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Abstract

We give a simple proof of a lower bound for the Dirichlet heat kernel in
terms of the Gaussian heat kernel. Using this we establish a non-existence
result for semilinear heat equations with zero Dirichlet boundary conditions
and initial data in Lq(Ω) when the source term f is non-decreasing and
lim sups→∞ s−γf(s) = ∞ for some γ > q(1+2/n). This allows us to construct
a locally Lipschitz f satisfying the Osgood condition

∫ ∞
1

1/f(s) ds = ∞,
which ensures global existence for bounded initial data, such that for every
q with 1 ≤ q < ∞ there is an initial condition u0 ∈ Lq(Ω) for which the
corresponding semilinear problem has no local-in-time solution.
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1. Introduction

In a previous paper [5] we showed that for locally Lipschitz f with f > 0
on (0,∞), the Osgood condition

∫ ∞

1

1

f(s)
ds = ∞, (1)

which ensures global existence of solutions of the scalar ODE ẋ = f(x), is not
sufficient to guarantee the local existence of solutions of the Cauchy problem

ut = ∆u+ f(u) (2)

for initial data in Lq(Rn), 1 ≤ q < ∞. This is in stark contrast to the case
of bounded initial data, for which (1) implies that any solution of (2) exists
globally in time; see [6], for example.

In [5] we considered the PDE (2) on the whole space R
n, which allowed

us to use in our calculations the explicit form of the Gaussian heat kernel,

Gn(x, y; t) = (4πt)−n/2e−|x−y|2/4t. (3)

The main result there was that for each q with 1 ≤ q < ∞ one can find a
non-negative, locally Lipschitz and Osgood f such that there are initial data
in Lq(Rn) for which there is no local-in-time integrable solution of (2).

In this paper we obtain a similar result for the equation posed with Dirich-
let boundary conditions on a bounded domain, by using Gaussian lower
bounds on the Dirichlet heat kernel. Indeed, in Section 2 (Theorem 2.1)
we give a lower bound for the Dirichlet heat kernel on a bounded domain Ω:

KΩ(x, y; t) ≥ βnGn(x, y; t) for t ≤ ǫ2/n, (4)

whenever [x, y], the line segment joining x and y, is contained in the interior
of Ω and is always at least a distance ǫ from the boundary of Ω. Here, β > 0
is an explicit constant. Based on the argument of van den Berg [8] we also
provide in the appendix a proof of a result valid for all t > 0

KΩ(x, y; t) ≥ e−n
2t/4ǫ2Gn(x, y; t),

but (4) is sufficient for our purposes and has a significantly simpler proof.
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More explicitly, we focus throughout the paper on the following problem
(P), posed on a smooth bounded domain Ω ⊂ R

n:

(P)







ut = ∆u+ f(u) in Ω,
u = 0 on ∂Ω,

u(x, 0) = u0(x) in Ω.

The source term f : [0,∞) → [0,∞) is non-decreasing and satisfies the
asymptotic growth condition

lim sup
s→∞

s−γf(s) = ∞. (5)

We show in Theorem 4.1 that if (5) holds for some γ > q(1 + 2/n) then one
can find a non-negative u0 ∈ Lq(Ω) such that there is no solution of (P) that
is in L1

loc(Ω) for t > 0.
We finish (see Corollary 5.1) by constructing a function f that grows

quickly enough such that (5) holds for every γ ≥ 0, but nevertheless still ver-
ifies the Osgood condition (1). This example shows that there are functions
f for which (P) is well posed in L∞(Ω) but not in any Lp(Ω) with 1 ≤ p <∞.

One can see this result as in some sense dual to that of Fila et al. [3]
(see also Section 19.3 of [7]), who show that there exists an f such that all
positive solutions of ẋ = f(x) blow up in finite time while all solutions of (P)
with Dirichlet boundary conditions are global and bounded.

2. A Gaussian lower bound for the Dirichlet heat kernel

For any smooth domain D in R
n (i.e. D is smooth, open, and connected),

we denote by KD(x, y, t) the Dirichlet heat kernel associated with the Dirich-
let heat semigroup SD(t), i.e.

wD(x, t) = (SD(t)w0)(x) :=

∫

D

KD(x, y; t)w0(y) dy (6)

is the classical solution of the linear heat equation

wt = ∆w in D,

w = 0 on ∂D,

w = w0 in D,
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In the special case where D = R
n, we will denote the Gaussian heat kernel

on the whole space by Gn(x, y; t), as given by (3).
In this section we provide a proof of a particular case of a result due to

van den Berg [8], which shows that away from the boundary the Dirichlet
heat kernel is bounded below by a multiple of the Gaussian kernel for the
heat equation on the whole space. In this context the result for Ω ⊂ R

n is
an easy corollary of the result in R; in the one-dimensional case our proof
significantly simplifies that of [8].

Theorem 2.1. Let Ω be a domain in R
n, and denote by KΩ(x, y; t) the

Dirichlet heat kernel on Ω. Suppose that

ǫ := inf
z∈[x,y]

dist(z, ∂Ω) > 0, (7)

where [x, y] denotes the line segment joining x and y (so in particular [x, y]
is contained in the interior of Ω). Then for t ≤ ǫ2/n

KΩ(x, y; t) ≥ βnGn(x, y; t),

where β = 1− 2/e > 0.

Note that if Ω is convex then ǫ in (7) is simply given by

ǫ = min(dist(x, ∂Ω), dist(y, ∂Ω)).

We delay the proof of Theorem 2.1 for a moment. Following [8] we begin
with the corresponding result for an interval in R. Our proof is somewhat
simpler than that of Lemma 8 in [8], and non-probabilistic (cf. [10]), since
we are able to write down directly the Dirichlet kernel in terms of a sum of
Gaussian kernels on the whole line.

We write Ka for the one-dimensional heat kernel on (−a, a).

Lemma 2.1. Take a > 0. Then for any x, y ∈ Ω = (−a, a)

Ka(x, y; t) ≥ G1(x, y; t)
[

1− 2e−ǫ
2/t

]

,

where ǫ = dist([x, y], ∂Ω). In particular for t ≤ ǫ2

Ka(x, y; t) ≥ βG1(x, y; t), (8)

where β = 1− 2/e > 0.
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u0

0 2a

y

Figure 1: For a particular u0 defined on [0, 2a], an illustration of the periodic extension
that is anti-symmetric about x = 0 and x = 2a. Dots indicate positions and signs of the
delta functions that give rise to K(0,2a)(x, y; t).

Note that Corollary 6.1 in the Appendix improves the lower bound in (8)
to e−π

2t/4ǫ2G1(x, y; t) for all t > 0, but the result of this lemma is sufficient
for the arguments in the main body of this paper.

Proof. For notational reasons it is simpler to treat the problem on (0, 2a)
rather than (−a, a), but since the equations and the resulting lower bound
are translation invariant this does not effect the result. We write down the
Dirichlet heat kernel on (0, 2a) by reflection. The essential idea is shown in
Figure 1: the action of the heat equation on [0, 2a] with initial data u0 is the
same as the action of the heat equation on R with the periodically extended
initial data as illustrated, since this extension is antisymmetric about 0 and
a and the Gaussian kernel G1(x, y; t) is symmetric about x for any x ∈ R.

The contribution to the heat kernel for x ∈ [0, 2a] from a source at y ∈
(0, 2a) will be the sum of the Gaussian kernels with positive point sources at
y+4ka and negative point sources at −y+4ka (see Figure 1, again), yielding

K(0,2a)(x, y; t) =
1√
4πt

∑

k∈Z
e−|x−(y+4ka)|2/4t − e−|x−(−y+4ka)|2/4t, (9)

see Figure 2. [Even if one has doubts about the above derivation, it is clear
that K(x, y, t) in (9) satisfies the heat equation, K(0, y; t) = K(2a, y; t) = 0,
and K(x, y; 0) = δ(y) for x, y ∈ (0, 2a).]
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Figure 2: Dirichlet heat kernel on [0, 1] as a sum of Gaussians for y = 0.2, t = 0.02. From
left to right: Gaussian kernel on R; one subtraction (k = 1) to enforce boundary condition
at x = 1 (little change); second subtraction (k = 0) towards satisfying the boundary
condition at x = 0; the heat kernel on [0, 1] (additional terms make little difference), with
the lower bound from Lemma 2.1 indicated by a dashed line.

Now we simply rewrite the sum:

√
4πtK(0,2a)(x, y; t) =

∑

k∈Z
e−|x−(y+4ka)|2/4t − e−|x−(−y+4ka)|2/4t

= e−|x−y|2/4t − e−|x+y|2/4t − e−|x+y−4a|2/4t

+

∞
∑

k=1

{

e−|x−(y+4ka)|2/4t + e−|x−(y−4ka)|2/4t − e−|(x−(−y+4a(k+1))|2/4t

−e−|(x−(−y−4ka)|2/4t
}

= e−|x−y|2/4t [1− e−xy/t − e−(2a−x)(2a−y)/t]

+
∞
∑

k=1

e−|x−y−4ka|2/4t + e−|x−y+4ka|2/4t − e−|x+y−4(k+1)a|2/4t − e−|x+y+2ka|2/4t.

Noting that

|x+y+4ka| > |x−y+4ka| and |4(k+1)a−(x+y)| > |4ka−(x−y)|

for k ≥ 1 and x, y ∈ (0, 2a), it follows that

√
4πtK(0,2a)(x, y; t) ≥ e−|x−y|2/4t

[

1− 2e−ǫ
2/t

]

.

Finally note that for t ≤ ǫ2 the term in the square brackets is at least
β = 1− 2/e.

The idea of the proof of Theorem 2.1, inspired by that of Lemma 9 in [8],
is illustrated in Figure 3. We bound the Dirichlet heat kernel on Ω below
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by the kernel on the parallelepiped Π, which is simply the product of one-
dimensional kernels which we can control using Lemma 2.1. In this way the
proof uses the monotonicity of the Dirichlet heat kernel with respect to the
domain:

Ω ⊂ U ⇒ KΩ(x, y; t) ≤ KU(x, y; t).

A probabilistic proof can be found in [8]; an analytic proof using the theory
of semigroups can be found in the notes by Arendt [1].

X

X

x

y

ǫ

2ǫ/
√
n

Π

Figure 3: The parallelepiped Π with n− 1 sides of length 2ǫ/
√
n when dist(x, ∂Ω) = ǫ.

Proof of Theorem 2.1. By the definition of ǫ, the line segment joining x and
y is entirely contained in a parallelepiped Π that lies entirely within Ω̄, with
one side of length |x−y|+2ǫ/

√
n and n−1 sides of length 2ǫ/

√
n, see Figure

3. Note that x and y are at least a distance ǫ/
√
n from all faces of Π. By

monotonicity of the Dirichlet heat kernel with respect to the domain

KΩ(x, y, t) ≥ KΠ(x, y, t).

If we now refer points in Π to coordinate axes aligned along [x, y] and in the
perpendicular directions, so that x = (x̃, 0, . . . , 0) and y = (ỹ, 0, . . . , 0), we
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can use the separation of variables property to write

KΠ(x, y; t) = K 1

2
|x−y|+ǫ/√n(x̃, ỹ, t)[Kǫ/

√
n(0, 0, t)]

n−1

≥ β(4πt)−1/2e−|x̃−ỹ|2/4tβn−1(4πt)−(n−1)/2

= (4πt)−n/2e−|x−y|2/4tβn

= βnGn(x, y, t),

for all t ≤ ǫ2/n, using the one-dimensional lower bound from Lemma 2.1.

3. A lower bound for the heat equation

Without loss of generality we henceforth assume that Ω contains the
origin. For r > 0, B(x, r) will denote the Euclidean ball in R

n of radius r
centred at x, and in an abuse of notation we write B(r) for B(0, r).

As an ingredient in the proof of our main result, we want to show that
the action of the heat equation on the singular initial condition

w0(x) = |x|−αχR :=

{

|x|−α, |x| ≤ R,
0, |x| > R

(10)

does not have too pronounced an effect for short times. It is easy to see that

w0(x) > φ for |x| < φ−1/α;

we now show that such a lower bound holds for a similar set of x for suffi-
ciently small times.

Proposition 3.1. Fix α ∈ (0, n) and pick R > 0 such that B(R) ⊂ Ω. If
wΩ(x, t) denotes the solution of the linear heat equation on Ω with initial
condition1 w0 = |x|−αχR, as represented by (6), then there exist constants
σ = σ(R, α, n) > 0 and φ∗ = φ∗(R, α, n) > 0 such that

wΩ(x, t) ≥ φ for all |x| ≤ σφ−1/α and 0 ≤ t ≤ σφ−2/α (11)

for any φ > φ∗.

1Strictly speaking w0 is defined on the whole of Rn; we take as initial condition the
function in (10) restricted to Ω.
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Proof. Let w denote the solution of the linear heat equation on R
n with the

same initial condition w0 = |x|−αχR. Let ǫ = infx∈B(R) dist(x, ∂Ω) > 0; then
it follows from Theorem 2.1 that with T = ǫ2/n we have

KΩ(x, y, t) ≥ βnGn(x, y, t), ∀x, y ∈ B(R), t ∈ (0, T ].

From here on c will denote any generic constant, and may change from line
to line.

Taking |x̂| = R, t ∈ (0, T ] and ψ > 1, we have

wΩ(x̂/ψ, t) =

∫

Ω

KΩ(x̂/ψ, y, t)w0(y) dy =

∫

B(R)

KΩ(x̂/ψ, y, t)|y|−α dy

≥ c

∫

B(R)

Gn(x̂/ψ, y, t)|y|−α dy

≥ c(4πt)−n/2
∫

B(R)

e−|(x̂/ψ)−y|2/4t|y|−α dy

= c(4πt)−n/2
∫

B(R)

e−|x̂−ψy|2/4ψ2t|y|−α dy

= cψα(4πψ2t)−n/2
∫

B(ψR)

e−|x̂−z|2/4ψ2t|z|−α dz ≥ cψαw(x̂, ψ2t).

Defining M =M(R, α, n) > 0 by

M = inf{w(x, t) : |x| = R, 0 ≤ t ≤ T} (12)

it follows that wΩ(x, t) ≥ cMψα for all |x| = Rψ−1 and t ∈ (0, ψ−2T ].
Furthermore, wΩ(x, 0) = |x|−α ≥ R−αψα for all |x| ≤ Rψ−1. Consequently,
by the parabolic maximum principle,

wΩ(x, t) ≥ φ∗ψ
α for all |x| ≤ Rψ−1 and 0 ≤ t ≤ ψ−2T,

where φ∗ := min(cM,R−α) > 0. With σ = min(Rφ
1/α
∗ , Tφ

2/α
∗ ) > 0 and

φ = φ∗ψ
α > φ∗, one therefore obtains

wΩ(x, t) ≥ φ for all |x| ≤ σφ−1/α and 0 ≤ t ≤ σφ−2/α.

4. Non-existence of local solutions

In this section we prove the non-existence of local solutions, taking the
following as our (essentially minimal) definition of such a solution. Note
that the non-existence of a solution in the sense of Definition 4.1 implies the
non-existence of mild solutions and of classical solutions [7, p. 77–78].
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Definition 4.1. [7, p. 78] Given f ≥ 0 and u0 ≥ 0 we say that u is a local
integral solution of (P) on [0, T ) if u : Ω × [0, T ) → [0,∞] is measurable,
finite almost everywhere, and satisfies

u(t) = SΩ(t)u0 +

∫ t

0

SΩ(t− s)f(u(s)) ds (13)

almost everywhere in Ω× [0, T ).

We now prove our main result, in which we obtain instantaneous blow-up
in L1

loc(Ω) for certain initial data in Lq(Ω), 1 ≤ q <∞, under the asymptotic
growth condition (14) when f is non-decreasing.

Theorem 4.1. Let q ∈ [1,∞). Suppose that f : [0,∞) → [0,∞) is non-
decreasing. If

lim sup
s→∞

s−γf(s) = ∞ (14)

for some γ > q(1 + 2
n
), then there exists u0 ∈ Lq(Ω) such that (P) possesses

no local integral solution. Indeed, any solution u(t) that satisfies (13) is not
in L1

loc(Ω) for any t > 0.

Proof. We show that for small t > 0, u(t) /∈ L1
loc(Ω) and hence, arguing as

in [5, Theorem 4.1], there can be no local integral solution of (P).
Choose B(R) as in Proposition 3.1. Set α = (n + 2)/γ < n/q, so that

lim sup
s→∞

s−(n+2)/αf(s) = ∞.

Then in particular there exists a sequence φi → ∞ such that

f(φi)φ
−(n+2)/α
i → ∞ as i→ ∞.

Now take u0 = |x|−αχR ∈ Lq(Ω). Defining T as in the proof of Proposi-
tion 3.1, fix t < min(T, 1) and choose i sufficiently large such that φi > φ∗,

σφ
−1/α
i < R/2 and σφ

−2/α
i ≤ t. Clearly, by comparison, u ≥ wΩ ≥ 0. Hence

10



by monotonicity of f and Theorem 2.1,

I :=

∫

B(R)

u(t) dx ≥
∫

B(R)

∫ t

0

[SΩ(t− s)f(wΩ(·, s))](x) ds dx

=

∫ t

0

∫

B(R)

∫

Ω

KΩ(t− s, x, y)f(wΩ(y, s)) dy dx ds

≥ c

∫ σφ
−2/α
i

0

∫

B(R)

∫

B(σφ
−1/α
i )

Gn(t− s, x, y)f(φi) dy dx ds

= cf(φi)

∫ σφ
−2/α
i

0

∫

B(σφ
−1/α
i )

(4π(t− s))−n/2
∫

B(R)

e−|x−y|2/4(t−s) dx dy ds.

Let z = x− y. Since |y| ≤ σφ
−1/α
i < R/2, it follows that

{z = x− y : x ∈ B(R)} ⊃ B(R/2).

Thus

I ≥ cf(φi)

∫ σφ
−2/α
i

0

∫

B
(

σφ
−1/α
i

)

(4π(t− s))−n/2
∫

B(R/2)

e−|z|2/4(t−s) dz dy ds

= cf(φi)

∫ σφ
−2/α
i

0

∫

B
(

σφ
−1/α
i

)

∫

B(R/
√
t−s)

e−|v|2 dv dy ds
(

v = z/2
√
t− s

)

≥ cf(φi)

∫ σφ
−2/α
i

0

∫

B
(

σφ
−1/α
i

)

∫

B(R)

e−|v|2 dv dy ds (
√
t− s ≤ 1)

= cf(φi)

∫ σφ
−2/α
i

0

(σφ
−1/α
i )n ds

= cf(φi)φ
−(n+2)/α
i → ∞ as i→ ∞.

Note that this result also guarantees instantaneous blow-up of solutions
of

ut = ∆u+ g(u)

for any g such that g(s) ≥ f(s), where f satisfies the conditions of Theorem
4.1, even if g is not monotonic. In particular, for the canonical Fujita equation

ut = ∆u+ up, (15)

11



our argument shows the non-existence of local solutions when p > q(1 + 2
n
).

The sharp result in this case is known to be p > 1+ 2
n
q [12, 13] with equality

allowed if q = 1 [2].
The existence of a finite limit in (14) implies that f(s) ≤ c(1 + sγ), and

hence by comparison with (15) is sufficient for the local existence of solutions
provided that γ < 1+ 2

n
q [11]. We currently, therefore, have an indeterminate

range of γ,

1 +
2

n
q ≤ γ ≤ q(1 +

2

n
)

for which we do not know whether (14) characterises the existence or non-
existence of local solutions.

5. A very ‘bad’ Osgood f

To finish, using a variant of the construction in [5], we provide an example
of an f that satisfies the Osgood condition (1) but for which

lim sup
s→∞

s−γf(s) = ∞, for every γ ≥ 0. (16)

Theorem 5.1. There exists a locally Lipschitz function f : [0,∞) → [0,∞)
such that f(0) = 0, f is non-decreasing, and f satisfies the Osgood condition

∫ ∞

1

1

f(s)
ds = ∞,

but nevertheless (16) holds. Consequently, for this f , for any 1 ≤ q < ∞
there exists a u0 ∈ Lq(Ω) such that (P) has no local integral solution.

Proof. Fix φ0 = 1 and define inductively the sequence φi via

φi+1 = eφi .

Clearly, φi → ∞ as i→ ∞. Now define f : [0,∞) → [0,∞) by

f(s) =







(e− 1)s, s ∈ J0 := [0, 1],
φi − φi−1, s ∈ Ii := [φi−1, φi/2], i ≥ 1,
ℓi(s), s ∈ Ji := (φi/2, φi), i ≥ 1,

(17)

where ℓi interpolates linearly between the values of f at φi/2 and φi. By
construction f(0) = 0, f is non-decreasing, and f is Osgood since

∫ ∞

1

1

f(s)
ds ≥

∞
∑

i=1

∫

Ii

1

f(s)
ds =

∞
∑

i=1

φi/2− φi−1

φi − φi−1
= +∞.

12



However, f(φi) = eφi − φi, and so for any γ ≥ 0

lim
i→∞

φ−γ
i f(φi) → ∞ as i→ ∞,

which shows that (16) holds.

This example shows that there exist semilinear heat equations that are
globally well-posed in L∞(Ω), yet ill-posed in every Lq(Ω) for 1 ≤ q <∞.

6. Appendix: Gaussian lower bound on the heat kernel for all t > 0

For the sake of completeness we now follow [8] (see also [9]) and use
the result of Lemma 2.1 to obtain a lower bound on2 Ka(x, y; t) in terms
of Kǫ(0, 0; t). We then bound Kǫ(0, 0; t) below by supplementing the bound
from Lemma 2.1 with information from the eigenfunction expansion of the
kernel. This will allow us a simple proof of a similar form of lower bound on
a general domain Ω when [x, y] ⊂ Ω.

The main idea in the proof is to use repeatedly the semigroup property
of the heat semigroup in the form

Ka(x, y; t) =

∫

(−a,a)
Ka(x, z; t)Ka(z, y; t) dz.

Proposition 6.1. The one-dimensional heat kernel on Ω = (−a, a) satisfies

Ka(x, y; t) ≥ e−|x−y|2/4tKǫ(0, 0, t) (18)

for all x, y ∈ (−a, a) and t > 0, where ǫ = dist([x, y], ∂Ω).

Proof. Take x, y ∈ (−a, a), t > 0, and m ∈ N with m sufficiently large that
1− 2e−mǫ

2/t > 0. For j = 0, 1, . . . , m set xj = x+ jz, where z = (y − x)/m.
Then using the semigroup property

Ka(x, y; t)

=

∫

Ωm−1

Ka(x, y1; t/m)

{

m−2
∏

j=1

Ka(yj, yj+1; t/m)

}

Ka(ym−1, y; t/m) dm−1y,

2Recall that we use the notation Ka(x, y; t) for the one-dimensional heat kernel on
(−a, a).
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writing dm−1y for dy1 · · · dym−1.
Now note that B(xj , ǫ) ⊂ Ω for every j = 0, . . . , m, and so

Ka(x, y; t) ≥
∫

B(ǫ)m−1

m−1
∏

j=0

Ka(xj + wj, xj+1 + wj+1; t/m) dm−1w,

setting w0 = wm = 0 and wj = yj − xj for j = 1, . . . , m − 1. Using Lemma
2.1 we obtain the lower bound

Ka ≥ Cm,t

∫

B(ǫ)m−1

m−1
∏

j=0

G1(xj + wj, xj+1 + wj+1; t/m) dm−1w

= Cm,t

∫

B(ǫ)m−1

(4πt/m)−m/2 exp

(

−
m

∑m−1
j=0 |z + wj+1 − wj|2

4t

)

dm−1w,

where Cm,t = [1− 2e−mǫ
2/t]m.

Elementary algebra gives

m
m−1
∑

j=0

|z + wj+1 − wj|2 = |x− y|2 +m
m−1
∑

j=0

|wj+1 − wj |2,

and therefore

Ka ≥ Cm,te
−|x−y|2/4t

∫

B(ǫ)m−1

(4πt/m)−m/2 exp

(

−
m

∑m−1
j=0 |wj+1 − wj|2

4t

)

dm−1w

= Cm,te
−|x−y|2/4t

∫

B(ǫ)m−1

m−1
∏

j=0

G1(wj , wj+1; t/m) dm−1w.

Now we can use monotonicity of the heat kernel, G1 ≥ Kǫ, to obtain

Ka(x, y; t) ≥ Cm,te
−|x−y|2/4t

∫

B(ǫ)m−1

m−1
∏

j=0

Kǫ(wj , wj+1; t/m) dm−1w

= Cm,te
−|x−y|2/4tKǫ(0, 0, t),

using the semigroup property of Kǫ and recalling that w0 = wm = 0. Finally,
noting that Cm,t → 1 as m→ ∞, we obtain (18).
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We now obtain a lower bound on Ka(0, 0; t) using the eigenfunction ex-
pansion of the kernel.

Lemma 6.1. For all t > 0

Ka(0, 0; t) ≥
1√
4πt

e−π
2t/4a2 . (19)

Proof. The eigenfunctions of uxx = λu with u(0) = u(2a) = 0 are sin kπx/2a
with corresponding eigenvalues −k2π2/4a2: the kernel is therefore

K(0,2a)(x, y; t) =
1

a

∞
∑

k=1

e−k
2π2t/4a2 sin(kπx/2a) sin(kπy/2a).

Since Ka(0, 0; t) = K(0,2a)(a, a; t) we obtain

Ka(0, 0; t) =
1

a

∞
∑

k=1

e−k
2π2t/4a2 sin2(kπ/2)

=
1

a

∞
∑

k=0

e−(2k+1)2π2t/4a2 ≥ 1

a
e−π

2t/4a2 ,

from which (19) follows for a ≤ (4πt)1/2. For t ≤ a2/4π, we use Lemma 2.1
to give

Ka(0, 0; t) ≥ 1− 2e−ǫ
2/t;

now simply observe that e−1/s < s/4 and e−s < 1 − (s/2) for 0 < s < 1/3,
and so certainly 1 − 2e−1/s ≥ e−s for 0 < s ≤ 1/(4π) < 1/3, and thus the
bound in (19) holds for all t > 0 as claimed.

Combining the results of Proposition 6.1 and Lemma 6.1 finally yields
the required lower bound in one dimension.

Corollary 6.1. If Ω = (−a, a), [x, y] ⊂ Ω, and ǫ = dist([x, y], ∂Ω) then

Ka(x, y; t) ≥ e−π
2t/4ǫ2G1(x, y; t) for all t > 0.

For Ω ⊂ R
n the result follows using the argument in the proof of Theorem

2.1, in particular the inequality

KΩ(x, y, t) ≥ KΠ(x, y, t) ≥ K 1

2
|x−y|+ǫ/√n(x̃, ỹ, t)[Kǫ/

√
n(0, 0, t)]

n−1.
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Corollary 6.2. If Ω ⊂ R
n, [x, y] ⊂ Ω, and ǫ = dist([x, y], ∂Ω) then

Ka(x, y; t) ≥ e−n
2π2t/4ǫ2Gn(x, y; t) for all t > 0.

We note that the argument in [8] does not require the line segment [x, y]
to be contained in Ω, leading to a lower bound that depends on the curvature
of the geodesic joining x and y.
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