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Abstract

In this short note we study the stability of flows of a fluid through
porous media that satisfies a generalization of Brinkman’s equation to
include inertial effects. Such flows could have relevance to enhanced oil
recovery and also to the ow of dense liquids through porous media. In
any event, one cannot ignore the fact that flows through porous media
are inherently unsteady and thus at least a part of the inertial term
needs to be retained in many situations. We study the stability of the
rest state and find it to be asymptotically stable. Next, we study the
stability of a base flow and find that the flow is asymptotically stable,
provided the base flow is sufficiently slow. Finally, we establish results
concerning the uniqueness of the flow under appropriate conditions,
and present some corresponding numerical results.

1 Introduction

In this note we shall study the stability of flows of a fluid that is governed
by a generalization to Brinkman’s equation that takes into account the effect
of inertia. Brinkman (see Brinkman [1, 2]) developed an equation for the
flow of a fluid through a porous solid which reduces to the equation devel-
oped by Darcy [3] for the flow through a porous medium when one ignores
the frictional effects within the fluid and to the equations governing Stokes
flow, when the effect of the friction at the pores are ignored. Forchheimer
[4] suggested a modified “drag” due to the friction at the pore as he found
the predictions of Darcy’s equation to be not in keeping with experimental
effects. The interaction term that he introduced leads to the equation be-
coming non-linear. However, in the models proposed by Darcy, Brinkman
and Forchheimer the non-linearity of the inertial effect is ignored, and the
equations proposed by Darcy and Brinkman are linear. The justification of-
fered by Darcy and Brinkman to ignore the effects of inertia is that the flow
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in a porous media is expected to be slow. However, as shown by Munaf, et al.
[5], inertial effects can become important in the flow of fluids through porous
media under certain circumstances. In fact, in problems such as enhanced oil
recovery where the oil is driven by steam at high pressure, when the pressure
gradients are high or when the flow of dense fluids is considered, inertial ef-
fects can become important, or at least significant enough to be not ignored.
It might be necessary, in flows involving high pressures and high pressure
gradients, to include the effect of the pressure on the viscosity as well as
the “Drag” term that arises due to frictional effects at the pore. Recently,
Subramaniam and Rajagopal [6] investigated flow of fluids at high pressures
while the gradients of pressure is also high and allowed for the viscosity and
the “Drag coefficient” to depend on the pressure. They found the results
to be markedly different from the results for the constant viscosity and con-
stant “Drag coefficient” in that the flow rates are very different and they
also found the development of boundary layers (regions where the vorticity
is much larger than the rest of the flow domain) wherein the high pressures
are confined. Later, Kannan and Rajagopal [7] also studied the flow of fluids
through an inclined porous media at high pressures and pressure gradients
due to the effects of gravity and they also found results that show the devel-
opment of boundary layers wherein the vorticity is concentrated. The flows
considered by Subramaniam and Rajagopal [6] and Kannan and Rajagopal
[7] are steady flows and due to the special form assumed for the flow field,
the inertial term is identically zero. However, the flow field assumed in these
and several other studies can only be viewed as approximations to flows that
take place in a porous medium as they assume that the flow is unidirectional.
It is important to recognize that flows through porous media are inherently
unsteady and thus one has to include at the very least the unsteady part
of the inertial term. Moreover, flow through porous media is never truly
one-dimensional and thus one cannot neglect the non-linear term in the in-
ertia on that basis. In fact, when very high pressure gradients are involved
the flow will be turbulent. Here, we shall not consider turbulent flows. We
shall however modify Brinkman’s equation to take into account the effects
of inertia. A detailed discussion of the various assumptions that go into the
development of Brinkman’s equation can be found in the recent article on
a hierarchy for approximations for the flow of fluids through porous media
by Rajagopal [8]1. Brinkman very astutely observed that “Equation (2)2,
however, cannot be used as such. A first objection is that no viscous stress

1There are several obvious typographical errors which appear in the paper indicating
poor proof reading on the part of the author. The sign in front of in equations (3.4), (3.7),
(3.11), (3.14) and (4.8) should be a negative sign instead of a positive sign.

2By equation (2) Brinkman is referring to Darcy’s equation.
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has been defined with relation to it. The viscous shearing stresses acting on a
volume element of a fluid have been neglected; only the damping force of the
porous mass ην/k has been retained. This is a good approximation for small
permeabilities.” When the permeability is large, it is necessary to include the
effect of the viscous dissipation within the fluid has to be taken into account
in the modeling. Brinkman’s equation can be derived systematically from
the theory of mixtures (see Truesdell [9, 10], Bowen [11], Atkin and Craine
[12], Samohyl [13], Rajagopal and Tao [14] for a detailed discussion of the
mechanics of mixtures) by making the following assumptions (see [8]):

(1) The solid is a rigid porous solid and thus the balance of linear momen-
tum of the solid can be ignored, the stresses in the solid are whatever
they need to be to meet the balance of linear momentum of the solid.

(2) Frictional effects between the fluid and the pore as well as frictional
effects in the fluid due to the viscosity of the fluid are included3. The
fluid will be assumed to be a linearly viscous fluid.

(3) The flow is sufficiently slow that inertial effects in the fluid can be
neglected.

(4) The fluid density is assumed to be a constant.

(5) The flow is steady.

We shall not enforce the requirement that inertial effects be neglected or
that the flow be steady. Based on this generalization of the model due to
Brinkman, we shall consider the stability of the base flow to finite distur-
bances and conditions under which we can establish its uniqueness. The
seminal works of Reynolds [16] and Orr [17], followed by the work of Synge
[18], Kampe de Feriet [19], Berker [20], Thomas [21], Hopf [22] laid the
foundation to the stability of the flows of the Navier-Stokes fluids to finite
disturbances and Serrin [23] built upon this work and was able to use it to
obtain numerical results concerning the stability of flows and extended the
work of Hopf and Thomas under which one could establish the uniqueness
of flows of the Navier-Stokes fluid. We shall follow such a procedure to es-
tablish the asymptotic stability of the base flow of a fluid that satisfies the
equations developed by Brinkman and establish conditions under which the
solution is unique. We show that the base flow is asymptotically stable, i.e.,
the disturbances decay to the basic flow, provided the base flow is sufficiently

3A detailed discussion of the various interaction mechanisms between constituents of
fluids can be found in the article by Johnson, Massoudi and Rajagopal [15].

3



slow in the sense that the eigenvalue associated with the symmetric part of
the velocity gradient is small with respect to the viscosity of the fluid. We
are also able to establish that the base flow is unique under the same condi-
tions. Several mathematical studies (Qin and Kaloni [24, 25], Qin, Gao and
Kaloni [26], Guo and Kaloni [27], Franchi and Straughan [28], Payne and
Straughan [29]) have been carried out concerning the convection of flows in
porous media that couples Brinkman’s equation with the energy equation,
with the coupling between the two equations due to a term due to the ef-
fect of buoyancy due to a Oberbeck-Boussinesq approximation (see Oberbeck
[30, 31], Boussinesq [32]), but this classic approximation that is widely used
is not an approximation that retains terms of like order in a perturbation (see
the paper by Rajagopal, et al. [33] for a detailed discussion of the issues).
An up to date discussion of the literature pertinent to the stability of flows
in porous media can be found in the recent book by Straughan [34]. In the
next section we document the governing equations and in Section 3 we study
the asymptotic stability of the rest state. In the final section we carry out
the asymptotic stability analysis, and provide some corresponding numerical
results.

2 Governing equations

The equation developed by Brinkman [1, 2] is

−∇p+ µ∆v − αv + ρb = 0. (2.1)

In the above equation, µ denotes the fluid viscosity, α the drag coefficient
due to the frictional resistance offered by the pore to the flow of the fluid,
p the pressure, v the velocity and b the body force. We shall assume that
both the viscosity and drag coefficient are positive. Since it is assumed that
the fluid density ρ is constant, the fluid can only undergo isochoric motions
and thus we have

divv = 0. (2.2)

Equations (2.1) and (2.2) provide four scalar equations for the three com-
ponents of the velocity and pressure. The above model due to Brinkman as-
sumes that the flow is sufficiently slow that inertial effects in the fluid can be
ignored. We shall consider a generalization that takes into account inertial
effects due to the flow, namely

ρ

[
∂v

∂t
+ (v · ∇)v

]
= −∇p+ µ∆v − αv + ρb. (2.3)
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We shall henceforth assume that the body force field is conservative with
potential φ, i.e., b = −∇φ. Then, equation (2.3) can be rewritten as

ρ

[
∂v

∂t
+ (v · ∇)v

]
= −∇P + µ∆v − αv, (2.4)

where P = p+ ρφ.

3 Uniqueness and stability in bounded do-

mains

Let Ω be a bounded domain and let d denote its diameter. Let us non-
dimensionalize eqs. (2.4) and (2.2) according to

x∗ =
x

d
, v∗ =

v

V
, t∗ =

V

d
t, P ∗ =

P

ρV 2
, (3.1)

V being a reference velocity (here, the maximum modulus of the velocity field
will henceforth be taken as a reference value). By dropping the asterisks for
simplicity of notation, equations (2.4) and (2.2) become DaRe

[
∂v

∂t
+ (v · ∇)v

]
= −DaRe∇P + Da∆v − v,

divv = 0,

(3.2)

where Re = ρV d/µ and Da = µ/(αd2) are the Reynolds and Darcy numbers,
respectively. Letm0 = (v̄, P̄ ) be a solution to (3.2) in Ω satisfying a Dirichlet-
type boundary condition on ∂Ω and let us study its uniqueness and stability.
We first introduce the perturbations (u,Π) to the basic solution m0, i.e.,

v̄ = v + u, P = P̄ + Π, (3.3)

and then we write down the evolution equations of the perturbations

DaRe

[
∂u

∂t
+ (u · ∇)v̄ + (v̄ · ∇)u + (u · ∇)u

]
= −DaRe∇Π + Da∆u− u in Ω×]0,+∞[,

divu = 0 in Ω×]0,+∞[,

u = 0 on ∂Ω×]0,+∞[.

(3.4)
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On forming the scalar product of (3.4)1 with u, integrating over the do-
main Ω and taking into account (3.4)2, (3.4)3 and that divv̄ = 0, we obtain

DaRe
dE

dt
= −2G(v̄,u, t)E(t), (3.5)

where

E(t) = ‖u(·, t)‖2
2 =

∫
Ω

|u(x, t)|2dV (3.6)

is the kinetic energy associated with the perturbations, the functional G is
defined as

G(v̄,u, t) =

‖u‖2
2 + Da

(
‖∇u‖2

2 + Re

∫
Ω

u · D̄udV

)
‖u‖2

2

, (3.7)

and

D̄ =
1

2

[
∇v̄ + (∇v̄)T

]
. (3.8)

Let λi(x, t) (i = 1, 2, 3) be the eigenvalues of the symmetric second-order
tensor D̄(x, t) and assume that

λmin = inf
t≥0

min
x∈Ω

min {λ1(x, t), λ2(x, t), λ3(x, t)} > −∞. (3.9)

(It is worth noting that, since divv̄ = trD̄ = 0, λmin is non-positive and λmin

vanishes if and only if the velocity field v̄ is constant in Ω× [0,+∞[.) Then,
the functional G defined through (3.7) is bounded from below in I× [0,+∞[,
I being the space of the kinematically admissible perturbations, that is the
space of divergence-free vector fields defined in Ω and vanishing on ∂Ω. In
fact, assumption (3.9) and the Poincaré inequality [35, 36],

‖∇u‖2
2 ≥ C(Ω)‖u‖2

2 ∀u ∈ I, (3.10)

yield

G(v̄,u, t) ≥ ‖u‖
2
2 + Da (‖∇u‖2

2 − Re|λmin|‖u‖2
2)

‖u‖2
2

(3.11)

≥ 1 + Da [C(Ω)− Re|λmin|] ∀(u, t) ∈ I × [0,+∞[.

Moreover, by following [37] one can prove that for all t ∈ [0,+∞[ the
functional G(v̄,u, t) admits minimum in I. Then, by virtue of (3.11)

γ ≡ inf
t≥0

min
u∈I
G(v̄,u, t) ≥ 1 + Da [C(Ω)− Re|λmin|] . (3.12)

We are now in position to prove the following theorem.
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Theorem 1. Let m0 = (v̄, P ) be a solution to (3.2) satisfying Dirichlet-type
boundary conditions such that

γ = inf
t≥0

min
u∈I
G(v̄,u, t) > 0, (3.13)

with G as in (3.7). Then, m0 is globally exponentially stable.

Proof. From (3.5) and (3.13) we deduce that

dE

dt
≤ − 2γ

DaRe
E(t). (3.14)

Integrating (3.14) yields

E(t) ≤ E(0) exp

(
− 2γt

DaRe

)
, (3.15)

and hence the kinetic energy associated with the perturbations decay expo-
nentially in time.

Another sufficient condition for the stability of the basic motion m0 is
given by the following corollary.

Corollary 1. Let m0 = (v̄, P ) be a solution to (3.2) satisfying Dirichlet-type
boundary conditions on ∂Ω× [0,+∞[ such that (3.9) holds. Assume that

Re <
1 + DaC(Ω)

Da|λmin|
. (3.16)

Then, m0 is globally exponentially stable.

Proof. The proof follows immediately from Theorem 1 and (3.12).

It is worth noting that the stability condition (3.16) implies (3.13) but
the vice-versa does not hold. In addition, the stability condition (3.16) is
easier to apply as it does not require to solve any variational problem.

We conclude this Section by remarking that if a solution to (3.2) under
a prescribed initial condition on the velocity field meets the hypotheses of
Theorem 1 or Corollary 1, then it is unique.
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4 Laminar solutions

In this Section we are interested in the stability of laminar flows trough a
porous medium that is bounded in only one direction. Then, once introduced
a Cartesian frame of reference Oxyz with fundamental unit vectors i, j and
k, the porous layer may be represented by the domain Ωd = R2 × [0, d] and
the laminar flows whose stability we shall investigate are of the form

v = U(z)i. (4.1)

As done in the previous Section, we non-dimensionalize equations (2.4)
and (2.2) according to (3.1) (in which d is now the thickness of the porous
layer and V = maxz∈[0,d] |U(z)| to obtain (3.2) again. It is easy to check that
the following solutions to (3.2) represent all the possible laminar flows of the
form (4.1): 

U(z) = c1 exp(τz) + c2 exp(−τz) + A0,

P = P̄ (x) = − A0

DaRe
x+ P0,

(4.2)

where c1, c2, A0 and P0 are integration constants and τ = 1/
√

Da.
As special cases of (4.2), for

• U(0) = 0, U(1) = 1 and A0 = 0 one obtains the Couette flow U(z) =
sinh(τz)

sinh τ
,

P = P̄ (x) = P0,
(4.3)

• U(0) = U(1) = 0 and A0 6= 0 we get the Poiseuille flow
U(z) = sign(A0)

cosh
(τ

2

)
− cosh

[
τ

(
z − 1

2

)]
cosh

τ

2
− 1

,

P = P̄ (x) = − A0

DaRe
x+ P0.

(4.4)

5 Stability of laminar flows

Let u = ui+vj+wk and Π be the perturbations to the velocity and pressure
fields given by (4.2), i.e.,

v = U(z)i + u, P = P̄ (x) + Π. (5.1)
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From (3.2) we deduce that the perturbations satisfy the following equations DaRe

[
∂u

∂t
+ U

∂u

∂x
+ U ′wi + (u · ∇)u

]
= −DaRe∇Π− u + Da∆u,

divu = 0,
(5.2)

the prime denoting differentiation with respect to z, and the boundary con-
ditions

u = 0 z = 0, 1. (5.3)

From here on we shall assume that the perturbations u and Π are periodic
with periods 2π/ax and 2π/ay in the x and y directions (ax > 0, ay > 0).
Let us denote by Ωp the periodicity cell

Ωp =

[
− π

ax
,
π

ax

]
×
[
− π

ay
,
π

ay

]
× [0, 1], (5.4)

and let a =
√
a2
x + a2

y be the wave number.

5.1 Linear stability

On linearizing equations (5.2) we obtain DaRe

[
∂u

∂t
+ U

∂u

∂x
+ U ′wi

]
= −DaRe∇Π− u + Da∆u,

divu = 0.

(5.5)

By taking the third components of curl and curlcurl of (5.5)1, and taking
into account (5.5)2, we deduce that the components of the perturbation to the
velocity field may be found by solving the following boundary value problem

DaRe

(
−∂∆w

∂t
− U ∂∆w

∂x
+ U ′′

∂w

∂x

)
= ∆w −Da∆∆w,

DaRe

(
∂ζ

∂t
+ U

∂ζ

∂x
− U ′∂w

∂y

)
= −ζ + Da∆ζ,

∆∗u = − ∂2w

∂x∂z
− ∂ζ

∂y
,

∆∗v = − ∂2w

∂y∂z
+
∂ζ

∂x
,

w =
∂w

∂z
= 0 on z = 0, 1,

ζ = 0,

(5.6)
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where ζ = curlu · k and

∆∗ =
∂2

∂x2
+

∂2

∂y2
(5.7)

is the two-dimensional Laplacian. Finally, once the components of u are
determined, the perturbation to the pressure field may be found by means of
(5.5)1. From (5.6) we deduce that the unique independent component of u
is w as, once it is determined by solving equation (5.6)1 under the boundary
conditions (5.6)4, all the other unknown scalar fields may be determined from
the remaining equations. Since the coefficients in (5.6)1 depend only on z,
equation (5.6)1 admits solutions which depend on x, y and t exponentially.
We consider therefore solutions of the form

w(x, y, z, t) = W (z) exp[i(axx+ ayy − axct)], (5.8)

in which it is understood that the real parts of these expressions must be
taken into consideration to obtain physically meaningful quantities. The
wave speed c may be complex, i.e., c = cr + ici, and the expression (5.8) thus
represent waves which travel in the x and y co-ordinate directions with phase
speed axcr/a and which grow or decay in time given by exp(−axcit). Such a
wave is stable if ci > 0, unstable if ci < 0, and neutrally stable if ci = 0. If we
now let D = d/dz and R = axRe, then on substituting the expression (5.8)
into equation (5.6)1 and boundary conditions (5.6)4 we obtain the following
boundary value problem4{

[Da(D2 − a2)− 1](D2 − a2)W = iDaR[(U − c)(D2 − a2)− U ′′]W,

W = DW = 0 at z = 0, 1.
(5.9)

The fourth-order system (5.9) was solved using the Chebyshev-tau method
[38], which is a spectral technique coupled with the QZ algorithm.

4Equation (5.9)1 represents the generalization of the Orr-Sommerfeld equation to lam-
inar flows in a porous medium.
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Figure 1: Visual representation of the Poiseuille flow linear instability thresh-
olds with critical Reynolds number Re plotted against log(Da).

For Poiseuille flow, the numerical results correspond to comparable stud-
ies on Brinkman flow [39]. Couette flow does not yield instability thresholds
utilising linear theory.

5.2 Nonlinear stability

In order to study the nonlinear stability of the laminar flows (4.2) we follow
the same arguments as in Section 3 but modifying the notations slightly.
More precisely, we introduce the functional

F(U,u) ≡
‖u‖2

2 + Da

(
‖∇u‖2

2 + Re

∫
Ωp

U ′uwdV

)
‖u‖2

2

, (5.10)

and set
γ(ax, ay) ≡ min

u∈Ip
F(U,u), (5.11)
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where the space of the kinematically admissible perturbations Ip is the space
of the divergence-free vector fields u defined in Ωp such that

u

(
− π

ax
, y, z

)
= u

(
π

ax
, y, z

)
∀(y, z) ∈

[
− π

ay
,
π

ay

]
× [0, 1],

u

(
x,− π

ay
, z

)
= u

(
x,
π

ay
, z

)
∀(x, z) ∈

[
− π

ax
,
π

ax

]
× [0, 1],

u (x, y, 0) = u (x, y, 1) = 0 ∀(x, y) ∈
[
− π

ax
,
π

ax

]
×
[
− π

ay
,
π

ay

]
.

(5.12)
In this way, we may state that if γp(ax, ay) > 0 then the laminar flow (4.2)
is nonlinearly exponentially stable with respect to all perturbations periodic
along x and y direction with periods 2π/ax and 2π/ay as

‖u(·, t)‖2
2 ≤ ‖u(·, 0)‖2

2 exp

[
−2γp(ax, ay)

DaRe
t

]
∀u ∈ Ip. (5.13)

The Euler-Lagrange equations corresponding to the variational problem
(5.11) are ∇χ+ (1− σ)u−Da∆u +

1

2
DaReU ′(wi + uk) = 0,

divu = 0,
(5.14)

where χ is a Lagrange multiplier associated with the incompressibility con-
straint. Then, the number γp(ax, ay) is the least eigenvalue σ of the characteristic-
value problem (5.14)and (5.12).

Since the Euler-Lagrange equations (5.14) are linear we may follow the
same arguments as those employed for the linear stability analysis. More
specifically, we take the third components of curl and curlcurl of (5.14)1, use
(5.6)3 and (5.14)2 and look for solutions of the form{

w(x, y, z) = W (z) exp[i(axx+ ayy)],

ζ(x, y, z) = curlu · k = Ψ(z) exp[i(axx+ ayy)]
(5.15)

to reduce the eigenvalue problem (5.14) and (5.12) to

Da(D2 − a2)2W + (σ − 1)(D2 − a2)W

+
DaRe

2
(2iaxU

′DW + iayU
′Ψ + iaxU

′′W ) = 0,

Da(D2 − a2)Ψ + (σ − 1)Ψ +
DaRe

2
iayU

′W = 0,

W = DW = Ψ = 0 at z = 0, 1.

(5.16)
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Finally, from (28) we may state the following theorem.

Theorem 2. Assume that

γcr ≡ min
ax,a,y>0

γp(ax, ay) > 0. (5.17)

Then the laminar flow (4.2) is globally exponentially stable.

The sixth-order system (5.16) was solved using the Chebyshev-tau method
[38]. We let ax = a

√
γ and ay = a

√
1− γ, such that γ ∈ [0, 1] for the range

of ax and ay values which comprise wavenumber a.
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Figure 2: Visual representation of the Poiseuille flow nonlinear stability
thresholds with critical Reynolds number Re plotted against log(Da.) The
thresholds for γ values between 0 and 1 are contained between the γ = 0 and
γ = 1 lines.

The numerical results for Poiseuille flow in Figure 2 correspond to com-
parable studies on Brinkman flow [39].
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Figure 3: Visual representation of the couette flow nonlinear stability thresh-
olds with critical Reynolds number Re plotted against log(Da.) The thresh-
olds for γ values between 0 and 1 are contained between the γ = 0 and γ = 1
lines.

Although there is some quantitative differences with Poiseuille flow, the
couette flow nonlinear stability thresholds follow a similar formation.
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des parois solides fixes, Ann. Soc. Sci. Bruxelles 63 (1949), 35–46.
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