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Abstract 

A novel approach for protecting jet fuel against the effects of water contamination based upon Fuel 

Dehydrating Icing Inhibitors (FDII) is presented.  This dual-action strategy is predicated on the 

addition of a fuel-soluble water scavenger that undergoes a kinetically-fast hydrolysis reaction with 

free water to produce a hydrophilic ice inhibitor, thereby further militating against the effects of water 

crystallisation.  Criteria for an optimum FDII were identified then used to screen a range of potential 

water-scavenging agents, which led to a closer examination of systems based upon exo/endo-cyclic 

ketals, and both endo- and exo-cyclic ortho esters. The ice inhibition properties of the subsequent 

products of the hydrolysis reaction in Jet A-1 were screened by differential scanning calorimetry. The 

hydrolysis products of 2-methoxy-2-methyl-1,3-dioxolane demonstrates similar ice inhibition 

performance to  DiEGME over a range of blend levels. The calorific values for the products of 

hydrolysis were also investigated and it is clear that there would be a significant fuel saving on use of 
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the additive over current fuel system icing inhibitors.  Finally, three promising candidates, 2-methoxy-

2-methyl-1,3-dioxolane, 2-methoxy-2-methyl-1,3-dioxane and 2-methoxy-2,4,5- trimethyl-1,3-

dioxolane were shown to effectively dehydrate Jet A-1 at room temperature over a two hour period.   

1. Introduction  

Jet fuel comprises between 99-99.5% hydrocarbons, grouped into three broad classes: paraffins, 

naphthenes and aromatics [1, 2].  Aromatics are limited to monocyclic and bicyclic compounds by the 

distillation process, and are regulated to a maximum of 25% v/v and an industry accepted minimum of 

8% v/v [2].  The remainder of the non-hydrocarbon fraction is composed of hetero-organic 

compounds containing sulphur, nitrogen and oxygen.  One of the most common contaminants of jet 

fuel are the naphthenic acids, a mixture of cyclopentyl and cyclohexyl carboxylic acids [3,4].   

Dissolved water is also a normal component of jet fuel, though the concentration depends on the 

chemical composition of the fuel, the temperature, and the air humidity. Free water can starve 

engines, support microbial growth, contribute towards corrosion and furthermore freeze, risking 

blockages in aircraft filters [5].  The SAE Aerospace Recommended Practice (APR) 1401B covers a 

brief discussion of the icing problem in aircraft fuel systems and recommends standardised procedures 

for aircraft fuel systems or components icing tests  [6].  The APR recommends using fuel with 90 ppm 

v/v of water for “Continuous System Operation” icing tests and fuel with 288 ppm v/v of water for 

“Emergency System Operation” icing tests.   The aviation industry uses both mechanical and quality 

control approaches to protect jet fuel from water contamination.  However, even if jet fuel enters the 

fuel tank without free water, this does not prevent its formation during flight [1,2].  Dissolved water 

present in fuel will precipitate out of solution in the form of micro droplets as the fuel temperature 

drops when the aircraft climbs to altitude [7,8].  Water solubility in the fuel decreases by 

approximately 2 ppm v/v for every 1°C drop in temperature.  Jet A-1 containing higher concentrations 

of aromatics is also found to have a higher affinity towards water, and tends to shed the greatest 

quantity of water as the temperature decreases [9,10].  Another source of free water in the fuel tanks 

derives from the condensation of atmospheric moisture. As the aircraft is descending from cruise 
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altitude, air is drawn into the fuel tanks through the vent system; the moisture in the air condenses as 

it comes in contact with the cold fuel and tank surfaces at the end of a long flight [11].  

 

A variety of additives have therefore been developed to counter the detrimental effects of free water, 

including biocides, corrosion inhibitors, and Fuel System Icing Inhibitors (FSII); the latter are 

hydrophilic substances which lower the freezing point of water by disrupting the hydrogen-bonding 

networks responsible for molecular ordering, thereby inhibiting crystallisation [12].  Currently there is 

only one FSII approved for this purpose – diethylene glycol monomethyl ether (DiEGME).  At the 

approved concentrations of DiEGME (0.07-0.15% v/v), Trohalaki et al. [13] found that water 

(0.007% v/v) present in jet fuel only began to crystallise below -33°C.  DiEGME has also proved to 

be an effective deterrent to microbial growth at high concentrations [2].  Unfortunately DiEGME is 

hygroscopic, which leads to an elevated uptake of atmospheric water during blending. DiEGME also 

has a high water-fuel partitioning ratio, which means that it preferentially dissolves in the water phase. 

This leads to denser water layers separating under gravity with up to 40-50% m/m of DiEGME. 

Unless replenished, the jet fuel is essentially stripped of its protection against icing. In addition, the 

presence of DiEGME in the water contained within the fuel alters interfacial properties, and can 

impair the performance of filters.  Particularly, the separation efficiency of filters/coalescers can be 

compromised [11].  DiEGME is also toxic at the concentrations required for effective de-icing.  Water 

drained from sumps of storage tanks and fuel systems inevitably contain higher concentrations of 

DiEGME, creating concerns about the handling and disposal of these waste materials [13].    

 

Recently, we reported a highly promising class of compounds that could act as dehydrating agents for 

fuel [14].  This strategy employs an additive which preferentially partitions into the surrogate fuel 

layer and consumes water through a fast hydrolysis reaction.   We reasoned that such a water 

scavenging agent would offer dual protection by affording as the product of hydrolysis, an ice 

inhibitor which would preferentially partition into residual water.  To develop a solution to such a 

complex cascade of processes, the following fundamental criteria were identified as being vital for a 

successful additive: selectivity towards water, combustibility, atom economy, catalysed by jet fuel, 
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dual-action, fuel/water partitioning, kinetically fast, cheap and easy to synthesise and environmentally 

benign [14].   Geminal ethers (i.e. acetals, ketals, orthoesters, and orthocarbonates) appear to possess 

the appropriate levels of selectivity and stability for our purposes.  The use of acetals and ketals 

derived from the sugar mannose has been explored previously by Mushrush and co-workers [16].  

These compounds were proven to exhibit comparable ice inhibitor characteristics to DiEGME, were 

stable in jet fuel for up to two years, and importantly were found to be environmentally benign and 

relatively nontoxic at the necessary concentration [16].  We further demonstrated that acyclic ortho 

esters are effective dehydrating agents under acidic conditions [14].   In a recent study [17], we 

reported the dehydrating properties of a range of acyclic and cyclic geminal ethers (i.e., 1-16; Figure 

1) using a model fuel system, along with the absolute rates for the hydrolysis reactions.  Here, we 

report on the experimentally determined de-icing properties of the hydrolysis products (denoted with 

the prefix P) of selected cyclic geminal ethers (i.e., P1-16 – see supporting information for structures), 

and finally describe a proof of concept study which illustrates how the inherent acidity of fuel may 

catalyse the dehydration reaction of these compounds.   

2 Materials and Methods 

2.1 Materials  

The Jet A-1 fuel used throughout this study was obtained from Air BP, batch number 

BIS/HAL/12/035K, possessing an aromatic content of 17.1% v/v, and acidity of 0.01 mg KOH/g.  All 

other materials were purchased from Sigma Aldrich (Dorset, UK) to the highest level of purity and 

used without further purification.   

2.2 Synthesis  

The synthesis of 1-16 (FDII) has been described previously [17].  2-Hydroxyethyl acetate (P5), 3-

hydroxypropyl acetate (P8), 3-hydroxybutan-2-yl acetate (P10/11/14), and 2-hydroxyethyl-3,3-

dimethylbutanoate (P16) were prepared via the acid catalysed monoesterification of the corresponding 

diol using the appropriate carboxylic acid according to a method adapted from the literature [18].  

2-Hydroxyethyl acetate (P5) was prepared by dissolving freshly distilled ethylene glycol (9.75 mL, 

0.175 mol) in glacial acetic acid (10 mL, 0.175 mol), with a catalytic amount of concentrated H2SO4 
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(0.1 mL, 2 mmol).  The reaction mixture was left refluxing for 2 hours at 105 °C, then allowed to cool 

to room temperature.  The crude reaction mixture was washed with saturated aqueous Na2CO3 

solution (20 mL) and extracted with diethyl ether (3 x 10 mL).  The combined ethereal extracts were 

dried (MgSO4), filtered, concentrated in vacuo, and purified by column chromatography to afford a 

clear colourless liquid characterised as 2-hydroxyethyl acetate (6.5 g, 36%); δH  (400 MHz, CDCl3) 

2.07 (s, 3H), 2.51 (broad s, 1H), 3.79 (m, 2H), 4.17 (m, 2H).
 1

H NMR data are in accord with the 

literature [19]. 

P8 - Synthesis as above; 1,3-propanediol (6.368 g, 0.084 mol) with glacial acetic acid (4.80 mL, 

0.0840 mol) and concentrated sulphuric acid (0.05 mL, 0.00084 mol)  afforded a clear colourless 

liquid characterised as 3-hydroxypropyl acetate; δH (400 MHz, CDCl3) 1.84 (q, 2H), 2.04 (s, 3H), 2.42 

(broad s, 1H), 3.66 (t, 2H), 4.19 (t, 2H).
 1
H NMR data are in accord with the literature [20]. 

P10/11/14 - Synthesis as above; 2,3-butanediol (9.87 mL, 0.11 mol) with glacial acetic acid (6.30 mL, 

0.11 mol) and concentrated sulphuric acid (0.06 mL, 0.0011 mol)  afforded a mixture of 2,3-

butanediol monoacetate diastereoisomers; δH  (400 MHz, CDCl3) 1.15 (d, 3H), 1.18 (d, 3H), 1.19 (d, 

3H), 1.21 (d, 3H), 2.05 (s, 3H), 2.06 (s, 3H), 3.73 (m, 1H), 3.88 (m, 1H), 4.74 (m, 1H), 4.85 (m, 1H).
 

1
H NMR data are in accord with the literature [21].   

P16 - Synthesis as above; ethylene glycol (8.76 mL, 0.157 mol) with 3,3-dimethylbutanoic acid (20 

mL, 0.157 mol) and concentrated sulphuric acid (0.09 mL, 0.0016 mol).   In this case the reaction 

mixture was refluxed at 135°C for 6 h to afford a clear colourless liquid characterised as (2’-

hydroxyethyl)-3,3-dimethylbutanoate; δH (400 MHz, CDCl3) 1.02 (s, 9H), 2.23 (s, 2H), 2.27 (broad s, 

1H), 3.80 (m, 2H), 4.18 (m, 2H). 

 

Methyl 5-hydroxypentanoate (P15) was synthesised by reacting δ-valerolactone (15 g, 0.150 mol) and 

methanol (300 mL), in the presence of H2SO4 catalyst (0.8 mL, 0.015 mol) [22].  The reaction mixture 

was stirred and refluxed at 105 °C for 21 hours.  Solid NaHCO3 (2.52 g, 0.03 mol) was added, and the 

solution filtered and partially concentrated in vacuo.  The reaction mixture was washed with water, 

extracted with diethyl ether (3 x 20 mL), dried (MgSO4), filtered, and concentrated in vacuo. The ester 

was purified by column chromatography to afford a colourless liquid characterised as P15 (8 g, 40%); 
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δH  (400 MHz, CDCl3) 1.52 (m, 2H), 1.64 (m, 2H), 2.30 (t, 2H), 2.75 (broad s, 1H), 3.57 (t, 2H), 3.61 

(s, 3H).
 1
H NMR data are in accord with the literature [22]. 

2.2  Calculated partitioning co-efficient (LogKOW) 

LogKOW values at 25°C were calculated using two well established computational methods; 

KOWWIN™ from the EPI suite of the US Environmental Protection Agency [23], and LogP 

(AB/LogP v2.0) from the ACD/I-Lab of the National Chemical Database Service [24].  Both 

computational methods predict the log octanol-water partition coefficient by using an atom/fragment 

contribution method which can estimate logKOW within ± 0.8 log units for over 96% of an 

experimental dataset of >8000 compounds [25].  The values reported are the average of the two 

results. 

2.3 De-icing properties 

Differential Scanning Calorimetry (DSC) was used to determine the freeze points of aqueous 

solutions of the products of FDII hydrolysis at various concentrations, and these were compared to the 

corresponding DiEGME solutions in order to characterise relative de-icing performance.  A TA Q20-

2160 differential scanning calorimeter equipped with a liquid cooling accessory was used.  Firstly, 

aqueous solutions of the hydroxyester ranging in concentration from 0-50% v/v were examined, and 

then equimolar aqueous solutions of the hydrolysis products (i.e. hydroxyester/ethanol) ranging from 

0-50% v/v were examined.  Standard solutions were prepared at 10% v/v intervals prior to testing to 

avoid sample degradation. For each analysis, approximately 20 mg of standard solution was weighed 

into a Tzero open aluminium pan and referenced against an empty aluminium pan. The temperature 

program used for this analysis consisted of a cooling rate of 10 ºC/min to -70 ºC, followed by heating 

at 1 ºC/min. The primary purpose of the cooling portion of the cycle was to solidify the aqueous 

mixture rather than estimate the freeze point, due to potential undercooling effects [26]. The low ramp 

rate during warming was used to provide the most accurate estimate of the temperature for the solid-

to-liquid phase transition [27,28].  Since the ASTM definition of freeze point is the temperature at 

which the last solid crystal melts upon heating, the temperature at the maximum value of the 

measured endotherm was taken as the freeze point [29,30].  The results obtained using DSC were 
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reproducible to within ±0.2 ºC, based on triplicate runs, despite supercooling being observed during 

cooling of the samples. 

2.4 Energy density  

Bomb calorimetry was used to obtain the gravimetric energy density of the FDII hydrolysis products.  

This is the method of choice for measuring heat of combustion values of fuels and additives as shown 

by ASTM D 4809 [31].  An IKA C1 bomb calorimeter was used to obtain calorific values of the 

additive products.  Each sample was weighed in a metal crucible (0.5 g) and promptly analysed. 

2.5 Fuel surrogate/water equilibrium partition coefficients  

The fuel surrogate used to mimic Jet A-1 throughout this study (i.e., aromatic content of 17% v/v) was 

prepared by mixing 83% v/v dodecane and 17% v/v toluene.  The amount of dissolved water in the 

fuel surrogate was initially determined via Karl Fischer titration using a Mettler DL37 KF Coulometer 

and was found to be in accord with the amount of water dissolved in Jet A-1 (i.e., 60 ppm v/v in fuel 

surrogate, and 59 ppm v/v in Jet A-1).  Mixtures of fuel surrogate (20 mL) and FDII hydrolysis 

products at the appropriate concentrations were prepared, vortexed for 15 sec and allowed to achieve 

equilibrium at the specific temperature for 2 hours prior to being analysed via GC-FID to establish the 

initial concentration of p in the fuel surrogate (i.e., [p]Fuel
i
).   The required free water was added to the 

mixture, the sample vortexed for further 15 secs and allowed to achieve equilibrium at the specific 

temperature for a minimum of 3 hours.  The fuel surrogate phase was then analysed by GC-FID to 

establish the final equilibrium concentration of product in the fuel surrogate [p]Fuel
f
.  The partition 

coefficient of the products of hydrolysis between free water and the fuel surrogate logKFW  are readily 

calculated using log{[p]Fuel
f
 /[p]Water}, given that [p]water = [p]Fuel

i
 - [prod]Fuel

f
. 

 

2.6 Dehydration of jet fuel 

To quantify the additive products, and assess the extent of dehydration, GC-FID was used.  The full 

GC-FID experimental procedure is reported elsewhere [14].  The analyses were performed using a 

Varian CP-3800 GC equipped with a flame ionisation detector, and a CP-Sil 8CB column.  The 

methodology has been developed to minimise the analysis time whilst ensuring that the alcohol 

formed during hydrolysis and the internal standard (3-methyl pentane) both elute before the jet fuel 



8 
 

component.  Water (500 ppm v/v) was dispersed in 2 mL of Jet A-1 by 3 min of sonication and the 

additive was added immediately after with stirring at 800 rpm at room temperature.  Measurements 

were taken after 2 hours from the addition of the additive.  Karl Fischer titration was also performed 

concurrently, using a Mettler DL37 KF Coulometer. 

3 Results and Discussion 

3.1 FDII additive selection  

In principle cyclic acetals, ketals, ortho esters, and ortho carbonates may be considered suitable as 

dual action de-icing additives as the products of hydrolysis resemble the FSII DiEGME, possessing 

both hydrogen bond donors, and acceptors within an aliphatic backbone.  A review of the structural 

characteristics of cyclic acetals, ketals, ortho esters, and ortho carbonates, along with anticipated 

hydrolysis products, suggests that the exo/endo-cyclic  ketals, and both endo- and exo-cyclic ortho 

esters, present themselves as promising candidates for a dual purpose additive, meeting the criteria 

outlined earlier (Figure 2). 

 

Acetals were excluded for further consideration as they afford an aldehyde upon hydrolysis, which 

may be converted to the corresponding carboxylic acid under oxidising conditions.  Whilst carboxylic 

acids can be expected to increase the rate of the hydrolysis reactions, they are undesirable from the 

perspective of corrosion.  The endo-cyclic ketal affords glycols, which are notoriously toxic to the 

environment, whereas exo-cyclic ketals are expected to afford cyclic ketones which are expected to be 

poor de-icers because they possess a single site for hydrogen bonding.  Hydrolysis of ortho-carbonates 

leads to cyclic carbonates, which may spontaneously decompose to afford ethylene glycol, water and 

carbon dioxide. 

We previously demonstrated that ortho esters are rapidly hydrolysed by dissociated acid catalysts (i.e., 

hydroxonium ions derived from naphthenic acid), whereas a much slower process occurs with an 

associated acid catalyst.  The implications of this finding are that lipophilic ortho esters which 

preferentially partition into the fuel phase will hydrolyse much more slowly in the presence of 

dissolved water, whereas a rapid hydrolysis reaction is expected to occur at the interface with free 
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water [14].  Prior work saw the assembly of a library of potential FDII in which the geminal ethers 1-

16 (Figure 1) were ranked according to their rate constants in their reaction with water (i.e., the 

hydroxonium catalytic coefficient = logkH+) in a solvent system that mimics the water/fuel interface 

(water:acetonitrile = 1:4 v/v) [17].  The rate constants for structures 1-16 (logkH+) are presented on the 

vertical ordinate of Figure 3 and the horizontal ordinate corresponds to logKow with zero representing 

the boundary between the H2O and fuel surrogate phases.  In this way, the balance between the 

lipophilicity/rate constants for water hydrolysis (logkH+) of FDII, along with the hydrophobicity of the 

corresponding hydrolysis products may be viewed.   Ideally, effective FDII are fast water scavengers 

(i.e., logkH+ > 0), are lipophilic (i.e., logKow > 0), and the corresponding hydrolysis products are 

hydrophilic (i.e., logKow < 0) with the capacity to disrupt water crystallisation [33]. 

 

The products of hydrolysis of FDII are an ester and an alcohol (Figure 2); the ester products are 

labelled with respect to their corresponding geminal ether using the prefix P.  There will clearly be a 

tipping point for the ideal dual-action reagent as the lipophilicity of the fuel dehydrating agent, and 

hydrophilicity of the potential icing inhibitor are inextricably linked.  The octanol-water (1:1 v/v) 

partition coefficient (KOW) at 25 °C was used to calculate the lipophilic or hydrophilic properties of 

the molecules [34,35].  Since values range across many orders of magnitude, the logarithm was 

employed, i.e., logKOW (x-axis, Figure 3).  Assuming that octanol represents a reasonable surrogate 

for the lipophilic jet fuel phase, then a calculated value of logKow > 0 indicates a propensity for a 

given molecule to partition preferentially in the fuel phase.  Conversely, logKow < 0 indicates a 

preference for preferential partitioning in the aqueous phase.  Effective and well established fuel 

system icing inhibitors are known to possess logKow approximately equal to, or less than zero 

(DiEGME logKow = -0.68 [36]), indicating a preference for aqueous solubility.  All the fuel 

dehydrating agents considered in this study were predicted to partition preferentially into the fuel 

phase.  On the basis of hydrolysis products possessing logKow less than zero, 1, 2, 5, and 8 present 

themselves as promising candidates for further consideration.  FDII additives 4, 10, 11, 14 and 15 are 

also interesting candidates, since their corresponding hydrolysis products have calculated logKow close 

to zero (i.e., logKow ≤ 0.20).  Importantly, much like DiEGME, candidates P5, P8, P10, P11, P14, and 
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P15 possess one H-bond donor, and two H-bond acceptors, indicating their potential as effective icing 

inhibitors.   

 

Although sterically demanding substituents can increase the reaction rate of five-membered ring 

systems [17], the impact upon the lipophilicity of the hydrolysis products undermines the partitioning 

properties of the de-icer (i.e., P16).  We decided however, to continue to investigate candidate 16 

because of the unusually high kinetic activity as water scavenger in the surrogate model 

(water:acetonitrile=1:4).  FDII 13 was also considered for further investigation since it is a promising 

water scavenger that is also commercially available.  Furthermore, the hydrolysis of the geminal 

ethers considered in this study will also produce either ethanol or methanol, depending on the starting 

material.  The experimental logKow values for these alcohols are −0.31 and -0.74, respectively, which 

indicates that they partition preferentially in the water phase. 

 

3.2 Experimental determination of ice formation inhibition  

Differential scanning calorimetry (DSC) was used to determine the ice inhibition properties of the 

hydrolysis products in water, since it is a thermal analysis technique that can provide information on 

phase transition temperatures [27]. It has been previously used to study the phase change 

characteristics of Fuel System Icing Inhibitors [37], and jet fuels with and without additives [30].  The 

freezing point of neat DiEGME is -70 °C [37].  

 

The measured phase change for pure water begins just below 0 °C and is complete at 1.3 °C, affording 

a minimum freeze point of water (i.e., 1.3 °C) within acceptable tolerance for the experimental 

methodology used.  DiEGME significantly reduced the measured freeze point and broadened the 

temperature range over which the phase transition occurred.  The broadening of the temperature range 

over which the melting occurred may indicate that the phase transition becomes less homogeneous 

with higher FSII content.  A comparison of the temperature reduction of the phase transition of pure 
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water with 0-50 % v/v of DiEGME, EtOH, MeOH, and hydrolysis products of additives 1, 2, 4, 5, 8, 

10/11/14, 13, 15, and 16 are presented in Figure 4a-c. 

 

At low concentrations, the differential reductions from water are relatively small however they rapidly 

increase as the concentration approaches 50% v/v (Figure 4a). The relationship between freezing 

point depression as a function of concentration is non-linear, indicating that the freezing point of the 

solution does not depend solely on the concentration of the solute, indicating some non-bonded 

intermolecular interactions between water and the additive (i.e., hydrogen bonding). The measured 

freezing point values as a function of FSII concentration obtained during these studies were in 

agreement with those previously reported [37].   

 

As hydrolysis of FDII results in more than one product (i.e., an ester and an alcohol - Figure 2), both 

products were examined for their freeze point depression activity. Depending on the FDII additive, 

the resulting alcohol will be either methanol or ethanol.  Both alcohols were examined, and 

promisingly, they demonstrate superior de-icing capabilities than DiEGME within the 0-50% volume 

concentration, and since they also have a logKow value below zero, they constitute excellent de-icing 

agents. Methanol exhibits greater anti-icing performance than ethanol at very high concentrations 

though ethanol is less toxic [38,39]. 

 

The products of hydrolysis of 1, 2, 4, 5, 8, 10, 11, 13, 14, 15, and 16 were also analysed for their de-

icing properties by DSC (Figure 4b-c).  Hydrolysis of 1 affords 1,3-propane diol which is an excellent 

de-icer. Hydrolysis of 2 and 13 affords methyl formate and ethyl acetate respectively. These 

compounds are not particularly soluble in water, with corresponding water solubilities of 300 g/L and 

83 g/L, respectively.  They were therefore examined to the limit of their solubility.  Even at the 

maximum solubility in water, methyl formate and ethyl acetate are poor de-icing agents.  

 

The FDII containing a bulky substituent (16) also demonstrated poor freeze point depression 

behaviour because of its low water solubility.  The freeze point temperature of P4, P10/11/14, and 
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P15 at low concentration (≤ 20% v/v) are similar to DiEGME; however they diverge at concentration 

˃ 20% v/v. At 50% v/v they afford a freeze point temperature range of 17-20 °C higher than 

DiEGME.  The additive 15, depending on the pH, will afford a mixture of methyl 5-

hydroxypentanoate (P15) and δ-valerolactone (P15*) [40]; here an equimolar mixture of these 

products was examined.  Both P5 and P8 appear to be the most promising de-icers with performance 

identical to, if not better than DiEGME at low concentrations (≤ 20% v/v). Both additives have 

slightly higher freezing point temperature at concentrations above 20% v/v, and at 50% v/v, they 

exhibited a freezing point  of 11 °C and 15 °C higher than DiEGME. 

 

Since the ester products will be produced concomitantly with the corresponding alcohol (excluding 

additive 1), the phase transition temperatures of a mixture of the products and ethanol/methanol were 

investigated (Figure 5a-b). For the analysis, standard solutions of 10-50% v/v of the products and 

alcohol in the correct molar ratio were prepared; this assumes an identical fuel-water partition 

coefficient for the products and the alcohol. The de-icing performance of P1 decreases with the 

introduction of 2-butanone, with a comparatively large fall in performance compared to the neat 

solution at higher concentration (see Figure 4b).  When P2 or P5 were present with the requisite 

amount of methanol, the freezing point of the mixture was comparable to DiEGME, with a positive 

increase at concentration ˂ 20% v/v and a negative decrease at concentration ˃ 30% v/v resulting in a 

difference of 8 °C and 7 °C at 50% v/v, respectively. The presence of methanol also enhanced the 

freeze point depression for P4, P8, P10/11/14, P13, P15 and P16, but the performances above 30% 

v/v in concentration were between 10-70% v/v that of DiEGME.  Interestingly, P5 possesses 

significantly greater de-icing performance than any other products at high concentrations; however in 

the presence of methanol, both P2 and P5 demonstrate performance comparable to DiEGME.  

 

3.3 Energy density of the subsequent FDII additive products 

One further persuasive factor in determining the suitability of an additive is the effect on the energy 

density and therefore range of an aircraft. Gravimetric energy density of the FDII’s hydrolysis 
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products were determined experimentally by bomb calorimetry and compared to DiEGME (Figure 6). 

The energy densities of methanol and ethanol are 22.66 and 29.67 MJ/kg, respectively [41]. Ethanol 

has an additional methylene group (-CH2-) compared to methanol; therefore it releases more energy 

per unit mass of fuel upon combustion.  Furthermore, ethanol is preferable to methanol as it is more 

soluble in jet fuel and less toxic. The materials P5, P8, P10/11/14 and P13 have a lower energy 

density than DiEGME, whereas P15 and P16 have higher energy densities.   

 

To understand the impact of the calorific value of the FDII hydrolysis products, simple calculations 

were performed by considering a total of 1 tonne of fuel. The impact of water contamination was then 

assessed by comparing Jet A-1 contaminated with water at a concentration of 260 ppm v/v and 

DiEGME (0.15 v/v), to 1 tonne of Jet A-1 with the products of hydrolysis of the additives present. In 

the case of FDII, the loading of the additive was calculated on the basis of the concentration of 

additive necessary to remove 260 ppm v/v water. The hydrolysis products of 15 are expected to be 

equally distributed between P15 and P15* (methyl 5-hydroxypentanoate and δ-valerolactone, 

respectively). 1 tonne of pure Jet A-1 used in this study has an energy density of 45,870 MJ. 1 tonne 

of Jet A-1 with DIEGME and 260 ppm v/v of water has a reduced energy density of 45,820 MJ. 

Figure 6b illustrates the change in energy density for 1 tonne of Jet A1 containing the hydrolysis 

products of the additives. The addition of the additive to Jet A-1 leads to a gravimetric energy density 

approximately equivalent or higher than the DiEGME system. Though the energy density change is 

very modest compared to pure Jet A1;this demonstrates that a water management system based on 

these novel additives would not lead to a significant reduction in aircraft range or could potentially 

slightly increase the range of the aircraft opposed to a system using DiEGME.  

 

Other key fuel properties could potentially be altered by the addition of the additive. For example, the 

flash point could be lowered due to the hydrolysis products ethanol and methanol. However, the 

loading of the additive should be insufficient to alter the properties of the fuel batch such that it falls 

out of specification. Thermal stability could also be improved in principle, though this would require 

extensive testing to assess the effects of the additive on actual fuel systems.  
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3.4 Fuel surrogate/water equilibrium partition coefficients 

The equilibrium partition coefficients for fuel and aqueous phases provides a guide to the realistic 

concentrations of FDII hydrolysis products in the water phase, and therefore the de-icing potential.  

The complexity of jet fuel renders difficult the accurate determination of the concentration of FDII 

hydrolysis products, therefore an appropriate fuel surrogate composed of dodecane (83 % v/v) and 

toluene (17 % v/v) was used instead (Table 1).  It has been established previously that FDII reacts 

very slowly with dissolved water, whereas reaction is rapid in the presence of free water [14].  For 

this reason, the water added to the fuel surrogate was in addition to the amount of water present in its 

dissolved form (i.e., 59 ppm).      

 

Table 1 clearly indicates that the products of FDII hydrolysis preferentially partition into water with 

the same order of magnitude as the DiEGME [11].  Most notably for the hydrolysis products of 

FDII’s 5 and 8, partitioning into lower concentrations of water (i.e., 90-500 ppm v/v) is two to three 

orders of magnitude more favourable than suggested in the calculation (Figure 3), which assumes a 

1:1 ratio of water/fuel.  Table 1 also clearly indicates that partitioning into the water phase increases 

as the temperature of the fuel decreases. Similarly, a higher water content leads to an increase in the 

partitioning of the products into the water phase. This demonstrates that the products will effectively 

partition into the water phase effectively reducing the freezing point of any remaining free water in 

the fuel tank. 

 

3.5 Proof of concept study  

Finally, a proof of concept experiment was undertaken to establish whether the additives could 

dehydrate a standard sample of Jet A-1 fuel, and whether the inherent acidity of the fuel was sufficient 

to catalyse the hydrolysis reaction of FDII.  To this end, water (500 ppm v/v) was dispersed in Jet A-1 

for 3 min via sonication, and the additive (0.5% v/v) was added immediately after this. Whilst this 
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represents a relatively high additive loading, the experiment affords an effectively constant 

concentration of FDII throughout the reaction (i.e., second order with respect to [H2O] and [H
+
]), 

thereby illustrating the impact of the inherent acidity of Jet A-1 [14, 17].   The reaction was stirred for 

2 hours and then analysed by both Karl Fischer titration (industry standard for determining residual 

water) and GC-FID (to determine product concentration; see Table 2, Figure 7).   

 

Although 5 appears to be a more effective water scavenger, there is little statistical difference between 

the three candidates.  Both Karl Fischer and Gas Chromatography results are in good accordance.   

Importantly, these preliminary studies confirmed that the inherent acidity of Jet A-1 is sufficient to 

catalyse the hydrolysis reactions of FDII. While the results from this preliminary proof-of-concept 

study are extremely promising, Jet fuels vary substantially in terms of acidity, water content and 

aromatic content, all of which may influence the rates of reaction and effectiveness of the FDII 

additives described here. 

 

4. Conclusions  

The criteria identified for an effective FDII led to a closer examination of water scavengers based 

upon exo/endo-cyclic ketals, and both endo- and exo-cyclic ortho esters.   Although the rate of the 

hydrolysis reaction may be optimised through bulky substituents (i.e., 16), the lipophilicity of the 

hydrolysis product (i.e., P16) reduces the effectiveness of their de-icing performance. The products of 

the hydrolysis reaction of FDII in Jet A-1 were screened for their ice inhibition capabilities by 

differential scanning calorimetry.  Derivative P5 possesses significantly greater de-icing properties 

than any other products at high concentrations.   It should be noted that while DiEGME is a better de-

icer at high concentrations, FDII would have already removed a significant amount of water and 

formed the corresponding ice-inhibitor.  The calorific value of the products of hydrolysis 

demonstrated that the use of FDII would not lead to a reduction in energy density by substituting the 

presence of water and DiEGME in the fuel tank.  Furthermore, proof of concept studies confirmed 

that the inherent acidity of Jet A-1 was sufficient to catalyse the hydrolysis reactions of ortho esters 5, 
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8, and 10/11/14, at 0.5% v/v loading with a water concentration of 500 ppm v/v. Correspondingly 

FDII can be stored without degradation, and will only be activated when it comes into contact with jet 

fuel and water. While further work is necessary to determine the effectiveness of the additive over a 

range of loadings, FDII represent a potentially effective solution to the challenging issue of water 

contamination in fuel tanks. 
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Figure 1.   Potential FDII examined in this study. 
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Figure 2. The acid catalysed hydrolysis reactions for exo/endo-cyclic ketal, endo- and exo-cyclic ortho esters (n 

= 1 or 2) [31].  
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Figure 3. Graphical representation of logkH+ and logKow for candidate FDII    and hydrolysis 

products          
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Figure 4. Comparison of the temperatures of the phase transition of pure water with 0-50 % v/v of (a) 

DiEGME, EtOH or MeOH, (b) DiEGME and hydrolysis products of additives 1,2,5,8,10/11/14, (c) DiEGME, 

and hydrolysis products of additives 4, 13, 15, 16. 
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Figure 5. Comparison of the temperatures of the phase transition of pure water with 0-50 % v/v of: (a) 

DiEGME and the hydrolysis products of additives 1,2,5,8,10/11/14 with the requisite alcohol, (b) DiEGME and 

hydrolysis products of additives 4, 13, 15, 16 with requisite alcohol. 
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Figure 6. (a) Gravimetric energy densities obtained by bomb calorimetry of DiEGME, ethanol, methanol and 

hydrolysis products of additives 5, 8, 10/11/14, 13, 15, 16, (b) The change in energy density of one tonne of Jet 

A-1 with the hydrolysis products of the additives 5, 8, 10/11/14, 13, 15, 16, compared with 1 tonne of Jet A-1 

with DiEGME (0.15 v/v) and water (260 ppm). 
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Figure 7. Water consumption after 2 h of candidate FDII (0.5 % v/v loading) in Jet A -1 at room temperature 

with an initial water concentration of 500 ppm v/v, water consumed calculated through Karl Fisher titration 

(KF) and a GC-FID method (GC)  

  

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

5 (methoxy) 5 (ethoxy) 8 10/11/14

W
a

te
r 

co
n

su
m

e
d

 in
 2

h
 (

 %
 o

f 
5

0
0

 p
p

m
) 

FDII 

KF

GC



28 
 

Table 1.  Partition coefficients [fuel surrogate/H2O (LogKFW)] of FDII hydrolysis products, with 

varying added H2O concentration (90, 260 and 500 ppmv/v) and temperature (5 and 25 °C).  The 

water added is in addition to the amount of dissolved water present in the fuel (59 ppm).    

 

FDII hydrolysis 

product, 
H2O (ppm v/v) LogKFW (5 °C) LogKFW (25 °C) 

MeOH 

90 

-3.12 -1.22 

EtOH -2.65 -1.84 

P5 -3.20 -2.41 

P8 -2.37 -2.20 

MeOH 

260 

-3.16 -2.64 

EtOH -2.87 -2.19 

P5 -3.25 -2.68 

P8 -2.98 -2.59 

MeOH 

500 

-3.20 -2.92 

EtOH -2.89 -2.56 

P5 -3.28 -2.98 

P8 -3.03 -2.68 
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Table 2. Loading of additives in jet fuel, corresponding densities (*experimentally determined), and consequent 

theoretical maximum removal of water. 

 

 

FDII  

 

Loading 

(%  v/v) 

 

Specific 

Density 

Molar 

amount 

(mmol) 

Theoretical 

maximum 

water 

removal 

(ppm v/v) 

Water 0.05 1 0.055 - 

5 0.5 1.0424 [42] 0.088 792 

8 0.5 1.0387 [43] 0.079 708 

10/11/14 0.5 0.983* 0.067 606 

 


