDIDATE'S DECLARATION FORM

- 1 **NAME OF CANDIDATE: AARON MARAMBA
- 2 DEGREE FOR WHICH THESIS IS SUBMITTED: **Professional Doctorate (DBMS)**
- 3 TITLE OF THESIS: ZAP-70 PHOSPHORYLATION AND OTHER PROGNOSTIC FACTORS IN ADULT B-CHRONIC LYMPHOCYTIC LEUKAEMIA
- 4 MATERIAL SUBMITTED FOR ANOTHER AWARD
 - I declare that no material contained in the thesis has been used in any other submission for an academic award.

or

* I declare that the following material contained in the thesis formed part of a submission for the award of

(State award and awarding body and list the material below)

5 CONFIRMATION OF CONTENTS

I confirm that the contents of the permanently bound thesis are identical with the version submitted for examination except where amendments have been made to meet the requirements of the examiners.

**THE NAME AT THE TOP OF THIS FORM IS THE ONE THAT APPEARS ON OUR RECORD AND WILL APPEAR ON YOUR CERTIFICATE (signing below will confirm unless stated)

* Delete as appropriate

For official use

Date received:

Acknowledgements

I would like to thank my supervisor and director of studies Dr Craig Donaldson for his invaluable guidance and support throughout my DBMS. I am very grateful to all the DBMS staff, especially Dr Lynne Lawrence, Dr Ruth Morse, and Dr Michael Ladomery. My appreciation goes to Dr Mark Lowdell for allowing me to use his laboratory and for his advice on aspects of my project, and Ms Janet North for the technical guidance throughout. I also would like to thank Dr Gitendra-Wickremasinghe for allowing me to use some of his frozen B-CLL samples for retrospective studies.

I would like to thank the British Society for Haematology for a grant they awarded me in support of this project. I am also very grateful to the haematology department at Royal Free for allowing me access to the IgVH gene mutation results, especially Mr Jim Griffiths, who supported me during the initial stages of this thesis and organised the financial support to kick start my study. I also would like to acknowledge Mrs Saida Solkar, Ms Faith Wright and Ms Juliette Gevao who supported me in undertaking this Professional Doctorate alongside my professional practice. Great appreciation goes to Dr Steve Hart for his guidance and support and to Mr Jeff Lucas for helping with data analysis.

I would like to acknowledge all my fellow colleagues at the Royal Free Hospital and all my friends who constantly encouraged me to complete this thesis. Special thanks go to my wife and children for their encouragements throughout this long journey.

Dedications

I would like to dedicate this thesis to my late beloved brother Phillip Ganye Maramba who untimely passed away on his birthday in 2011 after a road traffic accident. May his soul rest with eternal peace!

Abstract

B chronic lymphocytic leukaemia (B-CLL) is a disease with an enormously heterogeneous prognosis. Due to lack of effective treatments and the heterogeneity in its course, B-CLL has remained largely incurable. In the last two decades a number of biological markers have been recognised as prognostic parameters to replace clinical staging, chief among them is ZAP-70 (a T-cell cytoplasmic tyrosine protein) albeit without a full understanding of the mechanism involved.

The aim of this thesis was to identify reliable prognostic factors that could be used in the management of B-CLL patients. Seventy-six B-CLL patients were studied over 30 months using a random stratified method of sampling, whereby adult B-CLL patients were recruited at different stages of the disease. Retrospective studies enabled some patients to be studied for up to 192 months. ZAP-70 expression was demonstrated in some B-CLL cells and was examined for possible phosphorylation following B-CLL cells stimulation, implying its involvement in cell signalling. Through the use of a novel method developed during the present study, B-CLL cells were stimulated via the SDF1- α -CD184 signalling pathway resulting in ZAP-70 phosphorylation. Its expression and phosphorylation was investigated alongside other prognostic factors and also correlated with B-CLL progression. More importantly, this study demonstrated that ZAP-70 positive cells are more responsive to signals derived from their surrounding environment, such as SDF-1 α .

In conclusion ZAP-70, CD38, and CD23 expressions together with IgVH gene mutational status were confirmed as indicators of poor prognosis. Response to external stimuli by some B-CLL cells, resulting in ZAP-70 phosphorylation represents the most novel aspect of this thesis and demonstrates ZAP-70 involvement in B-CLL signalling. Additionally, raised NK: B-CLL and T: B-CLL cell ratios were identified as good modifiable variable predictors of time to treatment that could be used for monitoring and therapeutic purposes. Since B-CLL is an incurable disease, the identification of prognostic factors could help in deciding the best time for intervention in B-CLL patients.

CONTENTS

Page No.		
Declaration		I
Acknowledg	jements	П
Dedications		ш
Abstract		IV
List of Conte	ents	v
List of Figur	res	XI
List of Table	es a la companya de l	XVI
List of Abbr	eviations	XVII
Publications	3	XXI
CHAPTER	1: General introduction	1
1.1.0	Chronic lymphocytic leukaemia and B cell development	2
1.1.1	Normal B-Cell development	6
1.1.2	Normal B cell development in the bone marrow	8
1.1.3	B-cell surface IgM expression	11
1.1.4	B cell activation	15
1.2.0	Essential steps in B-CLL development and its biology	16
1.2.1	Genesis of chronic lymphocytic leukaemia	18
1.2.2	Immunoglobulin V genes in B-CLL	21
1.2.3	B-cell receptors (BCR) in B-CLL	22
1.2.4	Stromal cell-derived factor-1 α and its receptor CD184	24
1.2.5	CD184 expression in B-CLL	26
1.3	Prognostic markers for B-CLL	28
1.3.1	ZAP-70 in B-CLL	28

	1.3.2	Immunoglobulin heavy-chain gene mutation status in B-CLL	32
	1.3.3	CD38 expression in B-CLL	33
	1.3.4	P53 expression in B-CLL	34
	1.3.5	Lymphocyte doubling time and overall survival in B-CLL	37
	1.3.6	Binet staging for B-CLL	38
	1.4.0	Treatment for B-CLL	39
	1.4.1	Radiotherapy for B-CLL	40
	1.4.2	Chemotherapy for B-CLL	42
	1.4.2.	1 Chemotherapy drugs for B-CLL and mode of action	45
	1.4.2.	2 Mechanism of action of steroids in B-CLL	48
	1.4.3	Biologic or immunotherapy for B-CLL	50
	1.4.4	Clinical trials for B-CLL	52
	1.4.5	Bone marrow and stem cell transplant for B-CLL	55
	1.4.6	Novel therapies under clinical trials investigation	57
	1.5	Aims of the thesis	61
Chap	oter 2:	Protocol optimisation	63
	2.1	Introduction	63
	2.1.1	Instrument settings	64
	2.1.2	Theory on antigen-antibody binding	66
	2.1.3	Kinetics	66
	2.1.4	CD184 epitope density and its reactive potential	67
	2.1.5	IgM expression and its reactivity properties	68
	2.1.6	ZAP-70 expression	69
	2.2	Aims	69
	2.3	Methods	70

	2.3.1	Instrument setup	70
	2.3.2	Gating strategy	73
	2.3.3	Ficoll-paque versus lymphoprep: cell viability analysis	74
	2.3.4	ZAP-70 Analysis	75
	2.3.5	Optimizing the volume of the stimulant	76
	2.3.6	Optimising the stimulation time	77
	2.3.7	BD fixation and permeabilisation	77
	2.3.8	Dako intrastain fixation and permeabilisation	78
	2.3.9	Comparison of the BD and Dako fix and perm protocols	78
	2.4	Results	79
	2.4.1	Gating strategy	79
	2.4.2	Isotype controls	81
	2.4.3	ZAP-70 labelling before surface antigen staining	84
	2.4.4	Jurkat cells as positive controls	86
	2.4.5	Stimulant of choice	87
	2.4.6	Volume of the stimulant (SDF1 α and anti-IgM)	89
	2.4.7	Optimum time for stimulating fresh cells	89
	2.4.8	Effect of freezing and thawing on phosphorylation	91
	2.4.9	Fixation and permeabilisation reagent choice (Dako Vs BD)	93
	3.5	Discussion and concluding remarks	96
Chap	oter 3:	Materials and general methods	100
	3.1	Equipment	100
	3.2	Materials and reagents	100

3.3	Patient selection and sample preparation	103
3.3.1	Preparation of stored samples	108
3.3.2	Thawing of previously stored samples	108
3.3.3	Viability testing	109
3.3.4	Preparation of mononuclear cells from fresh samples	110
3.3.5	Cell Counting	111
3.3.6	Lyse-and-then-wash method for harvesting white cells	111
3.3.7	Jurkat (human T-cell leukaemia) cell line	112
3.4	Flow cytometry	112
3.4.1	Surface antigens labelling	112
3.4.2	ZAP-70 analysis	112
3.4.3	Phosphorylation of intracellular ZAP-70 (pY292 and 319)	113
2.4.3.	1 IgM stimulation for cell lines	113
3.4.3.	2 SDF1- α stimulation of B-CLL cells	113
3.4.4.	3 Stimulation of Jurkat cells	113
3.4.3.	4 Dako intra stain fixation and permeabilisation protocol	114
3.4.3.	5 Flow cytometric data analysis for pY-ZAP-70	114
3.5	IgVH gene mutation analyses	115
3.5.1	Choice of materials and detection of clones	116
3.5.2	Screening for mutations in the clone hetero-duplex analysis	s 117
3.5.3	Sequencing of the IgVH gene	118
3.6	Statistical analysis	119

Chap	oter 4	ZAP-70 as a prognostic marker in B-CLL	120
	4.1	Introduction	120
	4.2	Aims and objectives	124
	4.2.1	Primary objectives	124
	4.3	Methods	124
	4.3.1	Laboratory determination of ZAP-70 expression	125
	4.3.2	ZAP-70 phosphorylation	125
	4.3.3	Statistical analysis	125
	4.4	Results	126
	4.4.1	Significance of ZAP-70 in B-CLL	130
	4.4.2	Correlation of ZAP-70 and its phosphorylation status	139
	.4.3	Multiple correlations for ZAP-70	141
	4.4.4	Changes in ZAP-70 expression during the course of B-CLL	148
	4.5	Discussion	152
Chap	oter 5	Other prognostic markers for B-CLL	158
	5.1	Current knowledge of prognostic markers in B-CLL	158
	5.1.2	Established prognostic markers in B-CLL	159
	5.1.3	New prognostic markers	160
	5.2	Aims	161
	5.3	Methods	162
	5.3.1	Full blood counts	162
	5.3.2	Flow cytometry	162
	5.3.3	IgVH gene mutation analyses	162
	5.3.4	Statistical analysis	162
	5.4	Results	163

5.	.4.1	Contextualising stable and progressive disease	163
5.	.4.2	B-CLL course in relation to traditional prognostic markers	167
5.	.4.3	CD23 expression patterns in B-CLL patients	170
5.	.4.4	Common IgVH genes in B-CLL	174
5.	.4.5	Multiple correlations	177
5.	.4.6	BCR expression in B-CLL	181
5.	.4.7	Response to therapy	184
5.	.5 Dis	scussion	187
Chapte	er 6:	General discussion and conclusion	193
6.	.1	Method development	194
6.	.2	ZAP-70 expression in B-CLL and its prognostic significance	
			194
6.	.3	ZAP-70 correlations with other prognostic indicators	196
6.	.4	B-Cell receptors in B-CLL	199
6.	.5	Modifiable prognostic characteristics in B-CLL	200
6.	.6	Interpretation and application of prognostic markers	201
6.	.7	Conclusion	205
6.	.8	Future work	206
Chapte	er 7:	Reflective	208
7.	.1	Introduction	208
7.	.2	Commencing the DBMS	210
7.	.3	The research project	212
Chapte	er 8:	References	219
APPEN	APPENDICES 252		252

List of Figures

Figure 1.1	Incidence of chronic lymphocytic leukaemia in the UK 3
Figure 1.2	Appearance of Romanowsky stained peripheral blood film from
	a patient with B-CLL 5
Figure 1.3	Sequence of events and characteristics of the stages in B cell
	maturation in the bone marrow and periphery 7
Figure 1.4	B cell development in the bone marrow 8
Figure 1.5	Schematic diagram of sequential expression of membrane
	immunoglobulin and surrogate light chain at different stages of
	B-cell differentiation in the bone marrow 9
Figure 1.6	Comparison between B-1 and B-2 B cells' attributes 10
Figure 1.7	Pentameric IgM and monomeric IgG1 structures 11
Figure 1.8	Complementarity determining regions (CDR) on the monomeric
	structure of the IgM 12
Figure 1.9	BCR and the B-cell co-receptor activation and signalling 14
Figure 1.10	BCR and CXCR4 activation and signalling demonstrating the
	interactions between B-CLL cell and its microenvironment 24
Figure 1.11	Schematic structure of ZAP-7028
Figure 1.12	The balance of negative and positive signals 30
Figure 1.13	The <i>p53</i> signalling pathway 36
Figure 1.14	Mechanism of action of DNA-damaging drugs 44
Figure 1.15	Mechanism of action and resistance of traditional DNA-
	damaging anti-cancer drugs 47
Figure 2.1	CST beads dot plot and histograms 72
Figure 2.2	Sequential gating strategy for surface antigens79

Figure 2.3	Sequential and reverse gating for ZAP-70	80
Figure 2.4	Isotype control for a ZAP-70 negative sample	82
Figure 2.5	Isotype control for a ZAP-70 positive sample	83
Figure 2.6	Effect of Fixation and permeabilisation on surface antigens	
		85
Figure 2.7	Effect of H ₂ O ₂ treatment of Jurkat cells	86
Figure 2.8	Comparison of IgM and CD184 expression on B-CLL cells	from
	two patients	87
Figure 2.9	Determination of optimum time for ZAP-70 phosphorylation	90
Figure 2.10	Freeze and thaw effect on ZAP-70 phosphorylation	92
Figure 2.11	Comparison between BD Biosciences and Dako Cytomatic	on fix
	and perm reagents for tyrosine 292 phosphorylation	94
Figure 2.12	Comparison between BD Biosciences and Dako Cytomatic	on fix
	and perm reagents for tyrosine 319 phosphorylation	95
Figure 3.1	Lymphocyte harvesting	111
Figure 3.2	Representative photograph of IgVH somatic hypermut	ation
	hetero-duplex gel	118
Figure 4.1	Structural organisation of Inactive ZAP-70 and comparison	with
	auto-inhibited Scr family kinases	122
Figure 4.2	Comparison of the lymphocyte counts at diagnosis	127
Figure 4.3	Comparison of patients' survival times based on ZA	P-70
	expression in B-CLL cells	128
Figure 4.4	ZAP-70 in female and male patients	130
Figure 4.5	ZAP-70 expressions for kappa and lambda chain restri	ction
	patients	131

Figure 4.6 Comparison of ZAP-70 between treated and untreated patients 132

Figure 4.7	Survival times for patients who did not receive treatment 1	33
Figure 4.8	Comparison of time to treatment (TT) between ZAP-70 negat	ive
	and ZAP-70 positive patients 1	34
Figure 4.9	Comparison of survival times and time to first treatment for	B-
	CLL patients with <20% ZAP-70 expression who received	/ed
	treatment 1	35
Figure 4.10	Comparison of survival times and time to first treatment for	B-
	CLL patients with >20% ZAP-70 expression who received	/ed
	treatment 1	36
Figure 4.11	Comparison of the survival times for patients with ZAP-70	in
	>20% B-CLL cells	37
Figure 4.12	Survival times for both treated and untreated B-CLL patients 1	38
Figure 4.13	One-way ANOVA test with Dunn's multiple comparison tests	
	1	43
Figure 4.14	Tyrosine 292 phosphorylation and other prognostic markers	; in
	adult B-CLL patients 1	44
Figure 4.15	Tyrosine 319 phosphorylation and other prognostic markers	in
	adult B-CLL patients 1	45
Figure 4.16	ZAP-70 phosphorylation in the presence other markers 1	46
Figure 4.17	Comparison between tyrosines 292 and 319 phosphorylation	
	1	47

Figure 4.18ZAP-70 expression changes in 14 B-CLL patients148

Figure 4.19	Comparison between peripheral blood and bone marrow 2	ZAP-
	70 expression	151
Figure 5.1	Lymphocyte counts in stable and progressive B-CLL	164
Figure 5.2	Comparison of mean lymphocyte counts between treated	and
	untreated B-CLL cases	165
Figure 5.3	CD5 expressions as a function of peripheral blood lympho	ocyte
	counts in B-CLL patients	166
Figure 5.4	Comparison of CD38 expression in stable and progressiv	e B-
	CLL patients	169
Figure 5.5	ZAP-70 levels between stable and progressive B-CLL	169
Figure 5.6	Comparison between CD5 and CD23 on B-CLL cells	170
Figure 5.7	Comparison of CD23 expression between low level B-CLL	and
	advanced disease	171
Figure 5.8	One-way ANOVA Comparisons of CD23 expression and B	-CLL
	course	173
Figure 5.9	IgVH gene mutations detected	175
Figure 5.10	Comparisons for ZAP-70 expression in relation to VH3-21	176
Figure 5.11	Comparisons for CD38 expression in relation to VH3-21	177
Figure 5.12	CD38 expressions between IgVH mutated and unmutate	d B-
	CLL patients	179
Figure 5.13	One-way ANOVA comparison of CD23 expression and o	other
	prognostic markers	180
Figure 5.14	Multiple comparisons for BCR and ZAP-70	181
Figure 5.15	Linear regression curves for IgM versus CD184 expressions	182

Figure 5.16 Comparison of CD184 expression between IgM weak and IgM medium expressing B-CLL cells 182

List of Tables

Table 1.1	B-cell chronic lymphocytic leukaemia immunophenoty	pe in
	comparison to mantle cell and follicular lymphoma	20
Table 1.2	A summary of some published studies of consolidation I	3-CLL
	trials	54
Table 3.1	Patient demographics	104
Table 4.1	Observed trends in the three groups based on B-CLL cells	ZAP-
	70 levels	126
Table 4.2	Characterisation of B-CLL patients who died during the stu-	dy
		129
Table 4.3	ZAP-70 correlation tests	140
Table 4.4	ZAP-70 associations with other prognostic markers	141
Table 4.5	Nonparametric correlations	142
Table 4.6	ZAP-70 fluctuation in peripheral blood over time	149
Table 4.7	ZAP-70 expression differences between PB and BM at the	same
	time	150
Table 5.1	B-CLL course and the associated prognostic markers	168
Table 5.2	Characteristic of patients with low level disease	172
Table 5.3	Pearson correlation analyses	178
Table 5.4	Spearman's correlations for BCR expression in B-CLL	183
Table 5.5	B-CLL response to therapy and the associated markers	185
Table 6.1	Studies to evaluate prognostic power of different markers	202

List of Abbreviations

ADCC	Antibody-dependent cellular cytotoxicity
ALL	Acute lymphoblastic leukaemia
AML	Acute myeloid leukaemia
APC	Allophycocyanin
ATM	Ataxia telangiectasia mutated
BCR	B cell receptor
BLNK	B-cell linker
BM	Bone marrow
BMT	Bone marrow transplant
BSAP	B-cell lineage specific activator protein
CADPR	Cyclin adenosine diphosphate-ribose
CXC	Chemokines that are classified depending on the spacing and
	number of their conserved cysteine residue
CCR	Chemokine receptor
CD	Cluster of differentiation
CDR	Complimentarity determining region
CHOP	Cyclophosphamide + Hydrodoxydaunorubicin + Oncovin +
	Predinisone
CLL	Chronic lymphocytic leukaemia
CML	Chronic myeloid leukaemia
CPD	Continuous Professional Development
CST	Cytometer setup and tracking
DBMS	Professional doctorate in biomedical science
DMSO	Dimethyl sulphoxide

DNA	Deoxyribonucleic acid
EBF	Early B-cell factor
EBRT	External beam radiotherapy
EBV	Epstein barr virus
EDTA	Ethylene-diamine-tetra-acetic acid
ELC	EBV-induced receptor ligand chemokine
ERK	Extracellular signal-regulated kinases
FACS	Fluorescence-activated cell sorting
FBC	Full blood counts
FCR	Fludarabine + Cyclophosphamide + Rituximab
FCS	Foetal calf serum
FDA	Food and drug administration
FITC	Fluorescein isothiocyanate
FR	Fragment region
FMC7	Flinders medical centre, Australia
FSC	Forward scatter channel
GPCR	Glycoprotein-coupled receptor
GR	Glucocorticoid receptors
GPI	Glycosylphosphatidylinositol
GVHD	Graft-versus-host disease
GVL	Graft-versus leukaemia
H_2O_2	Hydrogen peroxide
HBSS	Hank's balanced salt solution
HDMP	High dose methylprednisolone
HIV	Human immunodeficiency virus

HPC	Health professions council
HSCT	Haematopoietic stem cell transplant
IBMS	Institute of biomedical science
lg	Immunoglobulin
lgVH	Immunoglobulin heavy-chain variable region
IL	Interleukin
IMGT	International ImMunoGeneTics
ITAM	Immunoreceptor tyrosine-based activation motifs
ΙΤΙΜ	Immunoreceptor tyrosine inhibitory motifs
ITP	Immune thrombocytopenia
JNK	Jun N-terminal kinase
LDT	Lymphocyte doubling time
LN	Lymph node
MAPK	Mitogen-activated protein kinase
MBC	Monoclonal B Cells
MDM2	Mouse/ murine double minute 2
MDS	Myelodysplastic syndromes
MFI	Median fluorescence intensity
MRD	Minimal residual disease
MRNA	Messenger RNA
mlg	Membrane immunoglobulin
ΜΙΡ-3β	Macrophage inflammatory protein 38
MNC	Mononuclear cell
MWM	Molecular weight marker
NFAT	Nuclear factor of activated T-cell

NHS	Nation health service
NICE	National institute of clinical excellence
NK	Natural killer
NRTI	Nucleoside analogue that work as reverse transcriptase
	inhibitors
OS	Overall survival
P53	Tumour protein 53
PCR	Polymerase chain reaction
PE	Phycoerythrin
Per CP	Peridicin chlorophyll-protein
PFS	Progression free survival
PLCy2	Phospholipase- Cγ2
PMT	Photomultiplier tube
PRBCA	Pure red blood cell aplasia
РТК	Protein tyrosine kinase
PTP	Protein tyrosine phosphatase
RA	Refractory anaemia
RAG	Recombination activating genes
RIC	Reduced intensity conditioning
RNA	Ribonucleic acid
RPMI	Roswell park memorial institute
SCF	Stem cell factor
SDF-1α	Stromal cell-derived factor 1a
SH2	Src homology 2
SHM	Somatic hyper-mutations

SHIP	Src homology inositol phosphate
SHP1	Src homology containing protein 1
SLC	Secondary lymphoid tissue chemokine
SLP-76	Src homology 2 domain containing leukocyte protein of 76kDa
SSC	Side scatter channel
ST	Survival times
Syk	Spleen tyrosine kinase
TAPA-1	Target of anti-proliferative antibody-1 (CD81)
TCR	T-Cell receptor
TD	Thymus dependent
TdT	Terminal deoxyribonucleotidyl transferase
ТЕМ	Transendothelial migration
TFS	Treatment free survival
ТК	Tyrosine kinase
TP53	p53 gene
ТТ	Time to treatment
VCAM-1	Vascular cell adhesion molecule -1
VLA-4	Very late antigen -4
XIAP	X-linked inactivator of apoptosis
WBC	White blood cells
ZAP-70	Zeta associated protein of 70 kDa

PUBLICATIONS

Maramba A., North J., Lowdell MW and Donaldson C. IgM ligation triggers Zeta associated protein of 70 kDa (ZAP-70) tyrosine 292 and 319 phosphorylation in B-Chronic Lymphocytic Leukaemia (B-CLL). *Poster presentation at the British Society for Haematology* British Journal of Haematology 2011; **153 (Suppl. 1):** 72-73.