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Abstract

The bondage number b(G) of a graph G is the smallest number of edges of
G whose removal results in a graph having the domination number larger
than that of G. We show that, for a graph G having the maximum vertex
degree ∆(G) and embeddable on an orientable surface of genus h and a non-
orientable surface of genus k,

b(G) ≤ min{∆(G) + h+ 2, ∆(G) + k + 1}.

This generalizes known upper bounds for planar and toroidal graphs, and
can be improved for bigger values of the genera h and k by adjusting the
proofs.
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1. Introduction

We consider simple finite non-empty graphs. For a graph G, its vertex
and edge sets are denoted, respectively, by V (G) and E(G). We also use
the following standard notation: d(v) for the degree of a vertex v in G,
∆ = ∆(G) for the maximum vertex degree of G, δ = δ(G) for the minimum
vertex degree of G, and N(v) for the neighbourhood of a vertex v in G.
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A set D ⊆ V (G) is a dominating set if every vertex not in D is adjacent
to at least one vertex in D. The minimum cardinality of a dominating set
of G is the domination number γ(G). Clearly, for any spanning subgraph
H of G, γ(H) ≥ γ(G). The bondage number of G, denoted by b(G), is the
minimum cardinality of a set of edges B ⊆ E(G) such that γ(G−B) > γ(G),
where V (G−B) = V (G) and E(G−B) = E(G)\B. In a sense, the bondage
number b(G) measures integrity and reliability of the domination number
γ(G) with respect to the edge removal from G, which may correspond, e.g.,
to link failures in communication networks.

The bondage number was introduced by Bauer et al. [1] (see also Fink
et al. [4]). Two unsolved classical conjectures for the bondage number of
arbitrary and planar graphs are as follows.

Conjecture 1 (Teschner [9]). For any graph G, b(G) ≤ 3
2
∆(G).

Hartnell and Rall [6] and Teschner [10] showed that for the cartesian
product Gn = Kn × Kn, n ≥ 2, the bound of Conjecture 1 is sharp, i.e.
b(Gn) = 3

2
∆(Gn). Teschner [9] also proved that Conjecture 1 holds when

γ(G) ≤ 3.

Conjecture 2 (Dunbar et al. [3]). If G is a planar graph, then b(G) ≤
∆(G) + 1.

The planar graphs are precisely the graphs that can be drawn on the
sphere with no crossing edges. A topological surface S can be obtained from
the sphere S0 by adding a number of handles or crosscaps. If we add h
handles to S0, we obtain an orientable surface Sh, which is often referred to
as the h-holed torus. The number h is called the orientable genus of Sh. If we
add k crosscaps to the sphere S0, we obtain a non-orientable surface Nk. The
number k is called the non-orientable genus of Nk. Any topological surface
is homeomorphically equivalent either to Sh (h ≥ 0), or to Nk (k ≥ 1). For
example, S1, N1, N2 are the torus, the projective plane, and the Klein bottle,
respectively.

A graph G is embeddable on a topological surface S if it admits a drawing
on the surface with no crossing edges. Such a drawing of G on the surface S
is called an embedding of G on S. Notice that there can be many different
embeddings of the same graph G on a particular surface S. The embeddings
can be distinguished and classified by different properties. The set of faces
of a particular embedding of G on S is denoted by F (G).
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An embedding of G on the surface S is a 2-cell embedding if each face of
the embedding is homeomorphic to an open disk. In other words, a 2-cell
embedding is an embedding on S that “fits” the surface. This is expressed in
Euler’s formulae (1) and (2) of Theorem 3. For example, a cycle Cn (n ≥ 3)
does not have a 2-cell embedding on the torus, but it has 2-cell embeddings
on the sphere and the projective plane. Similarly, a planar graph may have
2-cell and non-2-cell embeddings on the torus.

The following result is usually known as (generalized) Euler’s formula.
We state it here in a form similar to Thomassen [11].

Theorem 3 (Euler’s Formula, [11]). Suppose a connected graph G with
|V (G)| vertices and |E(G)| edges admits a 2-cell embedding having |F (G)|
faces on a topological surface S. Then, either S = Sh and

|V (G)| − |E(G)|+ |F (G)| = 2− 2h, (1)

or S = Nk and
|V (G)| − |E(G)|+ |F (G)| = 2− k. (2)

Equation (1) is usually referred to as Euler’s formula for an orientable
surface Sh of genus h, h ≥ 0, and Equation (2) is known as Euler’s formula
for a non-orientable surface Nk of genus k, k ≥ 1.

The orientable genus of a graph G is the smallest integer h = h(G) such
that G admits an embedding on an orientable topological surface S of genus
h. The non-orientable genus of G is the smallest integer k = k(G) such that
G can be embedded on a non-orientable topological surface S of genus k.
Clearly, in general, h(G) 6= k(G), and the embeddings on Sh(G) and Nk(G)

must be 2-cell embeddings.
Trying to prove Conjecture 2, Kang and Yuan [7] came up with the fol-

lowing upper bound whose simpler topological proof was later discovered by
Carlson and Develin [2].

Theorem 4 ([7, 2]). For any connected planar graph G,

b(G) ≤ min{8, ∆(G) + 2}.

This solves Conjecture 2 in case ∆(G) ≥ 7. The upper bound of Theorem
4 is for the sphere S0 that has orientable genus h = 0. The proof of Theorem
4 in [2] is topologically intuitive, uses Euler’s formula for the sphere, and
allows its authors to establish a partially similar result for the torus.
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Theorem 5 ([2]). For any connected toroidal graph G, b(G) ≤ ∆(G) + 3.

Notice that the torus S1 has orientable genus h = 1. As mentioned in [2],
it is sufficient to prove the results of Theorems 4 and 5 for connected graphs
because the bondage number of a disconnected graph G is the minimum of
the bondage numbers of its components.

In this paper, we prove the following result which generalizes the cor-
responding upper bounds of Theorems 4 and 5 for any orientable or non-
orientable topological surface S.

Theorem 6. For a connected graph G of orientable genus h and non-orientable
genus k,

b(G) ≤ min{∆(G) + h+ 2, ∆(G) + k + 1}.

The upper bound of Theorem 6 follows from Theorems 8 and 9 proved
below in Section 2, and can be improved for bigger values of the genera h
and k by adjusting the proofs.

2. The bondage number on orientable and non-orientable surfaces

In this section, we prove Theorem 6 by considering orientable and non-
orientable surfaces separately. The proofs are done by using Euler’s formulae
(1) and (2), counting arguments, and the following result.

Lemma 7 (Hartnell and Rall [6]). For any edge uv in a graph G, we have
b(G) ≤ d(u) + d(v) − 1 − |N(u) ∩ N(v)|. In particular, this implies that
b(G) ≤ δ(G) + ∆(G)− 1 (see also [1, 4]).

Having a graph G embedded on a surface S, each edge ei = uv ∈ E(G),
i = 1, . . . , |E(G)|, can be assigned two weights, wi = 1

d(u)
+ 1

d(v)
and fi =

1
m′ + 1

m′′ , where m′ is the number of edges on the boundary of a face on one
side of ei, and m′′ is the number of edges on the boundary of the face on
the other side of ei. Notice that, in an embedding on a surface, an edge ei

may be not separating two distinct faces, but instead it can appear twice
on the boundary of the same face. For example, every edge of a path Pn

(n ≥ 2) embedded on the sphere is on the boundary of a unique face, and it
appears exactly twice on the face boundary walk: once for each side of the
edge. Clearly, in this case, m′ = m′′ = 2(n− 1) and fi = 2

m′ = 2
m′′ = 1

n−1
.
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Notice that weights wi and fi, i = 1, . . . , |E(G)|, count the number of
vertices of G and faces of its embedding on S as follows:

|E(G)|∑
i=1

wi = |V (G)|,
|E(G)|∑

i=1

fi = |F (G)|.

Then, by Euler’s formula (1), we have

|E(G)|∑
i=1

(wi + fi − 1) = |V (G)|+ |F (G)| − |E(G)| = 2− 2h,

or, in other words,

|E(G)|∑
i=1

(
wi + fi − 1− 2− 2h

|E(G)|

)
=

|E(G)|∑
i=1

(
wi + fi − 1 +

2h− 2

|E(G)|

)
= 0.

Now, each edge ei = uv ∈ E(G), i = 1, . . . , |E(G)|, can be associated with
the quantity wi + fi − 1 + 2h−2

|E(G)| called the oriented curvature of the edge.

Also, by Euler’s formula (2), we have

|E(G)|∑
i=1

(wi + fi − 1) = |V (G)|+ |F (G)| − |E(G)| = 2− k,

or, in other words,

|E(G)|∑
i=1

(
wi + fi − 1− 2− k

|E(G)|

)
=

|E(G)|∑
i=1

(
wi + fi − 1 +

k − 2

|E(G)|

)
= 0.

Then, each edge ei = uv ∈ E(G), i = 1, . . . , |E(G)|, can be associated with
the quantity wi +fi−1+ k−2

|E(G)| called the non-oriented curvature of the edge.

Theorem 8. Let G be a connected graph 2-cell embeddable on an orientable
surface of genus h ≥ 0. Then

b(G) ≤ ∆(G) + h+ 2. (3)
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Proof. Suppose G is 2-cell embedded on the h-holed torus Sh. By Lemma
7, if G has any vertices of degree h + 3 or less, we have δ(G) ≤ h + 3, and
inequality (3) holds. Therefore, we can assume ∆(G) ≥ δ(G) ≥ h+ 4.

Now, suppose the opposite, b(G) ≥ ∆(G) + h + 3. Then, by Lemma 7,
for any edge ei = uv, i = 1, . . . , |E(G)|, we have

d(u) + d(v)− 1− |N(u) ∩N(v)| ≥ b(G) ≥ ∆(G) + h+ 3.

This gives
d(u) + d(v) ≥ ∆(G) + h+ 4 + |N(u) ∩N(v)|, (4)

and d(u) ≤ ∆(G), d(v) ≤ ∆(G). If either d(u) or d(v) is equal to h+4, then,
by (4), the other degree must be equal to ∆(G) ≥ h+ 4, and u and v cannot
have any common neighbors, so that m′ and m′′ are at least 4 each. Since in
this case |E(G)| ≥ (h+4)(h+5)

2
, such an edge ei = uv has a negative oriented

curvature:

wi +fi−1+
2h− 2

|E(G)|
≤ 2

h+ 4
+

2

4
−1+

2(2h− 2)

(h+ 4)(h+ 5)
=
−8 + h(3− h)

2(h+ 4)(h+ 5)
< 0

for any h ≥ 1, and, in case h = 0,

wi + fi − 1− 2

|E(G)|
≤ 1

4
+

1

4
+

1

4
+

1

4
− 1− 2

|E(G)|
=
−2

|E(G)|
< 0.

Suppose one of d(u) and d(v) is equal to h+ 5, without loss of generality,
d(u) = h + 5. Then, by (4), ∆(G) ≥ d(v) ≥ ∆(G) − 1 + |N(u) ∩ N(v)|.
If d(v) = h + 4 = ∆(G) − 1, we are in the previous case. Otherwise,
we have d(v) ≥ h + 5, and, by (4), at most one of m′ and m′′ can be
equal to 3, implying the other is at least 4. Then again, since in this case
|E(G)| ≥ (h+4)(h+4)+2(h+5)

2
= h2+10h+26

2
, the edge ei must have a negative

oriented curvature:

wi+fi−1+
2h− 2

|E(G)|
≤ 2

h+ 5
+

1

3
+

1

4
−1+

2(2h− 2)

h2 + 10h+ 26
=
−5h3 − 3h2 + 52h− 266

12(h+ 5)(h2 + 10h+ 26)
< 0

for any h ≥ 1, and, in case h = 0,

wi + fi − 1− 2

|E(G)|
≤ 1

5
+

1

5
+

1

3
+

1

4
− 1− 2

|E(G)|
= − 1

60
− 2

|E(G)|
< 0.
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The only remaining case is when d(u) ≥ h + 6 and d(v) ≥ h + 6. Since

m′ ≥ 3 and m′′ ≥ 3, and, in this case, |E(G)| ≥ (h+4)(h+5)+2(h+6)
2

= h2+11h+32
2

,
the edge ei must have a negative oriented curvature:

wi+fi−1+
2h− 2

|E(G)|
≤ 2

h+ 6
+

2

3
−1+

2(2h− 2)

h2 + 11h+ 32
=
−h3 + h2 + 28h− 72

3(h+ 6)(h2 + 11h+ 32)
< 0

for any h ≥ 1, and, in case h = 0,

wi + fi − 1− 2

|E(G)|
≤ 1

6
+

1

6
+

1

3
+

1

3
− 1− 2

|E(G)|
=
−2

|E(G)|
< 0.

Summing over all edges ei ∈ E(G) yields

|E(G)|∑
i=1

(
wi + fi − 1 +

2h− 2

|E(G)|

)
< 0,

which is a contradiction to Euler’s formula (1) stating

|E(G)|∑
i=1

(
wi + fi − 1− 2− 2h

|E(G)|

)
= |V (G)|+ |F (G)| − |E(G)| − (2− 2h) = 0.

Thus, b(G) ≤ ∆(G) + h+ 2.

Theorem 9. Let G be a connected graph 2-cell embeddable on a non-orientable
surface of genus k ≥ 1. Then

b(G) ≤ ∆(G) + k + 1. (5)

Proof. SupposeG is 2-cell embedded on the sphere with k crosscapsNk. By
Lemma 7, if G has any vertices of degree k+ 2 or less, we have δ(G) ≤ k+ 2,
and inequality (5) holds. Therefore, we can assume ∆(G) ≥ δ(G) ≥ k + 3.

Suppose the opposite, b(G) ≥ ∆(G) + k+ 2. Then, by Lemma 7, for any
edge ei = uv, i = 1, . . . , |E(G)|, we have d(u) + d(v)− 1− |N(u) ∩N(v)| ≥
b(G) ≥ ∆(G) + k + 2. Then, d(u) + d(v) ≥ ∆(G) + k + 3 + |N(u) ∩ N(v)|,
and d(u) ≤ ∆(G), d(v) ≤ ∆(G). If either d(u) or d(v) is equal to k + 3, the
other degree must be equal to ∆(G) ≥ k + 3, and u and v cannot have any
common neighbors, so that m′ and m′′ are at least 4 each. Since in this case
|E(G)| ≥ (k+3)(k+4)

2
, the non-oriented curvature of the edge ei = uv is

wi +fi−1+
k − 2

|E(G)|
≤ 2

k + 3
+

2

4
−1+

2(k − 2)

(k + 3)(k + 4)
=
−4 + k(1− k)

2(k + 3)(k + 4)
< 0
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for any k ≥ 2, and, in case k = 1,

wi + fi − 1− 1

|E(G)|
≤ 1

4
+

1

4
+

1

4
+

1

4
− 1− 1

|E(G)|
=
−1

|E(G)|
< 0.

Suppose one of d(u) and d(v), let us say d(u), is equal to k + 4. Then,
∆(G) ≥ d(v) ≥ ∆(G) − 1 + |N(u) ∩ N(v)|. If d(v) = k + 3 = ∆(G) − 1,
we are in the previous case. Otherwise, we have d(v) ≥ k + 4, and at most
one of m′ and m′′ can be equal to 3, implying the other is at least 4. Then
again, since in this case |E(G)| ≥ (k+3)(k+3)+2(k+4)

2
= k2+8k+17

2
, the edge ei

must have a negative non-oriented curvature:

wi+fi−1+
k − 2

|E(G)|
≤ 2

k + 4
+

1

3
+

1

4
−1+

2(k − 2)

k2 + 8k + 17
=
−124− 5k − 12k2 − 5k3

12(k + 4)(k2 + 8k + 17)
< 0

for any k ≥ 2, and, in case k = 1,

wi + fi − 1− 1

|E(G)|
≤ 1

5
+

1

5
+

1

3
+

1

4
− 1− 1

|E(G)|
= − 1

60
− 1

|E(G)|
< 0.

The only remaining case is when d(u) ≥ k + 5 and d(v) ≥ k + 5. Since

m′ ≥ 3 and m′′ ≥ 3, and, in this case, |E(G)| ≥ (k+3)(k+4)+2(k+5)
2

= k2+9k+22
2

,
the edge ei must have a negative non-oriented curvature:

wi+fi−1+
k − 2

|E(G)|
≤ 2

k + 5
+

2

3
−1+

2(k − 2)

k2 + 9k + 22
=
−k3 − 2k2 + 5k − 38

3(k + 5)(k2 + 9k + 22)
< 0

for any k ≥ 2, and, in case k = 1,

wi + fi − 1− 1

|E(G)|
≤ 1

6
+

1

6
+

1

3
+

1

3
− 1− 1

|E(G)|
=
−1

|E(G)|
< 0.

Summing over all edges ei ∈ E(G) yields

|E(G)|∑
i=1

(
wi + fi − 1 +

k − 2

|E(G)|

)
< 0,

which is a contradiction to Euler’s formula (2) stating

|E(G)|∑
i=1

(
wi + fi − 1− 2− k

|E(G)|

)
= |V (G)|+ |F (G)| − |E(G)| − (2− k) = 0.

Thus, b(G) ≤ ∆(G) + k + 1, and the proof is complete.
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3. Conclusions and final remarks

The upper bound of Theorem 6 provides a hierarchy of upper bounds
that eventually may help solving Conjecture 1. However, it can be seen that
the bounds of Theorems 8 and 9 are not tight for larger values of the genera
h = h(G) and k = k(G). For example, by adjusting respectively the proofs of
Theorems 8 and 9, upper bound (3) can be improved to b(G) ≤ ∆(G)+h+1
for h ≥ 8, to b(G) ≤ ∆(G) + h for h ≥ 11, etc., and upper bound (5) can be
improved to b(G) ≤ ∆(G) + k for k ≥ 3, to b(G) ≤ ∆(G) + k − 1 for k ≥ 6,
etc. It is left to the reader to adjust the proofs and bounds for a particular
topological surface of higher genus. The bounds of Theorems 8 and 9 are
stated in this form for clarity and simplicity of presentation and proofs for
smaller values of h and k.

In general, one may try to find certain (linear or sublinear) functions
of h and k to improve the bounds of Theorems 8 and 9 by replacing the
terms h + 2 and k + 1, respectively, or to provide asymptotically better
bounds. For example, simple asymptotic improvements follow from the upper
bounds on the minimum vertex degree of graphs embeddable on topological
surfaces: it is known that δ(G) ≤ b5+

√
1+48h
2

c for h ≥ 1, δ(G) ≤ b5+
√

1+24k
2

c
for k ≥ 2 (e.g., see Sachs [8]), and δ(G) ≤ 5 for a planar or projective-
planar graph, i.e. when h = 0 or k = 1. Then, from Lemma 7, we have
b(G) ≤ ∆(G) + b3+

√
1+48h
2

c for h ≥ 1 and b(G) ≤ ∆(G) + b3+
√

1+24k
2

c for
k ≥ 1, which are better than bounds (3) for h ≥ 12 and (5) for k ≥ 8,
respectively. However, for example, an adjusted proof of Theorem 9 gives
b(G) ≤ ∆ + k − 411 = ∆ + 53 for k = 464, which is better than b(G) ≤
∆(G) + b3+

√
1+24k
2

c = ∆ + 54 in this case. Therefore, adjustments of the
proofs of Theorems 8 and 9 can provide better results than some asymptotic
improvements by using closed formulae, and it would be interesting to have
closed formula or asymptotic improvements providing a certain justification
of their quality.

In view of Theorem 4, its proof in [2], and results presented in this paper,
it should be reasonable to conjecture that, when ∆(G) is sufficiently large,
the bondage number b(G) is bounded by a certain constant depending only
on the properties of topological surfaces where G embeds.

Conjecture 10. For a connected graph G of orientable genus h and non-
orientable genus k, b(G) ≤ min{ch, c′k, ∆(G) + o(h), ∆(G) + o(k)}, where
ch and c′k are constants depending, respectively, on the orientable and non-
orientable genera of G.
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Since δ(G) ≤ 5 for a planar graph G, Fischermann et al. [5] ask whether
there exist planar graphs of bondage numbers 6, 7, or 8. A class of planar
graphs with the bondage number equal to 6 is shown in [2]. Therefore, in the
case of planar graphs, we have 6 ≤ c0 ≤ 8. It would be interesting to have
an estimation for the constants ch and c′k for the torus S1, projective plane
N1, and Klein bottle N2.
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