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Abstract: This review describes recent advances in the fabrication of electrochemical (bio)sensors
based on screen-printing technology involving carbon materials and their application in biomedical,
agri-food and environmental analyses. It will focus on the various strategies employed in
the fabrication of screen-printed (bio)sensors, together with their performance characteristics;
the application of these devices for the measurement of selected naturally occurring biomolecules,
environmental pollutants and toxins will be discussed.
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1. Introduction

This review explores the fabrication of analytical devices applied to analytical challenges
within the biomedical, agri-food and environmental sectors. These electrochemical (bio)sensors
use screen-printed carbon electrodes (SPCEs) which are often modified to enhance sensitivity and
selectivity. Carbon has many structural forms and each possess different chemical properties; these
can be selected to enhance an electrochemical response making carbon a favourable electrode material.
Alone, screen-printed carbon can act as a sensitive electrode material however it is often utilized
as a base platform to which modifications can be applied. The recent advances in modifying
materials and deposition techniques will be discussed in the following sections. From the early
1990s, screen-printed devices increased in popularity and subsequent advances have been reviewed
periodically [1–7], the publications discussed herein will encompass the developments, over the past
decade, of (bio)sensors based on SPCEs.

The review is broadly divided into four sections based on the classes of analyte determined,
these are: naturally occurring biomarkers, some water soluble vitamins, organophophate pesticides
and metal ions.

2. Screen-Printed Carbon Based Biosensors for the Determination of Glucose, Galactose, Glutamate,
Lactate and Proteins

2.1. Glucose

In this section, the fabrication methods are discussed according to the technique of enzyme
immobilization. Important analytical properties such sensitivity, linear range and the method of
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immobilization have been summarized in Table 1. The amperometric response generated by the
glucose biosensors, in the presence of glucose oxidase and a mediator, can generally be described by
the following reactions [7]:

Glucose + GODOX → Gluconolactone + GODRED

GODRED + MediatorOX → GODOX + MediatorRED

MediatorRED → MediatorOX + ne−

The method of adsorption makes use of physical interactions between a binding agent and the
enzyme. These interactions include van der Waals forces, ionic interactions and hydrogen bonding.
These interactions are typically relatively weak compared to other immobilisation strategies, however
they do not compromise the structure of the enzyme active sites, which allows the enzyme to retain its
activity. Examples of adsorptive enzyme carriers which have been used in conjunction with SPCEs
include, chitin, chitosan, silica, polyurethane and poly(oxyethylene glycol).

Piermarini et al. [8] have reported a glucose biosensor for the monitoring of micro-alcoholic
fermentations in red wine. GOD was immobilised onto a screen-printed electrode with glutaraldehyde
and Nafion. The amperometric responses for the biosensor are not shown; as a result the sensitivity of
the biosensor cannot be deduced. A recovery study in diluted red wine has shown excellent recovery
with a precision of <5%.

Measuring glucose subcutaneously through the skin is of great scientific interest. Jiang et al. [9]
have developed a glucose biosensor by drop-coating an Os-complex mediator and a solution of
GOD, glutaraldehyde and BSA onto the surface of a thin film gold electrode. The biosensor was
successfully applied to the determination of glucose extracted from the skin by reverse iontophoresis.
The biosensor demonstrated a proportional amperometric response to increasing subcutaneous glucose
levels. The linear range compares favorably with that reported by Piermarini et al. [8].

A device for measuring glucose in honey and blood using a simple fabrication technique was
reported [10]. The immobilization procedure consisted of drop-coating a mixture of horseradish
peroxidase (HRP) and GOD onto the surface of a screen-printed ferrocyanide/carbon electrode.
The sensitivity (−2.12 µA/mM) improves upon previously discussed biosensors [8,9]. The biosensor
was successfully applied to real samples and demonstrated excellent glucose recoveries with
high reproducibility.

Entrapment is defined as the integration of an enzyme with a polymer matrix, whilst retaining
the structure of the enzyme. The entrapment matrix can also serve as a barrier to interfering species
which may be present in complex media such as serum and food.

A reagentless glucose biosensor developed by Gao et al. [11] was successfully applied to both
amperometric and flow injection studies. The biosensor was constructed by electrodepositing
alternating layers of GOx-SWCNTs and PVI-Os until a multi-layer structure is formed. An interference
study demonstrated large currents in response to both uric acid and ascorbic acid. However,
the biosensor possesses the highest sensitivity (32 µA·mM−1·cm−2) in comparison to other biosensors
constructed by the adsorption of the enzymes onto the surface of SPCEs.

In a subsequent short communication, Gao et al. [12] have reported a significant reduction in
the currents generated by the interferences by the addition of a Nafion membrane. As expected,
the addition of the Nafion layer has resulted in a reduction of the biosensor sensor sensitivity
(from 32 µA·mM−1·cm−2 to 16.4 µA·mM−1·cm−2) and an increase in the linear range (from
500–800 µM to 200–6000 µM). The sensitivity improves upon the sensitivity reported by Jiang et al.
(28.24 nA·mM−1·cm−2) [9].

Using a very different strategy, Sekar et al. [13] described a novel method of immobilizing
glucose oxidase to the surface of a Prussian Blue modified screen-printed electrode. The enzyme was
drop-coated onto a disk of porous cellulose paper which, once dry, was securely fixed to the surface of
a PB-SPCE (Figure 1). As a result, the analysis of glucose was carried out by dropping glucose solutions
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directly onto the surface of the paper disc. The biosensor possesses excellent cost-effectiveness and
was constructed using a very simple fabrication technique.
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Figure 1. Schematic illustration of glucose oxidase paper disc preparation and integration with the
prussian blue-screen-printed carbon electrodes (SPCE). Adapted from [13].

The integration of glucose oxidase into a screen-printed carbon electrode is particularly suited to
the mass production of low-cost disposable glucose biosensors. The enzyme has proved sufficiently
stable to be encapsulated within a water-based carbon ink without altering the conformational structure
of the enzyme. Pemberton et al. [14] applied this method to the development of microband glucose
biosensors for the determination of glucose in serum, the results of which compared favorably
with a standard spectrophotometric assay. The microband biosensor was successfully applied to
the monitoring of glucose metabolism by human hepatocyte carcinoma cells (HepG2) [15] and
subsequently developed and applied to the real time monitoring of cellular toxicity [16,17].

In a more complex fabrication processes, Chiu et al. [18] immobilised glucose oxidase onto
the surface of a screen-printed carbon electrode by sequential electrodeposition. The enzyme was
entrapped onto the surface of a screen-printed carbon electrode by the sequential electrodeposition of
poly(3,4-ethylenedioxythiophene), Prussian Blue and multi-walled carbon nanotubes. An extensive
linear range of 1 to 10 mM was reported.

A disposable glucose oxidase biosensor was developed by Zuo et al. [19] for the determination of
blood glucose in a rabbit serum sample. The enzyme was encapsulated by a mixture of silica sol-gel
and PVA, combined with a colloidal silver nanoparticles solution. The mixture was then sonicated for
one minute and drop-coated onto the surface of the screen-printed electrode. The biosensor possesses
a linear range that extends over two orders of magnitude and a higher sensitivity (20.09 mA·M−1·cm−2)
than previously described biosensors.
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Table 1. Reports of screen-printed carbon electrodes incorporating glucose oxidase for glucose determination.

Immobilization Technique Mediator Assay
Time (s)

Lower Linear
Range (µM)

Upper Linear
Range (µM) Sensitivity Applied

Potential (mV) Storage Stability (Weeks) Reference

Crosslinking with
glutaraldehyde & Nafion Prussian Blue N/A 20 700 N/A 200 90% activity after 6 months [8]

Crosslinking with
glutaraldehyde & BSA

Osmium-polyvinyl
pyridine wired HRP 60 0 700 28.24 nA/µM/cm 0 90% activity after 15 months [9]

Drop coating Ferrocene N/A 50 1000 2.12 µA/mM −100 100% activity after 3 months [10]

Use of SWCNT PVI 5 500 800 32 µA/mM/cm 300 90% activity after 1 month [11]

Use of SWCNT Osmium bipyridine-
complexed PVI 5 200 6000 16.4 µA/mM/cm 300 90% activity after 1 month [12]

Immobilization on paper disk Prussian Blue N/A 250 2000 2.13 µA/mM −300 72% activity after 45 days [13]

Enzyme contained within
water-based ink CoPC 20 270 2000 16.4 nA/mM 400 N/A [14]

Enzyme contained within
water-based ink

CoPC 400 s
Buffer: 450 9000 Buffer: 26 nA/mM

400 N/A [16]
Culture Medium: 2000 13,000 Culture Medium: 13 nA/mM

Enzyme contained within
water-based ink CoPC 30 0 2000 7 nA/mM 400 N/A [17]

Enzyme entrapped by
electro-polymerization of PEDOT Prussian Blue N/A 1000 10,000 2.67 µA/cm/mM −100 82% activity after 1 month [18]

Drop coating Prussian Blue 5 12.5 2560 20.09 mA/M/cm2 −50 91% activity after 30 days [19]

SWCNT: Single walled carbon nanotube. PEDOT: Poly(3,4-ethylenedioxythiophene. HRP: Horseradish peroxidase. PVI: Poly(1-vinylimidazole). CoPC: Cobalt phthalocyanine.
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2.2. Galactose

For the following reports on galactose determination, the performance characteristics are
summarized in Table 2. A disposable amperometric biosensor for the measurement of galactose
has been described by Kanyong et al. [20]. The fabrication process consists of drop-coating 1% cellulose
acetate (CA) onto the surface of a cobalt phthalocyanine screen-printed carbon electrode (CoPC-SPCE).
Once dry, an aliquot of galactose oxidase was drop-coated onto the surface of the CA-CoPC-SPCE
and left to air-dry. The biosensor has been applied to the determination of galactose in fortified and
unfortified bovine serum. A mean recovery value of 99.9% (n = 6) was attained, with a low coefficient
of variation of 1.10%, implying a high level of reproducibility.

In a subsequent report, a microband galactose biosensor [21] was applied to the determination
of galactose taken up by hepatocellular carcinoma cells (HepG2). In order to measure the toxicity of
paracetamol to HepG2 cells, the cells were incubated with 10 mM galactose and different concentrations
of paracetamol for 24 h. The enzyme was immobilised utilizing a similar method. The microband
biosensor demonstrated greater sensitivity (7.27 µA·mM−1·cm−2) to galactose in comparison to
a conventionally sized biosensor (7.00 µA·mM−1·cm−2).

2.3. Glutamate

For the following reports on glutamate determination, the performance characteristics are
summarized in Table 3. Hughes et al. [22] have described the fabrication of an amperometric
screen-printed glutamate biosensor based on the enzyme glutamate dehydrogenase (GLDH). GLDH
was immobilised to the surface of a Meldola’s Blue screen-printed biosensor (MB-SPCE) by chitosan
(CHIT). CHIT is a linear polysaccharide which possesses excellent film-forming properties and is
commonly used as an immobilization matrix for enzymes [23]. The biosensor was successfully applied
to the determination of glutamate in food and clinical samples. The reaction scheme which leads to the
production of the analytical signal is shown in Figure 2.
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Figure 2. Schematic displaying the interaction between the immobilized enzyme GLDH and glutamate
at the surface of the electrode and the subsequent generation of the analytical response. Reproduced
with permission from [22].

The biosensor was further developed by immobilizing all the components onto the surface of
the transducer [24]. A layer-by-layer drop-coating fabrication procedure was employed, as illustrated
in Figure 3. The enzyme and cofactor were immobilised in a mixture of CHIT and multi-walled
carbon nanotubes on the surface of a MB-SPCE. The biosensor response compared favourably to the
previously discussed glutamate biosensor [22], where NAD+ was present in free solution.
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Table 2. Reports of screen-printed carbon electrodes for galactose determination.

Immobilization
Technique Mediator Assay

Time (s)
Lower Linear
Range (µM)

Upper Linear
Range (µM) Sensitivity Applied

Potential (mV) Storage Stability Reference

Cellulose acetate CoPC 10 100 25,000 7.00 µA/mM/cm 500 100% activity after two weeks [20]
Cellulose acetate CoPC 10 1980 9520 7.27 µA/mM/cm 500 N/A [21]

CoPC: Cobalt pthalocyanine.

Table 3. Reports of screen-printed carbon electrodes for glutamate determination.

Immobilization
Technique Mediator Assay

Time (s)
Lower Linear
Range (µM)

Upper Linear
Range (µM) Sensitivity Applied

Potential (mV) Storage Stability Reference

Entrapment with
chitosan Meldola’s Blue 2 12.5 150 0.44 nA/µM 100 N/A [22]

Entrapment with
chitosan & MWCNTs Meldola’s Blue 20 7 105 0.39 nA/µM 100 100% after two weeks [24]

Drop coated onto
surface of CNTs None <5 0.01 10 0.72 ± 0.05 µA/µM 950 92% after 24 days [25]

MWCNT: Multi walled carbon nanotube. CNT: Carbon nanotubes.
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Khan et al. [25] have described the detection of nanomolar concentrations of glutamate by
utilizing screen-printed electrodes modified with carbon nanotubes. The biosensors were prepared
by drop-coating glutamate oxidase onto the surface of a carbon nanotube modified SPCE and left
to dry overnight. The biosensor possesses a detection limit of 10 nM. It is worth noting that all the
experiments were carried out at room temperature; as a result, it would be of interest to see if the
sensitivity of the biosensor could be increased further by increasing the temperature to the optimum
temperature of the enzyme.

2.4. Lactate

For the following reports on biosensors for lactate determination, performance characteristics
are summarized in Table 4. Radoi et al. [26] have described the development of an amperometric
biosensor for the determination of lactic acid in probiotic yoghurts. The biosensor was fabricated by
drop-coating a solution of lactate dehydrogenase mixed with neutralized Nafion, onto the surface of
a variamine blue modified screen-printed electrode (VB-SPE).

A similar method was adopted by Piano et al. [27]. The lactate biosensor was fabricated by
drop-coating lactate dehydrogenase and NAD+ onto the surface of a screen-printed carbon electrode
containing a Meldola’s Blue-Reinecke Salt mediator. The enzyme and cofactor were immobilised
by drop-coating a layer of cellulose acetate on top of the device. The cellulose acetate acts as
a perm-selective membrane, preventing the cofactor and enzyme leaching into solution. This led to
an increase in the sensitivity and the linear range of the biosensor in comparison the biosensor reported
by Radoi et al. [26].

A microband lactate biosensor was fabricated by integrating lactate oxidase directly into the
water-based ink formulation, printing, then subsequently cutting this to form a microband [28].
By integrating the enzyme within a water-based ink, the enzyme does not leech into free solution,
but retains its conformational structure. The micro-biosensor was successfully applied to the
determination of lactate in phosphate buffer saline (PBS) in unstirred solutions, suggesting that
the biosensor is appropriate for further studies in cell culture media.

In addition to Nafion, glutaraldehyde is commonly used as an enzyme immobilization agent.
Pereira et al. [29] have described the fabrication of a lactate biosensor by immobilizing lactate
dehydrogenase and NAD+ utilizing a mixture of multi-walled carbon nanotubes, glutaraldehyde and
bovine serum albumin. The mediator, Meldola’s Blue (MB), was adsorbed to the multi-walled carbon
nanotubes, resulting in high surface area and conductivity. The biosensor was successfully applied to
the determination of lactate in blood diluted with PBS.
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Table 4. Reports of screen-printed carbon electrodes for lactate determination.

Immobilization Technique Mediator Assay
Time (s)

Lower Linear
Range (µM)

Upper Linear
Range (µM) Sensitivity Applied

Potential (mV) Storage Stability (Weeks) Reference

Nafion Variamine Blue N/A 200 1000 0.46 nA/mM 200 N/A [26]

Cellulose acetate Meldola’s Blue 10 550 10,000 0.53 nA/mM 50 100% activity for 17 days [27]

Enzyme contained within
water-based ink CoPC 100 1000 6000 3.63 nA/mM 400 N/A [28]

Crosslinking with
glutaraldehyde Meldola’s Blue 5 100 10,000 3.46 µA cm/mM 0 N/A [29]

Dropcoating onto a
polyethyleneimine surface Prussian Blue 5 200 800 3 µA/mM 0 N/A [30]

Polyvinyl alcohol CoPC 90 18.3 1500 4.54 µA/cm/mM 450 98% activity after 9 months [31]

Polysulfone precipitation Meldola’s Blue 30 1 125 80 mA/M −100 75% activity after one week [32]

CoPC: Cobalt pthalocyanine
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Polyethyleneimine (PEI), a cationic polymer, was used to immobilise lactate oxidase to the surface
of a screen-printed carbon electrode, which was subsequently applied to the determination of lactate
in peritoneal drain fluid samples [30]. PEI possesses a strong positive charge in aqueous solutions
enabling electrostatic binding of the enzyme to the surface of the electrode.

Interferences such as ascorbic acid did not generate an electrocatalytic response.
Shimomura et al. [31] detailed an alternative method for the novel fabrication of a lactate biosensor
by coating a layer of lactate oxidase immobilised within mesoporous silica using a polymer matrix of
denatured polyvinyl alcohol. The mesoporous silica encapsulates the lactate oxidase; this prevents
the denaturing of the enzyme, followed by further entrapment within a polymer matrix of modified
polyvinyl alcohol. This layer is then cross-linked and deposited onto the underlying Nafion layer.

Two strategies for the fabrication of a reagentless lactate dehydrogenase biosensor, used in
a flow-injection system, are discussed by Prieto-Simón et al. [32]. The first strategy involves the use of
a sol-gel matrix, which consists of tetraethyl orthosilicate (TEOS), water, ethanol and hydrochloric acid.
The enzyme/cofactor and a number of binding agents are added to the mixture then deposited on
the sensor surface. The second method involves the preparation of a mixture of polysulfone solution,
graphite and a redox mediator. Both processes are fairly complex fabrication processes. The biosensor
fabricated using the polysulfone-graphite composite displayed a high sensitivity of 80 mA/M, whereas
the biosensor fabricated with the former method showed poorer performance.

2.5. Proteins

The determination of proteins is important in a variety of biomedical and food applications;
consequently, simple, reliable and novel analytical approaches should be of considerable interest to
clinical chemists and food analysts. Electrochemical immunosensors offer an attractive alternative to
conventional methods, as they exploit the selective interaction of Ab/Ag interactions coupled with the
high sensitivity afforded by the use of electrochemical techniques.

An immunosensor for the detection of C-reactive protein (CRP), a known marker of inflammation
in human serum, has been developed by Kokkinos et al. [33]. This detector is based on
a sandwich-type immunoassay which captures CRP at the sensor surface; the captured CRP reacts
with streptavidin-conjugated PbS quantum dots. The quantification of the CRP is derived from the
acidic dissolution of the quantum dots. The released Pb+2 is then determined by adsorptive stripping
voltammetry at the surface of the electrode. Following optimisation, the biosensor was applied to the
determination of CRP in spiked serum samples and validated with an ELISA kit. Recoveries of 96%
and 106% were attained, with relative errors of less than 6%. In further work, Kokkinos et al. [34] have
described a Bi-citrate screen-printed electrode (SPE) for the detection of DNA, specifically a C634R
mutation of the RET gene. The analytical response was determined in a similar manner to the
previously reported biosensor; an excellent LOD of 0.03 pmol·L−1 was achieved.

A screen-printed lab-on-a-membrane foldable device was developed for the duplex determination
of biomolecules with metallic ions released from quantum dots [35]. This allowed for the simultaneous
determination of both Pb2+ and Cd2+. Subsequently, this was applied to the determination of bovine
casein (CN) and bovine immunoglobulin G (bIgG) in milk samples. Recovery values between
91%–108% and 92%–104% were determined in untreated samples respectively. In order to demonstrate
its applicability to industry, the determination of goats’ milk adulteration with bovine milk was
investigated. The CN assay was able to adulteration levels below 1% (v/v) whilst the bIgG assay was
capable of determining adulteration levels as high as 50%.

Xu et al. [36] have also described an antibody based electrode for the analysis of immunoglobulin
G however in this application the human IgG was analysed. The authors used of polyethylene
glycol (PEG) to immobilize and capture the antibody onto the surface of a screen-printed carbon
working electrode. The analyte and the carbon sphere/gold nanoparticle (CNS/AuNp) composite
was subsequently also bound to the surface. The analytical response was derived from the differential
pulse voltammetric detection of AuCl4− following electro-oxidiation in 0.1 M HCl, the LOD achieved
for human IgG was 9 pg·mL−1.
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An immunoassay for the detection of two important tumour markers, carincoembryonic
antigen (CEA) and alpha-fetoprotein (AFP) [37]. An eight electrode array consisting of six carbon
screen-printed working electrodes was used for the analysis. Horseradish peroxide labelled antibody
acts as the electrochemical probe which gives rise to the analytical response, which is measured
chronoamperometrically at a potential of −0.25 V (vs. Ag/AgCl). The immunosensor was applied to
determine both CEA and AFP in human serum samples. The levels of the human tumour markers
compared favourably with a radioimmunoassay method.

Viswanathan et al. [38] have described the fabrication of a disposable electrochemical
immunosensor to detect for carcinoembryonic antigen (CEA) in saliva and serum. Monoclonal
anti-CEA antibodies were immobilized on a polyethyleneimine wrapped MWCNT screen-printed
electrode. In addition, ferrocene liposomes were also dropcoated onto the surface of the sensor. This
resulted in the generation of the analytical response which was proportional to amount of CEA bound
at the surface of the electrode. With regards to the measurement of CEA in serum and saliva samples,
according to the authors, the proposed immunosensor performs better than conventional ELISA kits.

3. Screen-Printed Carbon Electrodes for Vitamin Analysis

Vitamins are a complex group of compounds with a diverse range of chemical structures that
give rise to interesting electrochemical properties. As most vitamins are naturally electroactive,
or electroactive under modified conditions, their properties continue to be exploited using
electrochemical techniques.

3.1. Vitamin C

Of the vitamins reviewed here, screen-printed sensors developed for the analysis of L-ascorbic
acid (vitamin C) have received the most attention. Table 5 summarises the performance characteristics
of a selection of screen-printed devices developed for the analysis of L-ascorbic acid over the past
decade. Further details of fabrication and subsequent application are described in the following section.

3.1.1. Mediated Electron Transfer

On their own, conducting polymers often lack the required mechanical [39] and conductive
properties exhibited by carbon; however, their catalytic properties make them useful materials in
the modification of SPCEs. Ambrosi et al. [40] used a simple drop-coating procedure to deposit
nanoparticles of polyaniline (PANI) on to the surface of a SPCE; it was found that the addition of
dodecylbenzene sulphonic acid (DBSA) during the synthesis of the conducting polymer resulted in the
optimum catalytic response. The resulting nano-PANI-SPCE exhibited the widest linear range of all the
sensors reported in this review (Table 5). The optimum operating pH was 6.8 and an applied potential
of 0 V was feasible. This is the lowest reported operating potential for a conducting polymer-based
L-ascorbic acid sensor; these conditions reduce the likelihood of other species present in pharmaceutical
formulations producing an interfering response. The sequence of reactions involved in the operation
of the PANI based sensor is summarised in Figure 4.
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A PANI modified SPCE for the determination of L-ascorbic acid has also been reported by
Milakin et al. [41]. The authors have similarly used a drop-coating procedure to deposit a mixture of
aniline and ammonium persulfate in phosphate buffer; following deposition the aniline subsequently
polymerises and the PANI binds to the carbon black surface. This PANI-SPC working electrode was
used in conjunction with conventional counter and reference electrodes and successfully applied to
the determination of L-ascorbic acid in a sample of grapefruit juice. The detection limit achieved with
this device was the lowest reported over the past decade for SPCE based systems.

An alternative method for preparing PANI based sensors for L-ascorbic acid determination is
using inkjet printing in conjunction with screen printing procedures [42]. In order to make a more
environmentally friendly device, the authors chose a filter paper substrate for the three-electrode
sensor. The response characteristics were inferior compared to the other PANI based sensors (Table 5);
however, the authors suggest that the DBSA doping procedure reported by Ambrosi et al. [40] could
improve their own device characteristics if adopted in the conducting polymer synthesis steps [42].

A different mediator namely quinoeimine was used for the development of an L-ascorbic acid
sensor. In this case the fabrication procedure involved the electrochemical reduction of the in situ
generated o-aminophenol diazonium salt [43]. The signal is generated by a two-step process. In the
first step the L-ascorbic acid chemically reduces the o-quinoeimine form, which is followed by the
electrochemical oxidation of the reduced form of the mediator. The comparison of performance
characteristics places this sensor slightly below some of the mediator based SPCEs (Table 5) however,
the selectivity achieved allowed a selection of fruits and juices to be analysed with little sample
preparation [44].

3.1.2. Unmediated Electron Transfer

All the publications reporting the use of SPCEs for the determination of L-ascorbic acid achieved
a detection limits in the µM range, with the exception of a publication by Wonsawat [45] who reported
a mM detection limit. This sensor used a commercially available screen-printed carbon working
electrode without any reported surface modification [45]. However, a simple ink modification reported
by Ping et al. [40] resulted in a thousand-fold increase in the limit of detection over Wonsawat [39].
The screen-printing ink was modified with a chemically reduced graphene oxide powder and
accompanying ionic liquid (n-butylpyridinium hexafluorophosphate) [46]. In addition to the improved
current response to L-ascorbic acid the screen-printed graphene electrode (SPGNE) also showed
improved peak potential separation of L-ascorbic acid (AA) in the presence of two other important
biological compounds, dopamine (DA) and uric acid (UA). These three compounds usually oxidise
at similar potentials using traditional electrode materials, the improved peak separation and current
responses are represented in the comparative cyclic voltammograms in Figure 5.

Another popular form of carbon for electrode modification is carbon nanotubes due to their
unique electrochemical properties [47]. Moving further towards miniaturisation Crevillén et al. [48]
fabricated a multi-walled carbon nanotube (MWCNT) SPCE coupled with a capillary electrophoresis
microchip device using amperometric detection. The enhanced response characteristics achieved with
a MWCNT modification are observable in the signal to noise ratios, LODs, and LOQs. The enhanced
surface area from the nano-carbon structures was measured and a significant increase from 0.0075 cm3

for bare SPEs to 2.1 cm3 for MWCNT-SPCEs was observed. Although this device did not surpass the
characteristics of some of the sensors in Table 5 the successful determination of multiple water-soluble
vitamins, namely L-ascorbic acid, pyridoxine, and folic acid, was achieved. A publication by the same
group used a similar sensor set-up to successfully determine a wide range of compounds important in
food analysis; including polyphenols, vanilla flavours, and an isoflavones [49].
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Table 5. Reports of screen-printed sensors for vitamin C (L-ascorbic acid).

Electrode Components Supporting Electrolyte Measurement Technique Detection Limit (µM) Linear Range (µM) Sample/s Modification Method Reference

W: Nano-PANI SPCE
R: Ag/AgCl
C: Pt mesh

PBS pH 6.8 Amperometry 0 V 8.3 500–8000 Tablet pharmaceutical Drop coating [40]

W: PANI-SPCE
R: Ag/AgCl

C: GCE

0.05 M Phosphate buffer pH 7.0
& 0.5 M NaCl Cyclic Voltammetry 0.1 1.00–80.00 Grapefruit juice Oxidative chemical

polymerisation [41]

W: PANI-SPCE
R: Carbon
C: Carbon

0.1 M Acetate buffer pH 5.0 Chronoamperometry 0.4 V 30 30.00–270.00 None reported Inkjet printed
Paper based design [42]

W: o-AP-SPCE
R: Ag

C: Carbon
0.1 M Phosphate buffer pH 7.2 Amperometry 0.2 V 0.86 2.00–20.00

Apple, Kiwi, Lemon,
Orange, Pineapple,
Strawberry, Tomato

Electrografted film [43,44]

W: SPCE
R: Ag/AgCl
C: Carbon

0.1 M Phosphate buffer pH 2.0 DPV 0.0 V > −1.2 V 1360 1000–10,000 Orange juice Unmodified [45]

W: SPGNE
R: Ag/AgCl

C: Pt
0.1 M Phosphate buffer pH 7.0

DPV
−0.2 V > +0.6 V

Ep = −0.5 V
0.95 4.00–4500.00 Injection formula Graphene ink

formulation [46]

W: MWCNT-SPCE
R: Ag/AgCl wire

C: Pt wire
0.01 M Phosphate buffer pH 7.0 Amperometry −1.2 V 11 50.00–400.00 Tablet pharmaceutical

Capsule pharmaceutical Drop coating [48,49]

W: N6-NFM-SPCE
R: Ag

C: Graphite
Buffer citrate pH 4 Amperometry 0.35 V Not reported 56.78–7381.33 Tangerine, Apple, Pear,

Kiwi, Lemon, Strawberry
Electrospun
membrane [50]

W: Working Electrode. R: Reference Electrode. C: Counter Electrode. PANI-SPCE: Polyaniline screen-printed carbon electrode. o-AP-SPCE: o-Aminophenol film screen-printed
carbon electrode. SPGNE: Screen-printed graphene electrode. MWCNT-SPCE: Multi-walled carbon nanotube screen-printed carbon electrode. N6-NFM-SPCE: Nylon 6 nano fibrous
membrane screen-printed carbon electrode.
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linear ranges reported for SPCEs (Table 5, [40–42]). This advantage may be of practical use when 
performing analysis on foods and pharmaceuticals fortified with high concentrations of vitamin C. 
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Vitamin B is the collective name for a large group of chemicals with an array of different 
structures. Table 6 displays the analytical characteristics and conditions for SPCE systems capable of 
determining the following compounds in the B vitamin group: vitamin B2 (riboflavin); vitamin B6 
(pyridoxine); vitamin B7 (biotin); vitamin B9 (folic acid); and vitamin B12 (cyanocobalamin). 
  

Figure 5. Cyclic voltammograms of 1.0 mM ascorbic acid (a), 1.0 mM dopamine (b), 1.0 mM uric acid
at a screen printed electrode (A) and a screen-printed graphene electrode (SPGNE) (B). Supporting
electrolyte: 0.1 M phosphate buffer saline (pH 7.0). Scan rate 50 mV/s. Adapted from [46].

Membrane modifications such as that demonstrated by Fuenmayor et al. [50] often allow for
in situ analysis of analytes. The nylon-6 nanofibrous membrane (N6-NFM) shown in Figure 6 was
fabricated by electrospinning and subsequently applied to a SPCE for the direct determination of
L-ascorbic acid in fruits. This membrane acts as a perm-selective barrier allowing vitamin C to pass to
the underlying unmodified electrode whilst rejecting the interfering phenolic species. When compared
to SPCE’s modified with mediators, this unmediated sensor possessed one of the widest linear ranges
reported for SPCEs (Table 5, [40–42]). This advantage may be of practical use when performing analysis
on foods and pharmaceuticals fortified with high concentrations of vitamin C.
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Figure 6. (A) Sensor connected to electronic hardware for data acquisition; (B) Schematic diagram of
membrane role, with SEM image of nylon-6 coating; (C) Photograph demonstrating the in-situ analysis
of ascorbic acid in fruit. Adapted from [50].

3.2. Vitamin B

Vitamin B is the collective name for a large group of chemicals with an array of different structures.
Table 6 displays the analytical characteristics and conditions for SPCE systems capable of determining
the following compounds in the B vitamin group: vitamin B2 (riboflavin); vitamin B6 (pyridoxine);
vitamin B7 (biotin); vitamin B9 (folic acid); and vitamin B12 (cyanocobalamin).
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3.2.1. Riboflavin

Kadara et al. [51] developed an unmodified SPCE for the determination of riboflavin; this electrode
was successfully applied to the analysis of several food products. However, during these studies
copper(II) was reported to have a significant effect on the signal response for riboflavin, which was
initially seen as an interferent. In subsequent studies this interaction was exploited to significantly
enhance riboflavin’s peak current response [52]. This signal enhancement from the addition of excess
copper(II) was only observed in the presence of dissolved oxygen. Kadara et al. [52] propose this to
be the result of a catalytic mechanism whereby the reduced form of riboflavin is reoxidised by the
dissolved oxygen species. Another riboflavin sensor which also performed well in the presence of
oxygen was developed by Riman et al. [53]; this sparked-bismuth SPCE was initially designed and
applied to the voltammetric stripping analysis of Cd(II) and Pb(II) [54]. The SPCE was modified by
a simple fabrication process involves a sparking procedure between the graphite SPCE and a bismuth
wire [49]. This electrode exhibited superior analytical characteristics when applied to the analysis of
riboflavin (Table 6), achieving a detection limit in the sub-nanomolar range using SWV [54].

3.2.2. Pyridoxine

The two notable publications reporting the measurement of pyridoxine at SPCEs were performed
at MWCNT-modified surfaces. Crevillén et al. [48] simply drop coated a suspension of CNTs onto
the SPCE surface, and this working electrode was coupled with a Ag/AgCl wire reference electrode
and a platinum wire counter electrode. This system was successfully applied to the determination of
L-ascorbic acid (described in Section 3.1.2) and was also applied to a third vitamin, folic acid (Table 6);
the simultaneous determination of all three vitamins was successfully achieved within a pharmaceutical
formulation [48]. Although this system was applicable to a wide variety of analytes [49] it was
unable to achieve the detection limit for pyridoxine reported by Brunetti et al. [55]. Additionally,
this entirely screen-printed 3-electrode device was successfully applied to the analysis of food, drink,
and pharmaceuticals.

3.2.3. Biotin

An assay developed by Ho et al. [56], utilises a SPCE as the base platform for a biosensor.
The working electrode is constructed over four phases. In the first phase, a screen-printed carbon base
layer is modified by the electrodeposition of a nano-structured gold network. Secondly, poly allylamine
hydrochloride (PAH) is drop-coated onto the surface, which creates a 3D network for the addition of
an anti-biotin antibody to be bound to. Following this the anti-biotin antibody/PAH/nano-Au/SPCE
is immersed in a solution containing both biotin and biotin-tagged ferricyanide encapsulated liposomes
with a short incubation period. In the fourth step, the addition of gold-nanoparticles was shown to
significantly enhance electron transfer which resulted in increased sensitivity. The incorporation of
a biological recognition element provides specificity for the voltammetric assay. The group reported
further developments for a biotin immunosensor [57]; the two complex biosensors (depicted in
Figure 7) use different binding techniques to enhance the orientation of antibodies on the SPCE surface.
The most sensitive biosensor exploits the affinity of a sugar moiety on the anti-biotin antibody for the
boronic acid-modified graphite surface.
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Table 6. Reports of screen-printed sensors for vitamin B compounds.

Analyte Electrode Components Supporting Electrolyte Measurement Technique Detection Limit Linear Range Sample/s Reference

Vitamin B2
(Riboflavin)

W: Carbon
R: Ag/AgCl
C: Carbon

0.05 M Acetate-phosphate
/KCl buffer pH 6.0

DPV
−0.6 V > −0.2 V

Ep = −0.42 V
2.39 µM 2.66–61.11 µM

Vitamin B premix,
Dietetic milk powder,

Corn flake cereal
[51]

Vitamin B2
(Riboflavin)

W: Carbon
R: Ag/AgCl
C: Carbon

0.10 M Acetate-phosphate
/KCl buffer pH 8.0

LSV
−0.1 V > 1.0 V
Ep = −0.65 V

0.13 µM 0.016–0.399 µM Variety of breakfast cereals [52]

Vitamin B2
(Riboflavin)

W: Sparked Bi-SPCE
R: Ag/AgCl KCl

C: Pt wire
0.1 M Acetate buffer pH 4.5

SWV
0 V > +1.0 V
Ep = +0.3 V

0.7 nM 0.001–0.01 µM Tablet pharmaceutical [53]

Vitamin B6
(Pyridoxine)

W: MWCNT-SPCE
R: Ag/AgCl wire

C: Pt wire
0.01 M Phosphate buffer pH 7.0 Amperometry

+1.2 V 8.00 µM 25.00–300.00 µM Tablet pharmaceutical
Capsule pharmaceutical [48,49]

Vitamin B6
(Pyridoxine)

W: MWCNT-SPCE
R: Ag

C: Carbon
Acetate buffer pH 5.0

DPV
0 V > +1.0 V
Ep = +0.75 V

1.50 µM 2.00–72.00 µM
Tablet pharmaceutical

Energy drink
Cereal

[55]

Vitamin B7
(Biotin)

W: PAH/nanoAu/SPCE
R: Ag/AgCl

C: Pt
0.1M PBS pH 7.2

SWV
+0.6 V > −0.3 V

Ep = +0.2 V
8.30 nM 0.01 nM–0.01 M None reported [56]

Vitamin B7
(Biotin)

W: Ab/APBA/SPGrE
R: Ag

C: Carbon
Phosphate buffer pH 7.2 Amperometry

−0.2 V 0.16 nM 0.1 nM–1.0 mM None reported [57]

Vitamin B7
(Biotin)

W: MonoAb/nanoAu/SPGnE
R: Ag

C: Carbon
Phosphate buffer pH 7.2 Amperometry

−0.2 V 14.00 nM 1.0 nM–1.0 µM None reported [57]

Vitamin B7
(Biotin)

W: Carbon
R: Ag

C: Carbon
Phosphate buffer pH 7.2 Amperometry

−0.2 V Not reported 0.10–250.00 nM None reported [58]

Vitamin B7
(Biotin)

W: Carbon
R: Ag

C: Carbon
Phosphate buffer pH 7.2 Amperometry

−0.2 V Not reported 0.01–1.00 nM Tablet pharmaceutical
Liquid pharmaceutical [59]

Vitamin B9
(Folic)

W: MWCNT-SPCE
R: Ag/AgCl wire

C: Pt wire
0.01 M Phosphate buffer pH 7.0 Amperometry

+1.2 V 8.00 µM 50.00–400.00 µM Tablet pharmaceutical
Capsule pharmaceutical [48,49]

Vitamin B12
(Cyanocobalomin)

W: SPGrE
R: Ag/AgCl /3M KCl

C: Pt

0.1 M Phosphate buffer,
0.1 M KCl,

10 mM/L EDTA pH 3

SWV
−1.2 V > −0.3 V

Ep = −0.73 V
0.07 nM 0.10–0.80 nM Tablet pharmaceutical

Liquid pharmaceutical [60]

Sparked Bi-SPCE: Sparked bismuth screen-printed carbon electrode. PAH/nanoAu/SPCE: Poly allylamine hydrochloride nano-gold screen-printed carbon electrode.
Ab/APBA/SPGrE: anti-biotin antibody-aminophenylboronic acid-screen-printed graphite electrode. MonoAb/nanoAu/SPGnE: Monovalent half-antibody-gold nanoparticles-screen-
printed graphite electrode. MWCNT-SPCE: Multi-walled carbon nanotube screen-printed carbon electrode. SPGrE: Screen-printed graphite electrode. W: Working Electrode
R: Reference Electrode C: Counter Electrode.
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Another competitive assay employing an electrochemical biosensor has been reported by Biscay et al. [58]; 
this sensor incorporates the biological recognition element onto the magnetic beads and a magnet is 
used for direct assembly over the working carbon electrode. The sensitivity of this sensor was 
improved in a subsequent publication with the use of a flow injection analysis (FIA) system [59]. 
This immunosensor-FIA system was successfully applied to the determination of biotin in two 
different pharmaceutical samples.  
  

Figure 7. (A) Schematic representation of the method used to prepare a monovalent half-antibody/gold
nanoparticles/screen printed graphene electrode electrochemical immunosensor and its mechanism of
operation; (B) Schematic representation of the preparation of an antibody/anti-biotion antibody/screen
printed graphene electrode electrochemical immunosensor and its mechanism of operation (drawing
not to scale). Adapted from [57].

Another competitive assay employing an electrochemical biosensor has been reported by
Biscay et al. [58]; this sensor incorporates the biological recognition element onto the magnetic beads
and a magnet is used for direct assembly over the working carbon electrode. The sensitivity of this
sensor was improved in a subsequent publication with the use of a flow injection analysis (FIA)
system [59]. This immunosensor-FIA system was successfully applied to the determination of biotin in
two different pharmaceutical samples.
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3.2.4. Cyanocobalamin

Accumulation of vitamin B12 was achieved through the reduction of Co(III) to Co(I) which was
pre-concentrated onto the surface of the electrode [60]. This was followed by the stripping step,
whereby Co(I) was reoxidised to Co(II), which produced the analytical response. Initially the analytical
signal was hampered by a large background current which was resolved by the addition of EDTA to the
electrolyte solution. The final optimised analytical method allowed cyanocobalamin to be determined
down to sub-nanomolar concentrations. A screen-printed graphite electrode, originally developed
for the electrochemical determination of uranium [61], was recently applied to the determination
vitamin B12.

4. Organophosphate (OP) Sensing

Very few research papers, related to the use of plain SPCEs, have been published in relation to
the non-enzymatic determination of organophosphates (OPs) [62]. A rare exception by Li et al. [63],
described the development of a photo-electrochemical assay using SPCEs with nano-sized titania
surface modification with ultraviolet photocatalysis. By using differential pulse voltammetry,
these non-selective sensors were able to measure 2 nM dichlofenthion in vegetables following
extraction with a solvent. Enzyme-based biosensing for the detection of organophosphate and
other pesticides has been the subject of considerable research effort since the 1990s and continued
in the last 10 years (Table 7). Two enzymes form the basis of the majority of biosensing strategies
developed over this time; organophosphate hydrolase (OPH) and acetylcholinesterase (AChE) [64].
However, butyrylcholinesterase (BChE) has occasionally been utilised as a direct analog to AChE.
The acetylcholinesterase based system has been the most widely adopted, especially with respect
to screen-printed electrodes; indeed, research featuring screen-printed electrodes for OP detection
has almost entirely featured the AChE system in some form in the past 10 years. These biosensors
have been repeatedly demonstrated as simple, rapid, and ultra-sensitive tools for pesticide analysis in
environmental monitoring, food safety, and quality control. They have the potential to complement the
classical analytical methods by simplifying or eliminating sample preparation and making field-testing
easier and faster with a substantial decrease in cost per analysis [65]. The mode of operation of
AChE-based biosensors is by the measurement of the reduction in analytical signal resulting from the
inhibition of the enzyme in the presence of an OP. When AChE or BChE is immobilised on the working
electrode surface, its interaction with the substrate (for example, with acetylthiocholine) produces
an electro-active species (thiocholine) and its corresponding carboxylic acid [65]:

Acetylthiocholine + H2O + AChE → thiocholine (TCh) + acetic acid

The subsequent anodic oxidation of the thiocholine at the working electrode gives rise to a current
that constitutes a quantitative measurement of the enzymatic activity:

2TCh (reduced) → TCh (oxidised) + 2H+ +2e−

The presence of pesticides in the sample inhibits enzymatic activity that leads to a drop in the
current intensity, which is then measured. It should be noted that the sensitivity of these types of
biosensors depends considerably on the chosen method of enzyme immobilization [62]. The adherence
of the enzyme molecules onto electrode surfaces without denaturing the enzyme or blocking the active
site has been a critical challenge for researchers. Various strategies have been used to immobilise AChE
onto the electrode surface, including adsorption [66], entrapment [67,68] and cross-linking [69,70]
amongst others. In an extensive study of immobilisation techniques Pohanka et al. [71] concluded
that glutaraldehyde cross-linking was the preferred method and has proved to be a useful method for
a range of electrode materials, such as gold [72], platinum [73] and carbon SPEs [74]. However, other
strategies may be applicable depending on the composition of the sensor and surface chemistry.
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In the past 10 years, there has been a high degree of diversity with respect to the composition
and surface modification of screen-printed electrodes used in OP biosensors. Carbon remains the
most common electrode material (Table 7) and has been used in the detection of OPs in sub-ppb
concentrations [63,67,73,74], although gold [72] and platinum [75] have also been successfully used in
the analysis of ppb levels of OPs.

From the published research it is unclear that any of electrode materials have an inherent
electrochemical advantage for use in OP biosensors and the selection of electrode material appears to
rely on their practicality, cost, and the experience of the research group involved. Gold and platinum
SPEs have generally been used with surface modification for immobilising the enzyme only [71,72],
whereas a wide and diverse range of electrode modifications have been made to the composition or the
surface of SPCEs. These modifications have been to either entrap or cross-link the enzyme molecules
to the sensor surface or commonly to improve the electrochemical properties of the working electrode.

A variety of nano-particles have been tested for surface modification, including those made
of titania [63], gold/silver bimetallic [72], zinc oxide [76], manganese dioxide [71] and magnetic
composite nanoparticles [77]. Multi-walled carbon nanotubes (MWCNT) [67] and single-walled
carbon nanotubes (SWCNT) [78] have also been examined contributing to the detection of selected OPs
at ppb levels. Gan et al. [79] successfully detected dimethoate at ppt levels with the use of magnetic
composite nanoparticles in buffer and vegetable extracts; however other strategies have consistently
resulted in the detection of low ppb concentrations of OPs. An example of his can be observed in
the development of electric eel AChE-based biosensors by Chen et al. [67] who incorporated both
MWCNT and tin oxide onto the surface of SPCEs. The analysis of simple vegetable extracts using these
sensors with cyclic voltammetry resulted in a detection of 50 µg/L chlorpyrifos. The most commonly
published modification for SPCEs in the past 10 years has been the inclusion of the electron mediator
cobalt phthalocyanine (CoPC) within the carbon ink [70,78] or drop-coated onto the SPCE surface [74].
The addition of CoPC allows the electron transfer from the reduction of the substrate to the electrode
at lower potentials thereby removing potential interferences. Practical advantages to the inclusion
of CoPC within the electrode ink have been shown in the use of CoPC-modified SPCEs to create
array-based systems to allow some identification as well as quantification of OPs in a substrate.

The efficient electron-mediation combined with simple sensor designs allows the inexpensive
manufacture of potentially commercially viable reproducible and sensitive sensor arrays. This is
demonstrated in recent years by Alonso et al. [80], who used biosensors based on three separate
AChE enzymes to differentiate chlorpyrifos and malaoxon in milk using chronoamperometry using
an artificial neural network (ANN) to for signal interpretation. Additionally, Crew et al. [70] refined
their previously developed AChE biosensor array systems for OP detection [81] to develop a portable
prototype instrument for the analysis of five organophosphates using a wildtype and five modified
Drosophila melanogaster AChE enzymes in an array format designed to be used with a standard 96-well
plate (Figure 8a). The portable instrument was operated in the field using the power from a car
battery via the lighter socket (Figure 8b). This prototype also used an ANN for signal interpretation
and a simple three-minute inhibition step to allow rapid-analysis of food extracts or untreated
environmental samples in the field. The inclusion of ANN analysis with flexible SPCE array formats
for OP analysis belies the view that these sensors are not selective [82] and provides an optimistic
future route for development for these biosensors.
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Table 7. Reports of screen-printed electrodes for organophosphate determination.

SPE Material SPE Modification Immobilization Method Enzyme Limit of Detection Real Sample Analysis Analytical Technique Incubation Time Reference

Gold Cysteamine Cross-linking EE AChE 2 ppb paraoxon Drinking water CV 15 [67]

Carbon MWCNT,
SnO2, chitosan Entrapment EE AChE 0.05 µg/L chlorpyrifos Vegetable extract CV 14 [62]

Carbon Carbon black, CoPC Entrapment BChE 18 nM paraoxon Industrial waste water Chronoamp 20 [69]

Carbon MnO2 n/a BChE 0.6 nM diazinon n/a Chronoamp 15 [71]

Carbon
Magnetic composite

nano-particles,
prussian blue

Entrapment DmAChE 0.56 ng/L dimethoate Vegetable extract DPV 5 [72]

Carbon n/a Not declared Not declared n/a Food extracts CV/Chronoamp n/a [61]

Carbon PEDOT, PSS Entrapment EE AChE 4 nM chlorpyrifos n/a Chronoamp 10 [63]

Carbon SWCNT, CoPC Cross-linking EE AChE 5 ppb paraoxon,
2 ppb malaoxon Water Chronoamp 15 [73]

Gold Glutathione, ZnO
nanoparticles Adsorption EE AChE 10 ppb chlorpyrifos n/a CV n/a [70]

Carbon Titania nanoparticles n/a n/a 2 nM dichlofenthion Vegetable extract DPV/Photoelec n/a [58]

Platinum n/a Entrapment Human AChE n/a n/a SWV/CV 5 [66]

Carbon CoPC Entrapment DmAChE/PTE/EE
AChE Chronoamp 10 [74]

Carbon CoPC Cross-linking DmAChE n/a Lake water Chronoamp 10 [64]

Carbon Ag/Pt bimetallic
nanoparticles Cross-linking EE AChE/ChO 0.2 µM

paraoxon/carbofuran n/a Chronoamp 10 [68]

Carbon CoPC Cross-linking DmAChE
<1 nM pirimiphos/

chlorpyrifos/malaoxon/
omethoate/dichlorvos

Food extracts, waste
water, drinking water,

river/lake water
Chronoamp 3 [65]
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substrate; (b) array in the prototype biosensor system operating in the field powered from a car 
battery via the lighter socket. Reproduced with permission [81]. 
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limits that can be gained by stripping voltammetry [89–92]. Portable, low-cost potentiostats can now 
readily be employed in the field or as a point-of-care technique. 

In the past, stripping voltammetry has involved the use of Hg based working electrodes which, 
although possessing excellent electrochemical properties [93], they have suffered from perceived 
toxicity and disposal issues; this has resulted in a lack of market penetration. Alternative working 
electrode materials have been investigated such as carbon paste and glassy carbon [94,95]. Both these 
materials have been shown to exhibit excellent electrochemical properties, but necessitate a high 
level of skill on the part of the operator in order to obtained reliable reproducible. In contrast,  
screen-printing carbon based electrodes have been shown to be highly successful allowing for mass 
production with good precision. Recently, the application of SPCEs for the determination of metal 
ions has been reviewed by a number of authors [96–102]. Four approaches have been identified: Hg 
thin layer, Bi or Sb thin film and unmodified carbon electrodes using stripping voltammetry and to a 
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electrolyte was reported to be a pH 6.0, 0.1 M acetate buffer containing 0.1 M NaCl with a deposition 
potential of −1.6 V. Using a deposition time of 60 s a well-defined stripping peak at −1.2 V was 
reported with a linear response over the range 1 × 10−8 to 5 × 10−6 M. A coefficient of variation of 5.6% 
was obtained for six replicate measurements of a 2 × 10−6 M Zn2+ solution. The sweat from 10 
volunteers was examined and Zn2+ concentrations of between 0.39 and 1.56 µg/mL were reported. 
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Figure 8. (a) Electrode array comprising 12 screen-printed carbon electrodes modified with cobalt
phthalocyanine (CoPC) and an Ag/AgCl counter/reference electrode printed on an alumina substrate;
(b) array in the prototype biosensor system operating in the field powered from a car battery via the
lighter socket. Reproduced with permission [81].

5. Screen-Printed Sensors for Metal Ion Determination

Metal ions as pollutants are not chemically or biodegradable [82] and hence are ubiquitous and
long lived contaminants. Their utilisation has led to planetary wide pollution [83–85] with the natural
fluxes being greatly affected, impacting on a range of ecosystems [86–88]. Consequently, there is
a pressing need for methods which are economic, precise and sensitive. Electrochemical techniques
such as stripping voltammetry and the application of biosensors have been shown to be able to meet
these demands. In terms of sensitivity and cost, few techniques approach the detection limits that
can be gained by stripping voltammetry [89–92]. Portable, low-cost potentiostats can now readily be
employed in the field or as a point-of-care technique.

In the past, stripping voltammetry has involved the use of Hg based working electrodes which,
although possessing excellent electrochemical properties [93], they have suffered from perceived
toxicity and disposal issues; this has resulted in a lack of market penetration. Alternative working
electrode materials have been investigated such as carbon paste and glassy carbon [94,95]. Both these
materials have been shown to exhibit excellent electrochemical properties, but necessitate a high level
of skill on the part of the operator in order to obtained reliable reproducible. In contrast, screen-printing
carbon based electrodes have been shown to be highly successful allowing for mass production with
good precision. Recently, the application of SPCEs for the determination of metal ions has been
reviewed by a number of authors [96–102]. Four approaches have been identified: Hg thin layer,
Bi or Sb thin film and unmodified carbon electrodes using stripping voltammetry and to a lesser
extent, biosensor based systems. These are described in the next four sections, and the performance
characteristics of the sensing methods are summarized in Tables 8–10.

5.1. Unmodified Screen-Printed Carbon Electrodes

Unmodified SPCEs have been used as an alternative approach; depositing and accumulating the
target metal ion as a metal film directly at the screen-printed carbon surface. Crew et al. [103] have
used such an approach, for the determined Zn2+ in human sweat. The optimum supporting electrolyte
was reported to be a pH 6.0, 0.1 M acetate buffer containing 0.1 M NaCl with a deposition potential
of −1.6 V. Using a deposition time of 60 s a well-defined stripping peak at −1.2 V was reported with
a linear response over the range 1× 10−8 to 5× 10−6 M. A coefficient of variation of 5.6% was obtained
for six replicate measurements of a 2 × 10−6 M Zn2+ solution. The sweat from 10 volunteers was
examined and Zn2+ concentrations of between 0.39 and 1.56 µg/mL were reported.
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The determination of Pb2+ has been shown possible at a microband screen-printed carbon
electrode (µBSPCE) [104]. The µBSPCE was fabricated by creating a 20 µm exposed cross-section of the
printed layer of working electrode ink. Using a supporting electrolyte of 0.1 M pH 4.1 acetate 13 mM
NaCl and an accumulation time of 1500 s under quiescent conditions a linear relationship was obtained
from 50 µg/L to 1.7 mg/L with an associated detection limit of 2.3 ng/mL was reported by linear
sweep anodic stripping voltammetry. The developed sensor was reported to be able to determine the
concentration of lead leached from ceramic plates with solutions of acetic acid.

The determination of Au in human urine [105] by cathodic stripping voltammetry in 0.1 M KCl
(pH 1.0) following open circuit accumulation has been reported at a poly-L-histidine modified SPCE.
The stripping voltammetric determination of the accumulated Au was investigated by linear sweep
(LSV), differential pulse (DPV), and square wave voltammetry (SWV). Detection limits of 6.0 µM,
1.7 µM and 4.0 µM were obtained respectively. SWV was found to be the most sensitive waveform,
however, DPV was shown to obtain the lowest detection limit, and consequently was employed in
subsequent studies.

Arduini et al. [106] have reported an amperometric based sensor able to determine levels Hg2+

as low as 1 ng/mL with response times of less than three minutes. The sensor was based on the
interaction of Hg ions with the oxidation of thiocholine at a SPCE modified with a dispersion of
carbon black N220. Significantly enhanced electrochemical activity was reported at SPCEs modified
with the carbon black compared to unmodified SPCEs. Using a supporting electrolyte of 50 mM
pH 7.4 phosphate buffer containing 0.1 M KCl, at an applied potential of +0.3 V (vs. Ag/AgCl) the
amperometric response for both thiocholine and cysteine were found to be linear up to 1 × 10−5 M.
The electrochemical oxidation of thiocholine and cysteine was reported to result from the oxidation of
the thiol group to the corresponding disulphide. However, in the presence of Hg2+ ions the formation
of a non-electroactive thiol-Hg complex was reported to be formed. The subsequent depletion in the
amperometric response was found to be proportional to the concentration of Hg2+ ions present. This
relationship was exploited by the authors as an analytical application for the determining trace Hg2+

levels in drinking water samples. It was reported possible to determine Hg2+ levels without the need
for samples pre-treatment. For drinking water samples fortified with 5 × 10−8 M and 5 × 10−9 M
of Hg2+, a signal decrease of 98% ± 2% and 14% ± 3% respectively was reported for a thiocholine
at concentrations of 1 × 10−7 M. The effects for a number of other metal ions (Cu2+, Ag+, Pb2+, Fe3+,
Fe2+, Ni2+, Mn2+ and As3+) were investigated at a concentration of 5 × 10−6 M using a thiocholine
concentration of 1 × 10−5 M. Only the addition of Ag+ ions was reported to give any notable decrease
in the amperometric response.

5.2. Mercury Modified Screen-Printed Carbon Electrodes

Thin-film mercury SPCEs (TFM-SPCEs) comprise a thin layer of Hg atoms adsorbed to the SPCE
surface. This layer can be formed in several ways: via ex situ; deposition; plated before the analysis in
a separate solution, or by in situ co-deposited with the target analyte by addition of a soluble Hg salt to
the sample solution. Alternatively, an insoluble Hg salt can be mixed with the ink and printed as part of
the working electrode, alleviating the need to for the addition of Hg by the end-user. Table 8 [107–133]
gives a summary of these applications, highlighting the approaches employed and the performance
characteristics of the devices. As can be seen from Table 8, TFM-SPCEs have been shown to be highly
successful obtaining low limits of detection and precision. Nevertheless, even with the small amounts
of Hg employed with these devices this approach still suffers from perceived issues of toxicity and
disposal associated with Hg. In light of this perceived problem, two alternative strategies have been
investigated are discussed in the next sections.
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Table 8. Reports of screen-printed carbon electrodes for the determination of metal ions.

Analyte Modifier Medium
Exchange Accumulation Media Measurement Technique Linear Range Detection Limit (Time) Sample/s Reference

Pb2+, Cd2+, Cu2+ Hg thin film No Sample acidified with HCl pH
2 SWASV, −1.1 V, 120 s 0–500 ng/mL in acidified seawater Cd2+ 7.0 ng/mL, Pb2+ 0.31 ng/mL,

Cu2+ 0.53 ng/mL
Seawater [107]

Cr6+ Unmodified carbon No 0.1 M H2SO4 LSCSV 100–1000 ng/mL 19 ng/mL Canal water [108]

Sb3+ Electrochemical generated silver
nanoparticles No pH 2 Britton–Robinson buffer DPASV, −0.6 V, (200 s) 9.90 × 10−8–9.09 × 10−7 M 6.79 × 10−10 M

Seawater, pharmaceutical
preparations [109]

Sb3+ Electrochemical generated gold
nanoparticles No pH 2 Britton-Robinson buffer DPASV, −0.55 V (200 s) 9.90 × 10−8–9.09 × 10−7 M 9.44 × 10−10 M

Seawater, pharmaceutical
preparations [110]

Sb3+ Mercury film No HCl 3 M DPASV, −0.9 V (600 s) 0.99 × 10−8–8.26 × 10−8 M 1.27 × 10−8 M Glucantime and seawater [111]

U 4-Carboxyphenyl No Ammonium acetate 15 min 8.5 × 10−10–10−7 M 2 × 10−9 M Estuarine water [112]

Pb2+ No 0.1 M KCl DPASV, −1.1 V (400 s) 10–60 µg/dL 2 µg/dL - [113]

Pb2+ Functionalized mesoporous silica No 0.2 M HCl SWASV, −1.2 V 1–30 ng/mL 0.1 ng/mL, 5 min accumulation,
120 s electrolysis

Drinking water, river water,
groundwater [114]

As3+ Platinum nanoparticle No 1 M H2SO4 CV, −0.2 V to +1.3 V, 100 mV/s 1.6 × 10−7–1.3 × 10−6 M 5.68 ± 1.18 mg/L Certificated water sample [115]

Hg2+, Pb2+, Ni2+, Cd2+ PANI, or PANI-poly(DTDA) No 0.1 M H2SO4; 0.5M HCl DPASV, −0.4 V (120 s) 1 × 10−9–1 × 10−6 M - - [116]

Cd2+ Hg modified microelectrode array formed
by femtosecond laser ablation No acetate buffer 0.2 M, pH 4.5 SWASV 1–10 ng/mL 1.3 ng/mL (300 s) River water [117]

Cd2+ Ex-situ Hg plated thin film No acetate buffer 0.2 M pH 4.5 SWASV, −1.0 V 0.2–40 ng/mL 0.2 ng/mL, (60 s) River water [118]

Hg2+, Pb2+, Ni2+, Cd2+,
Cu2+ Unmodified carbon No 0.1 M NaCl, pH 1.35 DPASV, −1.4 V - - Soil [119]

Pb2+, Ni2+, Cd2+, Cu2+ Unmodified carbon No 0.1 M NaCl, pH 1.35 DPASV, −1.4 V - - Forensic soil analysis [120]

Cd2+, Pb2+ Unmodified carbon No 0.2 M acetic acid & 0.2 M
sodium acetate DPASV, −1.0 V Cd2+ 2–100 µM, Pb2+ 5–100 µM Cd2+ 500 nM, Pb2+ 800 nM (120 s)

Rainwater, flour, maize &
seedlings [121]

Pb2+, Cd2+ Thin-film Hg No 0.6 M NaCl, pH 8 SWASV, −1.1 V 10–2000 ng/mL Pb2+ 1.8 ng/mL, Cd2+ 2.9 ng/mL
(120 s)

Seawater [122]

Hg2+ PANI-methylene blue coated No 0.5 M HCl DPASV, −0.3 V 1 × 10−8−1 × 10−5 M 54.27 ng/mL (120 s) Ultra-pure water [123]

Hg2+ Electrochemically coated
PANI-poly(DTDA) No 0.5 M HCl DPASV, −0.3 V 1 × 10−8–1 × 10−5 M 56 ng/mL (120 s) - [124]

Hg2+ poly(4-vinlylpyridine) No pH 4 acetate buffer + 2 M KCl SWASV 100–1000 ppb 69.5 ppb Skin-lightening cosmetics [125]

Hg2+, Pb2+ Au film Yes 0.05 M HCl SWASV, −1.0 V Hg2+ 2–16 ng/mL, Pb2+

4–16 ng/mL
Hg2+ 1.5 ng/mL, Pb2+ 0.5 ng/mL,

(120 s)
Drinking water [126]

Cd2+, Cu2+, Pb2+, Hg2+ Cd2+, Cu2+, Pb2+ by thin Hg film, Hg2+

Au screen-printed electrode
No 0.1 M HCl SWASV, Hg2+ +0.2 V, Cd2+,

Cu2+, Pb2+, −1.1 V
1 ng/mL–1 µg/mL for all

Hg2+ 0.9 ng/mL, (120 s), Cd2+,
1.0 ng/mL, Cu2+ 0.5 ng/mL, Pb2+

0.3 ng/mL (300 s)

Dogfish muscle, Mussel
tissue, Atlantic hake fillets [127,128]

Cd2+, Cu2+, Pb2+ Injection modelled flow cell containing
screen-printed sensor No

Cu2+ 0.1 M HNO3, Cd2+ 0.1 M
pH 9 ammonium citrate buffer,
Pb2+ 0.1 M pH 9 glycine buffer

Cu2+ & Cd2+ DPASV, Pb2+

SWASV
Pb2+ 30–70 ng/mL, Cu2+

9 ng/mL–26 ng/mL
Cu2+ 4.4 ng/mL (300 s), Pb2+

5.9 ng/mL (500 s), Cd2+
Lake water, industrial

waste water [129]

Cd2+, Cu2+, Pb2+, Hg2+ Chitosan No 0.1 M HCl/KCl DPASV, −1.0 V 10–200 ng/mL Pb2+ 3.4 ng/mL, Cu2+ 5 ng/mL,
Cd2+ 5 ng/mL Hg2+ 2 ng/mL (30 s)

Tap water [130]

Cd2+, Cu2+, Pb2+ Microchip capillary electrophoresis No MES buffer (pH 7.0, 25 mM) −0.8 V 100–1000 µM Pb2+ 1.74 µM, Cd2+ 0.73 µM,
0.13 µM

Green vegetable, Tomato
and pine apple juices [131]

Pb2+
Random micro-array formed by spraying
screen-printed working with a commercial

deodorant (200 mm for 12 s).
No 0.1 M HNO3 SWASV, −0.5 V 20–50 µM and 75–200 µM 9.5 µM - [132]

As3+

Au array for ASV, Pt array for direct
oxidation, formed by spraying

screen-printed working with a commercial
deodorant (200 mm for 6 s).

No 1 M H2SO4 LSASV, −1.2 V 1–5 µM 4.8 × 10-7 M - [133]
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5.3. Bismuth Modified Screen-Printed Electrodes

A popular second alternative has focused on the use of the less toxic metal Bi [134,135]. This has
been employed in a similar manner to that previously described for Hg, by in situ or ex situ deposition
of soluble metal salt or alternating as an insoluble Bi salt, such as Bi2O3 [136–143] or BiPO4 [140] printed
as part of the ink, which is then reduced to Bi◦ during the electrochemical deposition step. A number
of reviews have been focused on the application of Bi modified electrodes [134,135]. Elements such as
chromium [141], zinc [139], and lead [142] have been determined with Bi modified SPCEs.

Cobalt has been determined by cathodic adsorptive stripping voltammetry (CAdSV) at an ex
situ Bi modified SPCEs [143]. In this reported Co was accumulated as its dimethylglyoxime (DMG)
as complex. A series of soil extracts with varying Co concentrations were investigated. Results were
compared to those obtained by inductively coupled plasma–mass spectrometry. Results showed the
possibility of determining of levels as low as 0.1 µg/L.

Khairy et al. [144] have reported an in situ Bi film modified SPCE for the square wave stripping
voltammetric determination of Cd2+ in artificial and diluted oral fluid. Investigations showed that
unstable Bi film formation occurred if Bi concentrations were too large and a Bi concentration of
0.4 mg/L was reported to be optimum for the determination of 30 µg/L Cd2+. At pH conditions
>3, magnitudes of the stripping peak current were reported to decrease, concluded to result from
hydrolysis. Further investigations into the determination of Cd in oral fluid were reported to be
effected by the adsorption of proteins and other components on the electrode surface. However,
by adjusting the pH of the oral fluid samples to pH 1 the problem was alleviated. Investigations into
the linear response of Cd2+ showed a linear range 10 to 80 µg/L using a deposition potential of 1.2 V.
At Cd2+ concentrations above this, a decrease in the voltammetric response was found; concluded to
result from saturation of the Bi layer. Based on a signal-to-noise ration of three (3 σ) a limit of detection
of 2.9 µg/L was reported.

A number of more recent examples of the use of Bi-modified SPCEs for metal analysis are
summarised in Table 9. However, a number of drawbacks of Bi modified SPCEs have been
reported [145]. The use of Bi can result in narrowing of the potential range that can be readily
used, an affect that can reportedly be aggravated by extremes of pH. The determination of elements
such as Cu and Hg can be affected by these issues as they exhibit stripping peak potentials close to that
of Bi. The addition of relatively large concentrations of Bi3+ to the sample solution required for in situ
Bi film formation can lead to disruptions in the speciation of the target analytes. A further problem
commonly reported with most metal thin-film based approaches is the possibility of peak splitting
occurring if the optimum Bi concentrations are not employed. Nevertheless, a recent study of ex situ
plated Bi electrodes for the stripping voltammetric determination Cd [142] showed Bi SPCEs were
superior to Bi thin film glassy carbon electrodes which were shown to exhibited peak splitting.

An interesting combined stripping voltammetric-colorimetric assay has recently been reported
by [146] for the determination of Pb2+, Cu2+ and Cd2+. The SPCE was modified in situ with Bi, using
an accumulation potential of −1.2 V for Cd2+ and Pb2+ and −0.6 V for Cu2+. The stripping step was
undertaken in separate solution containing the metal indicator dye, xylenol orange. Metal ions formed
during the electrochemical stripping step form a coloured complex with the xylenol orange allowing
for their concentrations to be determined by UV spectroscopy at 575 nm for Pb2+ (acetate buffer) and
Cu2+ (acetate buffer), 580 nm for Cd2+ (hexamethylenetetramine buffer), respectively. The possible Bi3+

ions formed in the stripping step were shown not to interfere with the spectroscopic determination of
the determination of the target metal ions. Limits of detection were reported as 10, 10 and 100 nM for
Cd2+, Pb2+ and Cu2+ respectively. The analysis of waste water samples showed good agreement with
that obtained by inductively coupled plasma atomic emission spectroscopy (ICP-AES).
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Table 9. Reports of bismuth modified screen-printed carbon electrodes for the determination of metal ions.

Analyte Modifier Medium
Exchange Accumulation Media Measurement Technique Linear Range Detection Limit (Time) Sample/s Reference

Zn2+, Cd2+ Pb2+ Chemically synthesized
Bi nanoparticles No pH 4.5 0.1 M acetate buffer SWASV, −1.4 V, flow cell &

convective cell -
0.52 ng/mL Zn2+,
0.45 ng/mL Cd2+,

0.41 ng/mL Pb2+, (120 s)

Waste water CRM,
drinking water [147]

Zn2+, Cd2+ Pb2+ bismuth oxide modified ink No
0.1 M NaOAc solution
containing 0.05 M HCl

or 0.1 M HCl
SWASV, −1.2 V

Cd2+ 10–150 ng/mL, Pb2+

10–150 ng/mL, Zn2+

40–150 ng/mL
5, 10 and 30 ng/mL River water [148]

Cd2+ Microband ex-situ Bi plated No pH 4.5, acetate buffer 0.2M SWASV, −1.0 V 5.6 ng/mL–45 ng/mL 1.3 ng/mL River water
(mining area) [149]

Cd2+, Pb2+ Bismuth oxide modified ink No 0.5 M ammonium acetate +
0.1 M HCl pH 4.6 Chrono-potentiometric 20–300 ng/mL Pb2+ 8.0 ng/mL, Cd2+

16 ng/mL
Soil, water [150]

Zn2+, Pb2+ Ex-situ deposited bismuth No 0.01 M KNO3
DPASV, −1.5 V, 60 s.

stripping
chrono-potentiometry

Up to: Zn2+ 250 ng/mL, Pb2+

50 ng/mL, Cd2+ 600 ng/mL

Zn2+ 3.5 ng/mL Pb2+

0.5 ng/mL, Cd2+

3.9 ng/mL
Tap water (Barcelona) [151]

Pb2+ Bi, 0.5% Nafion No 10.0 mM acetate 50 mM
KCl buffer + 500 mg/L Bi SWASV, −1.0 V, 120 s 5 ng/mL–80 ng/mL 4 ng/mL Leachates from

cooking vessels [152]

Zn2+, Cd2+ Pb2+ Dip coated hydrogel
modified Bi doped ink Yes

Volatile metal species
generated at room
temperature by the
addition of sodium

tetrahydroborate (III) to
an acidified solution.

SWASV, −1.2 V 10–80 ng 1 ng (120 s) Metal vapours [153]

Zn2+, Cd2+ Pb2+ In situ plated Bi No 1 M HCl SIA-ASV, −1.4 V 2–100 ng/mL Pb2+ and Cd2+,
12–100 ng/mL Zn2+

0.2 ng/mL Pb2+,
0.8 ng/mL Cd2+,
11 ng/mL Zn2+

Herbs [154]

Zn2+, Cd2+ Pb2+ In situ plated Bi No 1 M HCl SIA-ASV, −1.4 V 0–70 ng/mL Pb2+ and Cd2+,
75–200 ng/mL Zn2+.

0.89 ng/mL Pb2+,
0.69 ng/mL Cd2+ Drinking water [155]

Cd2+ Pb2+ In situ plated Bi No 0.2 M, pH 4.6 acetate buffer SI-MSFA, −1.1 V 10 ng/mL–100 ng/mL Cd2+ 1.4 ng/mL, Pb2+

6.9 ng/mL
Water from a zinc

mining draining pond [156]

Zn2+, Cd2+ Pb2+ In situ plated Bi No 0.1 M pH 4.5 acetate buffer,
10−2 M KCl SWASV 10 ng/mL–100 ng/mL

Zn2+ 8.2 ng/mL, Cd2+

3.6 ng/mL, Pb2+

2.5 ng/mL

Tap water,
waste water [157]

Cd2+ Pb2+ Bismuth oxide modified ink No 0.1 M, pH 4.5 acetate buffer SWASV, −1.2 V 20 ng/mL–100 ng/mL 2.3 ng/mL Pb2+,
1.5 ng/mL Cd2+ River water [158]

Pb2+ In-situ plated Bi Lab
on a chip No 0.1 M acetate buffer pH 4.5 SWASV, −1.2 V 2.5 ng/mL–100 ng/mL 1.0 ng/mL (120 s) - [159]

Pb2+

SPCE modified with filter
paper containing electrolyte,

Bi and internal standard
(Zn) salts.

No
0.1 M pH 4.5 acetate buffer,
containing Zn (60 ng/mL)

as internal standard
SWASV, −1.4 V 10 ng/mL–100 ng/mL 2.0 ng/mL (120 s) - [160]
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5.4. Alternative Metal Based Screen-Printed Electrodes

Alternatives to Hg and Bi have been investigated by Maczuga et al. [161]. In these investigations
both electroplated and ink modified screen-printed Sb and Sn electrodes were investigated for the
determination of both Cd2+ and Pb2+ by anodic stripping voltammetry. Antimony oxalate hydroxide,
antimony oxide, and antimony tin oxide were investigated and a comparison of these modified SPCEs
were made against both electroplated and ink modified Bi-SPCEs. The analytical performance of the
Sb and Sn electrodes was reported to compare favourably with the bismuth-oxide modified bismuth
electrodes. Detection limits were reported in the range 0.9–1.2 µg/L for Pb2+ and 1.8–3.5 µg/L for
Cd2+ with a 240 s pre-concentration step. Mineral water samples spiked with Cd2+ and Pb2+ were
reported to give percentage recoveries in the range 95% to 103%.

An automated anodic stripping voltammetric method for the determination of inorganic As
has been reported by Punrat et al. [162]. The Au was electrochemically deposited onto the SPCE at
a potential of −0.5 V vs. Ag/AgCl using a supporting electrolyte solution of 1 M hydrochloric acid.
The linear range for the determination of arsenic (III) was reported as 1–100 µg/L, with a limit of
detection in standard solutions of 0.03 µg/L using a deposition time of 120 s with a sample volume of
1 mL. The corresponding detection limit in real samples was reported to be 0.5 µg/L. It was reported
possible to achieve speciation between arsenic (III) and arsenic (V) utilising deposition potentials of
−0.5 V and −1.5 V for determination of arsenic (III) total arsenic concentrations, respectively. Similarly,
good separation between the stripping voltammetric peak for As and that of the commonly interfering
species Cu2+ was shown. Samples of rice field water and river water were investigated and good
recoveries (99.5% to 104%) were reported for samples fortified with As3+ at 11.5 µg/L and 23.0 µg/L.

Ibuprofen derived gold nanoflowers/nanostructures (Ibu-AuPNFs/Ibu-AuNSs) have been
synthesised by heating a mixture of ibuprofen and gold chloride (HAuCl4) at constant
temperature [163]. The stability of the Ibu-AuNSs at the SPCE was improved by application of
nafion. A linear response was reported for As(III) over the range of 0.1–1800 µg/L with corresponding
detection limit of 0.018 µg/L. The sensor was reported to be highly reproducible with a coefficient of
variation of 1.9% (n = 15) being reported. The selectivity of the device was reported to be very selective
towards As(III) with no appreciable interference in the presence of various ions including Cu, Zn, Cd,
Pb, Ni, Hg, Co, Ca, Na and K. The sensor was successfully employed for As(III) monitoring in various
types of water samples.

The possibility of determining As3+ at a nanotube–Au nanoparticle-modified SPCE for the anodic
stripping voltammetric determination of As3+ has been reported [164]. A mobile phone vibrating motor
was attached to the SPCE to enhanced mass transfer. The peak current was reported to be linearly
dependent on the As3+ concentration over the concentration range 10 to 550 µg/L. Detection and
quantification limits were reported to be 0.5 and 1.5 µg/L, respectively when using a 120 s deposition
time. It was reported that when using a 0.1 M HCl supporting electrolyte that Cu2+ did not interfere in
the detection of As3+.

Cinti et al. [165] have reported the application of a carbon black (N220)-Au nanoparticle
nanocomposite modified SPCE for the detection of As3+. SPCEs were modified by drop casting
carbon black and Au nanoparticles onto the surface of the SPCEs. Using linear sweep anodic stripping
voltammetry with a 0.1 M HCl +0.01% w/v ascorbic acid supporting electrolyte a detection limit of
0.4 µg/L was reported. No significant variation on the response for the determination of As3+ was
reported in the presence of 100 µg/L of As4+. However, some effluence on the stripping response of
As3+ was reported in the presence of Cu2+ at levels comparable with those occurring in tap water.
No As3+ was reported to be detectable in the tap water sample investigated by the authors. Fortification
of the sample with levels of 10 µg/L and 20 µg/L of As3+ gave average recovery of 99% ± 9% and
108% ± 4% for 10 ppb and 20 ppb As(III), respectively.
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5.5. Biosensor Based Screen-Printed Electrodes

Certain metals readily interfere with enzyme activity; an effect which can be harnessed to develop
biosensors for their determination [101,161–163]. The determination As3+ at an acetylcholinesterase
modified SPCE has been reported [154]. It was shown possible to amperometically determine,
at an applied potential of +0.6 V, the thiocholine iodide formed by the enzymatic reaction. Arsenic is
known to inhibit acetylcholinesterase’s conversion of acetylthiocholine iodide to thiocholine iodide.
Depletion of the amperometric response for thiocholine iodide can hence be used to quantify the
concentration of As3+ present. Using this approach, a linear range up to 1 × 10−7 M As3+ could be
obtained with a detection limit of 1.1 × 10−8 M. The developed biosensor was shown to be able to
successfully determine 1.0 µM As3+ concentrations in tap water. Further investigations were made on
a certified As5+ water sample. It was shown possible to determine As concentrations in this sample
following the addition of sodium thiosulphate to reduce the acetylcholinesterase inert As5+ to As3+.

Guascito et al. [165] have utilised the widely used and commercially successful glucose oxidase
enzyme system for the determination of a number of metal ions including: Hg2+, Ag+, Cu2+, Cd2+,
Co2+ and Ni2+. Detection limits in the low µg/mL levels were reported with Ag+ detection limits in
the µg/L region when as part of a flow injection system.

The interaction of arsenate with L-cysteine has been investigated for the development of a possible
biosensor for As. L-cysteine reduces arsenate to arsenite and in process is oxidized to L-cystine.
The reaction involves electron transfer which can be monitored amperometically [166]. By the
immobilization of L-cysteine at the surface of SPCE, it was reported possible using this relationship to
gain a detection limit of between 1.2 and 4.6 ng/mL for As. Interferences from oxidising agents such
as nitrate were investigated, but no effects were reported at concentrations that are commonly found
in drinking water.

The possibility of utilizing the inhibition of urease by Hg2+ was investigated at a SPCE modified
with Au nano-particles [167]. The Au nano-particles were deposited electrochemically on the working
electrode surface from a 0.1 mM solution of HAuCl4 in 0.5 M H2SO4. Au nano-particles were reported
to enhance the sensitivity of the sensor. Using the modified SPCE a steady-state current was obtained
for urea. Additions of Hg2+ were found to give a decrease in the urea current response proportional to
concentration for Hg2+ added. Using this approach, a detection limit for Hg2+ of 5.6 × 10−8 M was
reported. Using the developed biosensor, it was found possible to determine Hg2+ levels of 1.0 µM in
fortified human plasma samples.

The metal-reducing bacterium, Shewanella sp. is involved in the cycling of several metals, such
as, iron and manganese, as well as phosphates. Prasad et al. [168] have shown the possibility of
using Shewanella sp. as the electron transfer material for electrochemical determination of arsenite,
hydrogen peroxide, and nitrite. A Shewanella sp. CC-GIMA-1 bacterial suspension in 0.1 M, pH 7.4
phosphate buffered saline was drop-coated on the SPCE surface and allowed to settle under room
temperature for 1 h. The approach was reported to be superior to the growing of bacterial biofilms
on the SPCE surface. The presence of oxygen functional groups present on the electrode surface was
considered to give a favorable environment for growth of the bacterial cells which utilised these oxygen
groups as electron acceptors in their processes. The effects of arsenite (50–500 µM) hydrogen peroxide
(50 µM–2.5 mM) and nitrite (100–500 µM) were studied by cyclic voltammetry at the modified SPCE.
The addition of 500 µM arsenite resulted in a ca. 65% increase in the voltammetric reduction peak.
Similar voltammetric behaviour was reported for additions of Fe3+.

Viguier et al. [169] have developed a self-assembled peptide nano-fibril modified screen-printed
Au electrode (SPGE) as a biosensor for the determination of Cu2+. Four cysteine substituted forms
of the octapeptide N-S-G-A-I-T-I-G (NS) were investigated as nano-fibrils: C-N-G-A-I-T-I-G (CN),
N-C-G-A-I-T-I-G (NC) and C-S-G-A-I-T-I-G (CS). The SPGEs were modified by drop coating a 5 µL of
a solution containing the nano-fibrils on the SPGE and incubating overnight at 4 ◦C. The SPGE was
then washed with double-distilled water to remove unbound nano-fibrils. The functionalized SPGE
was investigated by cyclic voltammetry, impedance spectroscopy, energy dispersive X-ray and atomic
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force microscopy. It was shown to be possible to accumulate Cu2+ ions on the modified SPGE at open
circuit by immersing the biosensor into an aqueous solution of Cu2+ in 50 mM ammonium acetate
(pH 6.8). Square wave voltammetry was then undertaken in 50 mM NaCl over the potential range
−250 to 500 mV. Following the measurement step the biosensors were cleaned to remove any residual
Cu2+ ions by applying a potential of 500 mV for 20 s in 0.1 M HClO4. Using a 2 minute accumulation
time at open circuit, a linear response for Cu2+ over the concentration range 15 µM to 50 µM was
recorded. Possible interferences resulting from Ca2+ and Mg2+ were commented upon but were not
investigated in this report.

Niu et al. [170] have utilised a DNA modified SPGE biosensor for the trace determination of Hg2+,
gaining a detection limit of 0.6 nM (120 ng/L). SPGE was modified by with a self-assembled mono
layer (SAM) of the thiol-functionalized oligonucleotide, 5′-SH-(CH2)6-TTGCTCTCTCGTT-3′ (P1).
In the presence of Hg2+ ions this can hybridise with a second ferrocene substituted oligonucleotide,
5′-TTCGTGTGTGCTT-ferrocene-3′ (P2) by forming thymine–Hg2+–thymine (T–Hg2+–T) complexes.
However, in the absence of Hg2+, the two oligonucleotides cannot hybridize due to the T–T mismatched
bases, and consequently P2 cannot be fixed to the electrode surface, so no electrochemical signal is
produced. The developed biosensor showed a linear response for Hg2+ over the concentration range
10–0.001 µM was reported, and no interferences were reported for several metal ions including, Mg2+,
Ba2+, Cu2+, Co2+, Fe2+, Na+ and K+ at 1 mM concentrations on the response gained for a 1 nM Hg2+

solution. Table 10 shows a summary of some of these applications.
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Table 10. Reports of screen-printed biosensors for the determination of metal ions.

Analyte Modifier Medium
Exchange Accumulation Media Measurement

Technique Linear Range Detection
Limit (Time) Sample/s Reference

Cu2+, Cd2+

and Pb2+ Urease sol-Gel pH 7.0 0.02 mM
phosphate buffer Conductometric 0.1–10 - - [171]

Ni2+, Cu2+

and Cd2+ Acetylcholinesterase - - Amperometric,
TCNQ as mediator Cu2+ 0.001–0.1 - - [172]
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6. Conclusions

In this review, examples have been described which illustrate the wide potential of
electroanalytical (bio)sensors based on SPCEs.

The fabrication methods for biosensor construction have been discussed with particular emphasis
on enzyme immobilization techniques. For the applications, involving glucose, glutamate, lactate and
galactose, discussed at the beginning of the review, the most popular immobilization technique is
the method of entrapment/encapsulation. The resulting reagentless devices have been successfully
applied to a wide range of challenging matrices including blood, skin and food. An important
advancement has been the miniaturisation of biosensors using simple low-cost convenient procedures
in order to produce biosensors with dimensions in the micron region. It has been shown that these
devices could be exploited for use in real-time toxicity testing studies which has potential applications
in pharmaceutical drug development.

For the measurement of some important water-soluble vitamins, a selection of interesting surface
modifications of carbon electrodes has been described. For example, successful electrocatalytic
responses for ascorbate were obtained with a PANI-modified SPCE; the operating potential achieved
with these devices were much lower than conventional devices without PANI. An interesting
example for the measurement of biotin was described that involved the modification of an SPCE
with an antibody which allowed an improvement in the selectivity; the immunosensor was used in
a competitive assay format and concentrations down to 0.19 pg could be determined. This demonstrates
an important approach which could be adapted for the measurement of other vitamins and
possibly biomarkers.

Sensors for environmental pollution by organophosphate pesticides has continued to attract
the attention of electroanalytical chemists. Measurement systems based on biosensors incorporating
acetylcholinesterase have been the predominant approaches of choice. The signal is obtained when
the substrate is enzymatically converted to an electroactive product. The decrease in the signal which
occurs when the enzyme is inhibited by the organophosphate constitutes the analytical measurement.
Several mediators have been investigated for lowering the over-potential for the enzyme product
thiocholine, including CoPC and PEDOT, which gives similar operating potentials. The typical
detection limits are in the low part per billion range and can be used for investigating natural waters.

Similar approaches to that described for OP’s have been described for some heavy metal ions;
for example, arsenic has been determined by the inhibition of the acetylcholinesterase. In another
approach, a biosensor based on urease has been applied to the determination of Hg2+ ions. This cation
has also been determined using an interesting approach involving oligonucleotide hybridisation. These
approaches hold promise for the measurement of other heavy metal ions of environmental concern.
Stripping voltammetry, in conjunction with a variety of modified screen-printed carbon electrodes has
continued to be of significant interest for the trace measurements of a range of heavy metals; samples
containing sub-parts per billion of heavy metal ions have been readily analysed using screen-printed
carbon electrodes modified with nanoparticles.

From the above discussions, it is clear that the prototype screen-printed sensors and biosensors
described could potentially be further developed to produce commercial devices. The driver for
commercialisation mainly dependents upon the size of the market for a particular applications
area. For example, the glucose biosensor market continues to be the dominant sector for biosensor
commercialisation, due to the growing issue of diabetes. The glucose biosensor market is projected to
reach $31 billion by 2022 [173], accounting for 85% of the world market for biosensors. By comparison
a smaller market where commercial biosensors seem to be making inroads, is in the area of sports
science. For example, the measurement of lactate is important for athletes undergoing different training
regimes in order to improve their performance. A device based on screen-printing technology has been
commercialised by Imani et al. [174] which is worn on the chest during exercise in order to monitor
lactate levels. The development of devices to for use in this area is likely to grow in the future due
to the enormous interest from the public in attending athletic events such as the Olympic games.
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Other potential compounds that could be analysed and aid in improving athlete performance are
heat-shock-proteins or uric acid [175].

Commercial screen-printed biosensors for other analytes such as glutamate and galactose have
yet to be developed. However, Pinnacle Technology [176] and Sarissa Biomedical [177] currently sell
devices capable of monitoring glutamate flux in the brains of rats, suggesting that there is a potential
market for a device capable of analysing glutamate.

As far as we are aware, there are no reported commercial immunosensors based on screen-printed
carbon electrodes, however, they offer an interesting opportunity to utilise the specificity of the
antigen-antibody reactions in order to detect biomarkers of disease.

Screen-printed biosensors for the analysis of glucose in food and lactate in aqueous samples,
are currently available to purchase from Gwent Electronic Materials, indicating their commercial
appeal [178]. These are readily incorporated into a hand held instrument supplied by GEM for the
monitoring of glucose in food is also commercially available.

In summary, we believe that it is readily feasible to commercialise screen-printed (bio)sensors
where there is a sufficient sized market for a particular analyte and its subsequent application.
For a manufacturing perspective, some of the obstacles to overcome are the difficulty in reproducible
devices where multiple fabrication steps are required. In particular, complexities with regards to
the deposition of the biological element on the surface of the biosensor, whilst retaining activity can
present a challenge. As a result, simpler fabrication processes are likely to result in commercialisation.
In our experience of fabricating prototype devices, the main drawbacks of obtaining reproducible
devices lies in the immobilization. This suggests that integration of the biological components into
the ink formulation is a possible way forward. We recently described the fabrication of a novel
screen-printed glucose microbiosensor array using ultrafast pulsed laser ablation following the
deposition of screen-printing ink containing the enzyme, glucose oxidase [179]. It should be feasible to
adopt a similar strategy for the development of many other biosensors by incorporating appropriate
enzymes into a suitable ink formulation.
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66. Grosmanová, Z.; Krejčí, J.; Týnek, J.; Cuhra, P.; Baršová, S. Comparison of biosensoric and chromatographic
methods for the detection of pesticides. Int. J. Environ. Anal. Chem. 2005, 85, 885–893. [CrossRef]

67. Chen, D.; Jiao, Y.; Jia, H.; Guo, Y.; Sun, X.; Wang, X.; Xu, J. Acetylcholinesterase Biosensor for Chlorpyrifos
Detection Based on Multi-Walled Carbon Nanotubes-SnO2-chitosan Nanocomposite Modified Screen-Printed
Electrode. Int. J. Electrochem. Sci. 2015, 10, 10491–10501.

68. Istamboulie, G.; Sikora, T.; Jubete, E.; Ochoteco, E.; Marty, J.-L.; Noguer, T. Screen-printed
poly(3,4-ethylenedioxythiophene) (PEDOT): A new electrochemical mediator for acetylcholinesterase-based
biosensors. Talanta 2010, 82, 957–961. [CrossRef] [PubMed]

69. Mishra, R.K.; Alonso, G.A.; Istamboulie, G.; Bhand, S.; Marty, J.-L. Automated flow based biosensor for
quantification of binary organophosphates mixture in milk using artificial neural network. Sens. Actuators B
2015, 208, 228–237. [CrossRef]

70. Crew, A.P.; Lonsdale, D.; Byrd, N.; Pittson, R.; Hart, J.P. A screen-printed, amperometric biosensor array
incorporated into a novel automated system for the simultaneous determination of organophosphate
pesticides. Biosens. Bioelectron. 2011, 26, 2847–2851. [CrossRef] [PubMed]

71. Pohanka, M.; Drtinova, L.; Kuca, K. Acetylcholinesterase based assay of eleven organophosphorus pesticides:
finding of assay limitations. Int. J. Environ. Anal. Chem. 2012, 92, 125–132. [CrossRef]

72. Arduini, F.; Guidone, S.; Amine, A.; Palleschi, G.; Moscone, D. Acetylcholinesterase biosensor based
on self-assembled monolayer-modified gold-screen printed electrodes for organophosphorus insecticide
detection. Sens. Actuators B 2013, 179, 201–208. [CrossRef]

73. Upadhyay, S.; Sharma, M.K.; Rao, G.R.; Bhattacharya, B.K.; Rao, V.K.; Vijayaraghavan, R. Application of
bimetallic nanoparticles modified screen printed electrode for the detection of organophosphate compounds
using an enzyme inhibition approach. Anal. Methods 2011, 3, 2246–2253. [CrossRef]

74. Cinti, S.; Neagu, D.; Carbone, M.; Cacciotti, I.; Moscone, D.; Arduini, F. Novel carbon black-cobalt
phthalocyanine nanocomposite as sensing platform to detect organophosphorus pollutants at screen-printed
electrode. Electrochim. Acta 2016, 188, 574–581. [CrossRef]

75. Pohanka, M.; Drobik, O.; Krenkova, Z.; Zdarova-Karasova, J.; Pikula, J.; Cabal, J.; Kuca, K. Voltammetric
biosensor based on acetylcholinesterase and different immobilization protocols: A simple tool for toxic
organophosphate assay. Anal. Lett. 2011, 44, 1254–1264. [CrossRef]

76. Kumar, A.; Arora, S.; Mogha, N.; Al-Deyab, S.S.; Ansari, Z.A.; Ansari, S.G. Glutathione coated zinc oxide
nanoparticles: A promising material for pesticide detection. Energy Environ. Focus 2013, 2, 101–107.
[CrossRef]

77. Eremenko, V.; Dontsova, E.A.; Nazarov, A.P.; Evtushenko, E.G.; Amitonov, S.V.; Savilov, S.V.; Martynova, L.F.;
Lunin, V.V.; Kurochkin, I.N. Manganese dioxide nanostructures as a novel electrochemical mediator for thiol
sensors. Electroanalysis 2012, 24, 573–580. [CrossRef]

78. Ivanov, A.N.; Younusov, R.R.; Evtugyn, G.A.; Arduini, F.; Moscone, D.; Palleschi, G. Acetylcholinesterase
biosensor based on single-walled carbon nanotubes–Co phtalocyanine for organophosphorus pesticides
detection. Talanta 2011, 85, 216–221. [CrossRef] [PubMed]

79. Gan, N.; Yang, X.; Xie, D.; Wu, Y.; Wen, W. A disposable organophosphorus pesticides enzyme biosensor
based on magnetic composite nano-particles modified screen printed carbon electrode. Sensors 2010, 10,
625–638. [CrossRef] [PubMed]

80. Alonso, G.A.; Istamboulie, G.; Ramírez-García, A.; Noguer, T.; Marty, J.-L.; Muñoza, R. Artificial
neural network implementation in single low-cost chip for the detection of insecticides by modelling
of screen-printed enzymatic sensors response. Comput. Electron. Agric. 2010, 74, 223–229. [CrossRef]

81. Crew, A.P.; Hart, J.P.; Wedge, R.; Marty, J.-L.; Fournier, D. A screen-printed, amperometric, biosensor
array for the detection of organophosphate pesticides based on inhibition of wild type, and mutant
acetylcholinesterases, from Drosophila melanogaster. Anal. Lett. 2004, 37, 1601–1610. [CrossRef]

82. Florence, T.M. The speciation of trace elements in waters. Talanta 1982, 29, 345–364. [CrossRef]

http://dx.doi.org/10.1016/j.talanta.2016.04.046
http://www.ncbi.nlm.nih.gov/pubmed/27216686
http://dx.doi.org/10.1016/j.ab.2012.06.025
http://www.ncbi.nlm.nih.gov/pubmed/22759777
http://dx.doi.org/10.1080/03067310500191173
http://dx.doi.org/10.1016/j.talanta.2010.05.070
http://www.ncbi.nlm.nih.gov/pubmed/20678652
http://dx.doi.org/10.1016/j.snb.2014.11.011
http://dx.doi.org/10.1016/j.bios.2010.11.018
http://www.ncbi.nlm.nih.gov/pubmed/21163641
http://dx.doi.org/10.1080/03067310903199526
http://dx.doi.org/10.1016/j.snb.2012.10.016
http://dx.doi.org/10.1039/c1ay05252g
http://dx.doi.org/10.1016/j.electacta.2015.11.069
http://dx.doi.org/10.1080/00032719.2010.511745
http://dx.doi.org/10.1166/eef.2013.1034
http://dx.doi.org/10.1002/elan.201100535
http://dx.doi.org/10.1016/j.talanta.2011.03.045
http://www.ncbi.nlm.nih.gov/pubmed/21645691
http://dx.doi.org/10.3390/s100100625
http://www.ncbi.nlm.nih.gov/pubmed/22315558
http://dx.doi.org/10.1016/j.compag.2010.08.003
http://dx.doi.org/10.1081/AL-120037590
http://dx.doi.org/10.1016/0039-9140(82)80169-0


Biosensors 2016, 6, 50 35 of 39

83. Stotyk, W.; Weiss, D.; Appleby, P.G.; Cheburkin, A.K.; Gloor, F.M.; Kramers, J.D.; van der Knaap, W.O.
History of atmospheric lead deposition since 12,370 C-14 yr BP from a peat bog, Jura Mountains, Switzerland.
Science 1998, 281, 1635–1640. [CrossRef]

84. MacDonald, R.W.; Barrie, L.A.; Bidleman, T.F.; Diamond, M.L.; Gregor, D.J.; Semkin, R.G.; Strachan, W.M.J.;
Li, Y.F.; Wania, F.; Alaee, M.; et al. Contaminants in the Canadian Arctic: 5 years of progress in understanding
sources, occurrence and pathways. Sci. Total Environ. 2000, 254, 93–234. [CrossRef]

85. Hong, S.; Candelone, J.-P.; Patterson, C.C.; Boutron, C.F. Greenland ice evidence of hemispheric lead pollution
two millennia ago by Greek and roman civilizations. Science 1994, 265, 1841–1843. [CrossRef] [PubMed]

86. Warwick, R.M. Evidence for the effects of metal contamination on the intertidal macrobenthic assemblages
of the Fal Estuary. Marine Poll. Bull. 2001, 42, 145–148. [CrossRef]

87. Hamilton, E.I. Environmental variables in a holistic evaluation of land contaminated by historic mine wastes:
A study of multi-element mine wastes in West Devon, England using arsenic as an element of potential
concern to human health. Sci. Total Environ. 2000, 249, 171–221. [CrossRef]

88. Wang, J. Analytical Electrochemistry, 3rd ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2006.
89. Rajeshwar, K.; Ibanez, J.G. Environmental Electrochemistry, Fundamentals and Applications in Pollution Abatement;

Academic Press: London, UK, 1997; p. 276.
90. Wang, J. Stripping Analysis: Principles, Instrumentation and Applications; VCH: Weinheim, Germany, 1985.
91. Vydra, F.; Stulik, K.; Julakova, E. Electrochemical Stripping Analysis; Ellis Horwood: Chichester, UK, 1976.
92. Barek, J.; Fogg, A.G.; Muck, A.; Zima, J. Polarography and Voltammetry at Mercury Electrodes. Crit. Rev.

Anal. Chem. 2001, 31, 291–309. [CrossRef]
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