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SUMMARY

The rapid, activity-dependent quantal presynaptic
release of neurotransmitter is vital for brain function.
The complex process of vesicle priming, fusion, and
retrieval is very precisely controlled and requires
the spatiotemporal coordination of multiple protein-
protein interactions. Here, we show that posttrans-
lational modification of the active zone protein
Rab3-interacting molecule 1a (RIM1a) by the small
ubiquitin-like modifier 1 (SUMO-1) functions as a
molecular switch to direct these interactions and
is essential for fast synaptic vesicle exocytosis.
RIM1a SUMOylation at lysine residue K502 facili-
tates the clustering of CaV2.1 calcium channels
and enhances the Ca2+ influx necessary for vesicular
release, whereas non-SUMOylated RIM1a partici-
pates in the docking/priming of synaptic vesicles
and maintenance of active zone structure. These
results demonstrate that SUMOylation of RIM1a is
a key determinant of rapid, synchronous neurotrans-
mitter release, and the SUMO-mediated ‘‘switching’’
of RIM1a between binding proteins provides insight
into the mechanisms underpinning synaptic function
and dysfunction.

INTRODUCTION

Activity-dependent neurotransmitter release is mediated by the

Ca2+-dependent fusion of synaptic vesicles at the active zone

of the presynaptic membrane (Südhof and Rizo, 2011). Rab3-

interacting molecule 1a (RIM1a) interacts, either directly or indi-

rectly, with most active zone proteins (Calakos et al., 2004) and

is crucial to active zone function (Wang et al., 1997). More

specifically, it participates in vesicle priming via interactions

with Munc13-1 (Deng et al., 2011; Koushika et al., 2001),

Ca2+ channel clustering near release sites (Coppola et al.,

2001; Kaeser et al., 2011), and synaptic plasticity, including

presynaptic LTP (Castillo et al., 2002) and homeostatic plas-

ticity (Müller et al., 2012). Furthermore, interactions between

RIM1a and Rab3a (Lonart, 2002; Wang et al., 1997) and synap-

totagmin (Coppola et al., 2001) suggest roles in vesicle docking
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and Ca2+ triggering of exocytosis, respectively. Thus, RIM1a

acts as a hub in a diverse range of functions, but it is unknown

how RIM1a binding to its multiple interacting proteins is

regulated.

Posttranslational protein modification by SUMOylation is a

fundamentally important regulatory mechanism in nearly all

cell pathways (Hay, 2005). Small ubiquitin-like modifier 1

(SUMO-1) is a 97-residue peptide that attaches to proteins

via an isopeptide bond to the primary amine groups of lysine

residues. This covalent attachment is catalyzed by the E2

enzyme Ubc9, which binds to the substrate protein, and is

removed by SUMO-specific proteases (SENPs) (Flotho and

Melchior, 2013). In neurons, SUMOylation participates in the

regulation of synapse formation (Shalizi et al., 2006), neuro-

transmitter receptor trafficking, synaptic plasticity (Martin

et al., 2007; Craig et al., 2012; Jaafari et al., 2013), and presyn-

aptic neurotransmitter release (Feligioni et al., 2009). However,

most of the SUMO substrate proteins mediating these effects

are unknown.

In this study, we identify RIM1a as a synaptic SUMO

substrate. Abrogation of RIM1a SUMOylation leads to severe

defects in action potential (AP)-evoked presynaptic exocytosis

and Ca2+ entry, but not vesicle docking or priming. We show

that inhibition of RIM1a SUMOylation dramatically reduces its

PDZ domain interaction with CaV2.1 and suggest that RIM1a

SUMOylation serves to delineate the many different functions

of this protein.

RESULTS AND DISCUSSION

RIM1 Is a Neuronal SUMO Substrate
To identify neuronal SUMOylation substrates, we used GST-

tagged Ubc9 to affinity purify binding proteins from extracts of

rat cortical neurons. Mass spectrometry and western blotting

showed that RIM interacts with Ubc9 (Figure 1A). Anti-SUMO-

1 antibody immunoprecipitated a RIM1/RIM2-reactive band of

the correct predicted molecular weight, which was protected

by NEM, which inhibits SENP-mediated deSUMOylation (Fig-

ures 1B and 1C). Consistent with RIM being a SUMO substrate,

RIM1/RIM2 and SUMO-1 show extensive colocalization (Man-

der’s M1 colocalization coefficient of 0.6870 ± 0.01, where M1

represents the amount of SUMO-1 fluorescence that overlaps

RIM1/RIM2 fluorescence, n = 35) in the processes of hippocam-

pal neurons (Figure 1D). This colocalization shows that SUMO-1
hors
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Figure 1. RIM1 Is a SUMO Substrate in Neurons
(A) GST-Ubc9 pull-down (PD) for RIM1/RIM2 from rat cortical lysate is shown. WB, western blot.

(B) Coimmunoprecipitation of RIM1/RIM2 with SUMO-1 from cortical neurons is presented. IP, immunoprecipitation.

(C) Quantification of (B) is expressed as the percent (%) RIM1/RIM2 immunoprecipitated in the presence of NEM (n = 3). *p < 0.05 (Student’s t test). Data are

represented as mean ± SEM.

(D) Representative images present RIM1/RIM2 (red) and SUMO-1 (green) immunostaining in hippocampal neurons. Panels below showmagnification of the area

in the dashed boxes. Arrows highlight colocalization. The scale bar represents 20 mm.

(E) Schematic shows significant features and binding sites in RIM1a.

(F) Coimmunoprecipitation of SUMOylated RIM1a in HEK293T cells is presented. Samples immunoprecipitated with HA (RIM1a) were blotted for GFP (SUMO).

Representative of four blots is shown. SUMO-DGG is a nonconjugatable form of SUMO used as a negative control (cf. conjugatable SUMO-GG).

(G) Western blot shows that K502R mutation abolishes RIM1a SUMOylation in HEK293T cells.

See also Figure S1.
is present in the presynapse and thus has the potential to influ-

ence the presynaptic functions of RIM1/RIM2, although it is likely

that there are many presynaptic substrates.
Cell Re
In subsequent experiments, we focused on the RIM1a isoform

because of the higher abundance and well-characterized

presynaptic role (Figure 1A; Schoch et al., 2006). RIM1a is a
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Figure 2. RIM1a SUMOylation Is Involved in

Synaptic Vesicle Cycling

(A) Representative images show FM1-43 uptake in

hippocampal neurons treated with shRNA RIM1

KD and rescue with WT or nonSUMOylatable

K502R RIM1a. Destained images correspond

to 30 s poststimulation. The scale bar repre-

sents 5 mm.

(B) Quantification of (A) is presented. Normalized

fluorescence is FM1-43 pixel intensity as per-

centage (%) of mean fluorescence of control (Con)

neurons (n = 9–13). **p < 0.01 (one-way ANOVA).

Data are represented as mean ± SEM.

(C) Time course shows FM1-43 unloading trig-

gered by 600 APs at 20 Hz for control, RIM1 KD,

WT rescue, and K502R rescue neurons (n = 9–13),

normalized to terminal background. Data are rep-

resented as mean ± SEM.

(D) Quantification of the slope during the initial 15 s

of stimulation in (C) is shown. *p < 0.05 (Student’s

t test). Data are represented as mean ± SEM.

(E) Data in (C) are normalized to the average

baseline (60 s prestimulus).

(F) Mean normalized FM1-43 release in (E) after

30 s of stimulation is shown. *p < 0.05 (Student’s

t test). Data are represented as mean ± SEM.

(% max), percent maximum.

See also Figure S2.
multidomain protein but contains only one lysine (K502) within

a consensus SUMOylation motif (Figure 1E). We were able to

SUMOylate RIM1a in a HEK cell-based SUMO assay using

SUMO-GG (in which the C-terminal diglycine conjugation motif

has been exposed), but not SUMO-DGG (in which the conju-

gation motif has been deleted) (Figure 1F). Mutation of this

lysine to arginine (K502R) or mutation of hydrophobic residue

in the consensus site (A501S) completely prevented RIM1a

SUMOylation, confirming that K502 is the sole SUMO-1 attach-

ment site (Figures 1G and S1A).

RIM1a SUMOylation Regulates the Synaptic Vesicle
Cycle
We used shRNA to knock down endogenous RIM1 and replaced

it with nonSUMOylatable K502R RIM1a. In HEK293T cells, there

was a >90% knockdown (KD) of cotransfected RIM1a, and this

was effectively rescued by shRNA-insensitive constructs

(‘‘rescue’’; Figures S2A and S2B). In hippocampal neurons, there

was a �65% KD of endogenous RIM (Figures S2C and S2D),

with equivalent levels of replacement with WT or K502R RIM1a

that both displayed similar synaptic colocalization with synap-
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sin-1 (Figures S2E and S2F). These

results indicate that SUMOylation is not

required for RIM1a localization at the

active zone.

To determine the roles of RIM1a in pre-

synaptic exocytosis, we used styryl FM

dye loading (Gaffield and Betz, 2006). In

RIM1 KD neurons, FM1-43 dye loading

in response to depolarization was signifi-
cantly reduced. Replacement with WT, but not K502R or A501S

RIM1a, rescued this defect (Figures 2A, 2B, S2G, and S2H),

indicating that RIM1 removal slows or inhibits the synaptic

vesicle cycle and that SUMOylation of the replacement RIM1a

is required to rescue this defect.

We next investigated exocytosis by measuring FM1-43

unloading in response to electrical field stimulation of neurons

(Burrone et al., 2006), using 600 APs at 20 Hz, which induces

exocytosis of the releasable synaptic vesicle pool (Fernández-

Alfonso and Ryan, 2004). Neurons rescued with WT RIM1a

responded identically to control, non-shRNA-treated cells,

whereas in contrast, K502R RIM1a failed to rescue the KD

phenotype (Figure 2C). Cells rescued with K502R RIM1a

displayed a significant reduction in the initial rate of FM1-43

unloading (taken as the initial 15 s during which all profiles

were linear) compared to cells rescued with WT RIM1a (Figures

2C and 2D). Additionally, the total amount of FM1-43 unloading

was significantly lower in cells rescued with K502R RIM1a

(Figures 2E and 2F). Together, these data show that RIM1a

SUMOylation is necessary for normal stimulus-evoked synaptic

vesicle exocytosis.
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Figure 3. RIM1a SUMOylation Has a Critical

Role in Fast Synaptic Vesicle Exocytosis

(A) SypHy fluorescence measurement of the

releasable synaptic vesicle pool (n = 6–9) is shown.

Fluorescence is normalized to baseline and ex-

pressed as percentage (%) of total SypHy signal.

Panels are representative images of SypHy fluo-

rescence taken at rest (0 s), after 600 APs at 20 Hz

(30 s), and after NH4Cl wash. Data are represented

as mean ± SEM. The scale bar represents 5 mm.

(B) Quantification of the initial rate of exocytosis in

(A) is presented. *p < 0.05, **p < 0.01, and ***p <

0.001 (one-way ANOVA). Data are represented as

mean ± SEM.

(C) Data from (A) are plotted to show the 30 s period

of field stimulation (error bars removed for clarity).

Release profiles of control and WT rescue cells

are best described by an exponential function,

whereas RIM1 KD and K502R rescue cells

follow a linear profile. Data are represented as

mean.

(D) Exocytosis from RRP (n = 10), imaged at 10 Hz,

is shown. Fluorescence is normalized to the

baseline and expressed as percent (%) total SypHy

signal (obtained with NH4Cl). Panels below are

representative images of SypHy fluorescence.

Data are represented as mean ± SEM. The scale

bar represents 5 mm.

(E) Quantification of the rate of RRP release

(relative slope during the 2 s of stimulation) is pre-

sented. *p < 0.05 (Student’s t test). Data are rep-

resented as mean ± SEM.

See also Figure S2.
RIM1aSUMOylationHas aCritical Role in the Fast Phase
of Synaptic Vesicle Exocytosis, but Not Vesicle Docking
or Priming
We further investigated the role of RIM1a SUMOylation using the

fluorescent indicator synaptophysin-pHluorin (SypHy) to visu-

alize vesicle fusion events (Burrone et al., 2006). Consistent

with the FM1-43 experiments, RIM1 KD dramatically altered

the kinetics of exocytosis of the synaptic vesicle pool (evoked

by 600 APs at 20 Hz), and this was rescued by WT RIM1a, but

not K502R RIM1a (Figures 3A–3C). The initial linear rate of

exocytosis during the first 10 s of stimulation was reduced by

�50% in RIM1 KD and K502R RIM1a-rescued neurons

compared to control and WT RIM1a-rescued neurons (Figures

3A–3C). Furthermore, as in the FM dye experiments, RIM1 KD

neurons rescued with WT RIM1a displayed similar rates of

release to controls not treated with shRNA, which was different

from the rates observed in RIM1 KD and K502R RIM1a-rescued

cells. However, although RIM1a WT expression rescues the

initial vesicle release rate, it does not completely recover the total

level of exocytosis (Figures 3A–3C). We attribute this to the KD of
Cell Reports 5, 1294–1301, De
both RIM1a and RIM1b but rescue with

only the RIM1a isoform. Thus, as previ-

ously reported by Kaeser et al. (2008),

these results also implicate RIM1b in

regulation of synaptic strength. In these

experiments, the presence of bafilomycin
A blocks vesicle reacidification, allowing specific measurement

of exocytosis in the absence of endocytosis. Thus, we can

state with confidence that the effects we see are specific for

exocytosis, independent of any contribution of compensatory

endocytosis.

Exocytosis from control andWT RIM1a-rescued cells displays

a biphasic release profile, whereas the RIM1 KD and K502R

RIM1a-rescued cells have a linear release profile (Figure 3C).

To test whether this was due to the loss of the fast, initial phase

of release fromRIM1 KD and K502R-rescued neurons, we selec-

tively measured primed synaptic vesicles ready to be released

immediately on membrane depolarization (the readily releasable

pool; RRP) using 40 APs at 20 Hz (de Jong et al., 2012) (Fig-

ure 3D). During the 2 s stimulation, there was an�50% reduction

in rate of exocytosis in cells rescued with K502R RIM1a

compared with WT RIM1a-rescued cells (Figure 3E). These

results show that exocytosis of the primed vesicles in the

RRP is significantly impaired (resulting in a smaller apparent

RRP) in the cells expressing K502R RIM1a. This defect in exocy-

tosis is unlikely to be due to a defect in docking or priming of
cember 12, 2013 ª2013 The Authors 1297
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vesicles because this would result in a decrease in RRP size

but the same rate of release. Thus, we conclude that RIM1a

SUMOylation has a critical role in fast phase of synaptic vesicle

exocytosis.

RIM1a SUMOylation Has a Critical Role in
Depolarization-Evoked Presynaptic Ca2+ Entry due to a
SUMO-Dependent PDZ Domain Interaction of RIM1a
with CaV2.1
The initial fast phase of synaptic vesicle exocytosis is called

‘‘synchronous release’’ because it occurs in direct response to

Ca2+ entry through Ca2+ channel clusters at release sites

(Gundelfinger and Fejtova, 2012). RIM1a plays a major role in

maintaining Ca2+ channel clusters via a direct PDZ interaction

between RIM1a and P/Q-type Ca2+ channels (Kaeser et al.,

2011) and through an indirect complex formation involving

RIM-binding protein (Liu et al., 2011). Intriguingly, the altered

kinetics of exocytosis we see are similar to previous reports

using P/Q-type Ca2+ channel inhibitors (Li et al., 2011). Following

expression in cortical neurons, nonSUMOylatable K502R RIM1a

bound significantly less to CaV2.1 than WT RIM1a. Consistently,

deSUMOylation of neuronal lysate using SENP1 reduced

WT RIM1a binding to CaV2.1 to the same level as the K502R

RIM1a mutant (Figures 4A and 4B). These results indicate that

RIM1a SUMOylation directly regulates its binding to CaV2.1.

Importantly, consistent with RIM1a active zone localization

(Schoch et al., 2002) and vesicle docking (Dulubova et al.,

2005) being unaffected by SUMOylation, WT and K502R

RIM1a display equivalent binding to other active zone proteins,

e.g., Liprin a3 and Rab3 (Figures S3A and S3B). We found no

evidence that CaV2.1 is a SUMO-binding protein, so our hypoth-

esis is that SUMOylation enhances RIM1a binding to CaV2.1.

In agreement with this, K502R RIM1a and SENP-treated WT

RIM1a bound the CaV2.1 PDZ ligand significantly less than WT

RIM1a (Figures 4C and 4D). This does not represent a general

modification of the availability of the PDZ domain in RIM1a by

SUMOylation, given that the interaction between ELKS1b/2

and RIM1a (also via the PDZ domain) was not affected by

SUMOylation (Figures S3A and S3B). Furthermore, CaV2.1-clus-

tering defects in RIM1 KD neurons were effectively rescued by

the expression of WT RIM1a, but not K502R RIM1a or a RIM1a
Figure 4. RIM1a SUMOylation Has a Critical Role in Synaptic Ca2+ Cha

(A) Representative blots show CaV2.1 interaction with WT and K502R RIM1a in n

(B) Quantification of (A) (n = 4) is shown. Data are presented as percent (%) W

represented as mean ± SEM.

(C) Representative blots show GST-CaV2.1-PDZ interaction with WT and K502

(RIM1a) and GST.

(D) Quantification of (C) (n = 5) is shown. Data are presented as percent (%)WT int

are represented as mean ± SEM.

(E) Representative images show CaV2.1 levels (green) in synapsin-1-dense re

represents 5 mm.

(F) Quantification of synaptic CaV2.1 in (E) (n = 12–43) is shown. ***p < 0.001 (one-w

mean ± SEM.

(G) Quantification of synapsin-1 in (E) is shown. Data are represented as mean ±

(H) Presynaptic Ca2+ influx measured by SyGCaMP3 fluorescence (n = 8–10) is

as percent (%) maximum SyGCaMP3 signal obtained with 5 mM ionomycin. Pa

represented as mean ± SEM. The scale bar represents 5 mm.

(I) Quantification of SyGCaMP fluorescence after 2 s of stimulation is shown. *p <

See also Figures S2 and S3.

Cell Re
PDZ domain-deficient construct, in which three critical PDZ

domain lysines (Kaeser et al., 2011) were mutated to asparagine

(3KN), (Figures 4E, 4F, S3C, and S3D). Synapsin-1 showed no

differences in clustering under any of the conditions (Figures

4E and 4G). Taken together, these data demonstrate that

RIM1a SUMOylation has a previously unreported role in PDZ

interaction-mediated CaV2.1 clustering.

We next tested whether RIM1a SUMOylation is required

for normal presynaptic Ca2+ signaling, using a presynaptically

targeted Ca2+-sensitive GFP reporter (SyGCaMP3) (Li et al.,

2011). Ca2+ signals evoked by 40 APs at 20 Hz were significantly

reduced (by �40%) in RIM1 KD neurons, a defect that was

rescued by expression of WT but not K502R RIM1a (Figures

4H and 4I). These data strongly suggest that SUMOylated

RIM1a maintains normal presynaptic Ca2+ signaling via

enhanced interactions with CaV2.1, which is required for syn-

chronous synaptic vesicle exocytosis.

We note that our use of acute shRNA KD of RIM1 produced

larger effects on activity-dependent Ca2+ entry and exocytosis

than previous studies using knockout mice or genetic ablation

in 3–5 days in vitro (DIV) neurons (e.g., Kaeser et al., 2012), in

which deletion of both RIM1a and RIM2a was required to see

such an effect. We perform our RIM1 KD inmoremature neurons

(10–11 DIV), in which active zone architecture is likely to be more

established, therefore providing less scope for compensation

for the loss of RIM1 by RIM2. Therefore, we believe that our

approach gives a better indication of the role of the RIM1 isoform

in mature synapses.

In this study, we show a previously unsuspected role for pro-

tein SUMOylation in the control of synchronous synaptic vesicle

exocytosis. Specifically, we have shown a mechanism whereby

SUMOylation causes the PDZ domain of RIM1a to become avail-

able for interaction with CaV2.1. This is required to promote the

clustering of CaV2.1 and Ca2+ entry on arrival of APs at the pre-

synaptic terminus. Although we cannot formally exclude the

possibility that these presynaptic effects are due to retrograde

signaling from transfected postsynaptic neurons, given the inter-

nal consistency of our different functional approaches and their

close correlation with the literature, we consider this explanation

unlikely. We propose that SUMOylation can act as a molecular

switch in the active zone, controlling the interactions and
nnel Clustering and Ca2+ Influx

eurons.

T interaction levels without SENP1. ***p < 0.001 (one-way ANOVA). Data are

R RIM1a in neurons. Pull-downs with GST-CaV2.1-PDZ were blotted for HA

eraction levels without SENP1. *p < 0.05 and **p < 0.01 (one-way ANOVA). Data

gions (blue) in RIM1 KD and rescue hippocampal neurons. The scale bar

ay ANOVA) compared to both control andWT rescue. Data are represented as

SEM.

presented. SyGCaMP3 fluorescence is normalized to baseline and expressed

nels below are representative images of SyGCaMP3 fluorescence. Data are

0.05 and **p < 0.001 (one-way ANOVA). Data are represented as mean ± SEM.
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defining the function of different pools of multifunctional pro-

teins, such as RIM1a. Specifically in this case, SUMOylated

RIM1a is involved in the clustering of Ca2+ channels required

for coordinated Ca2+ entry at the presynapse, whereas

nonSUMOylated RIM1a participates in functions such as vesicle

priming and docking. Such a molecular switch would help to

explain how several active zone proteins participate in many

diverse functions. Defining exactly how this SUMO-dependent

‘‘switching’’ between RIM1a-binding proteins orchestrates

interactions at the active zone will provide important insight

into synaptic function and dysfunction.
EXPERIMENTAL PROCEDURES

Molecular Biology

Cloning of all constructs was carried out with standard molecular biology

techniques.

Biochemistry

Cultured rat cortical neurons (18 DIV) or HEK293T cells were used for SDS-

PAGE, immunoblotting, immunoprecipitations, and GST pull-downs. Lysates

were incubated ±20 mM NEM at 37�C for 30 min. HEK293T cell SUMOylation

assays were conducted as described (Craig et al., 2012). For interactor

studies, neurons infected with WT or K502R RIM1a-HA Sindbis virus were

lysed on ice ±20 nM SENP1, and interactions were probed using either anti-

HA immunoprecipitation or a GST-tagged CaV2.1 PDZ ligand (sequence

SEDDWC).

Neuronal Cultures and Imaging

Embryonic rat hippocampal and cortical neurons were prepared as

described (Martin and Henley, 2004). Neurons were typically transfected at

11 DIV and imaged 4 days later (15 DIV). Immunocytochemistry assays

were performed with paraformaldehyde fixation according to standard proto-

cols. Image and blot analysis was performed using ImageJ software, and

statistical analysis was conducted using GraphPad Prism. For functional

fluorescence assays, one cell with 10–13 ROIs was analyzed per repeat.

Fluorescence data were first normalized to baseline and then to maximal

values (Fmax).

Fluorescent Exocytosis Assays

For FM dye experiments, hippocampal neurons were transfected with RIM1

shRNA (mCherry) and either a WT or K502R RIM1a-HA rescue construct.

FM1-43 experiments were performed as described by Gaffield and

Betz (2006) with 0.2 Hz imaging. SypHy and SyGCaMP3 were expressed

on a pFIV RIM1 shRNA vector and cotransfected with WT or K502R

mCherry-IRES-RIM1a. SypHy experiments were performed as described

by Burrone et al. (2006) with imaging at 0.5, 2, or 10 Hz. SyGCaMP3 experi-

ments used 10 Hz imaging (Li et al., 2011). Electrical field stimulation was

used for all assays: 600 APs at 20 Hz to induce exocytosis of the releasable

synaptic vesicle pool, 40 APs at 20 Hz for RRP release, and SyGCaMP3

experiments.

Statistical Analysis

All quantified results shown are themean ±SEM. Statistical analyses were per-

formed using either Microsoft Excel or GraphPad Prism. For comparison of

two sets of data, one-tailed Student’s t test was used. For comparison of mul-

tiple sets of data, one-way ANOVA with Bonferroni’s post hoc test was used.
SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and three figures and can be found with this article online at http://dx.doi.

org/10.1016/j.celrep.2013.10.039.
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