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Co-verbal gestures are an important part of human communication, improving its

efficiency and efficacy for information conveyance. One possible means by which

such multi-modal communication might be realized remotely is through the use of a

tele-operated humanoid robot avatar. Such avatars have been previously shown to

enhance social presence and operator salience. We present a motion tracking based

tele-operation system for the NAO robot platform that allows direct transmission of

speech and gestures produced by the operator. To assess the capabilities of this system

for transmitting multi-modal communication, we have conducted a user study that

investigated if robot-produced iconic gestures are comprehensible, and are integrated

with speech. Robot performed gesture outcomes were compared directly to those for

gestures produced by a human actor, using a within participant experimental design.

We show that iconic gestures produced by a tele-operated robot are understood by

participants when presented alone, almost as well as when produced by a human. More

importantly, we show that gestures are integrated with speech when presented as part

of a multi-modal communication equally well for human and robot performances.

Keywords: human-robot interaction, gestures, humanoid robotics, tele-operated robot, multi-modal

communication

1. INTRODUCTION

Based on the idea that embodiment leads to stronger social engagement than a screen (Adalgeirsson
and Breazeal, 2010; Hossen Mamode et al., 2013), we wondered whether a viable alternative for
telecommunication is to use a tele-operated humanoid robot as an embodied avatar in a remote
location. In previous work with robot avatars they have been shown to improve social presence of
a remote operator (Tanaka et al., 2015), and their salience to people in the robot’s presence (Hossen
Mamode et al., 2013), relative to more traditional telecommunication media (audio and video).

In order for a robot avatar to be a viable communication method it must be capable of
transmitting human interactive behavior. In everyday communication people can be observed
performing arm gestures alongside their verbal communications (McNeill, 1992; Kendon, 2004).
Though there is much debate on whether such gestures have a communicative value for observers,
a recent meta-analysis of the literature concluded that they are of communicative value (Hostetter,
2011). Indeed, a number of studies in the human communication literature demonstrate observers
of co-verbal gestures comprehend information from them (Cassell et al., 1999; Kelly et al.,
1999; Beattie and Shovelton, 2005, 2011; Cocks et al., 2011; Wang and Chu, 2013). Hence,
we are motivated to investigate the use of gesturing on a humanoid robot avatar to capitalize
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on the reported benefits (salience and social presence), while still
maintaining multi-modal communication efficacy.

To transmit the multi-modal communications of a human
operator, we have developed a tele-operation interface that uses
motion tracking of the operators arms, and audio streaming,
to replicate their communication on a NAO robot (Aldebaran
Robotics, Gouaillier et al., 2009). By using this implicit control
method we aim to allow an operator to communicate as they
would face-to-face. Before being able to investigate the benefits of
embodiment over video in telecommunication, and interaction
benefits of gestures, we first need to demonstrate the capability of
the system to reproduce comprehensible gestures on the robot;
thus, this is the first aim of the work presented here.

Which kind of gestures are particularly important in human–
human communication, and how they can be shown to add
communicative value, underpins our approach to evaluating
multi-modal communication on a robot avatar. Within the
literature on gestures in human interaction a number of schemes
have been proposed to classify them according to their form and
function (Ekman, 1976; McNeill, 1992; Kendon, 2004).

Iconic gestures are a key class of gestures from the
classification scheme proposed byMcNeill (1992). Iconic gestures
are those that have a distinct meaning, they are of a form
that either reiterates or supplements information in the speech
they accompany. They typically convey information that is more
efficiently and effectively conveyed in gesture than in speech,
such as spatial relationships and motion of referents (Beattie and
Shovelton, 2005), or the way in which an action is performed
(termed manner gestures) (Kelly et al., 1999). Hence, multi-
modal communication can be said to be more effective and
efficient at conveying information between speaker and listener
than uni-modal communication, i.e., taking less time to convey
the desired message, and in a clearer way (Beattie and Shovelton,
2005). Given the high communicative value of iconic gestures,
here we investigate their use in robot avatar communication.

For human-human communication, a number of approaches
have been taken to establish the communicative value of iconic
gestures, by examining whether the information understood
by observers of multi-modal communication differs from uni-
modal communication. One suggested value of gestures is that
they improve how memorable the speech they accompany is.
Hence, participants’ ability to recall details of speech delivered
with and without different gestures has been tested (e.g., Cassell
et al., 1999; Kelly et al., 1999). Analysis of results for such
experiments is non-trivial, and depends strongly on how easy the
stimulus material content is to remember.

An alternative approach was suggested by Beattie and
Shovelton (2005), whereby participants were asked questions
about short multi-modal vignettes, the answers to some of which
were only contained in the gestural channel. However, in such
an approach it might be difficult to distinguish between speech
and gesture integration, and contextual inferences (Beattie and
Shovelton, 2011).

To avoid confounds such as the ones potentially inherent
in the approaches described above, we decided to base our
experiments on a seminal study presented by Cocks et al.
(2011). We adapted their design for use with the NAO robot

and our tele-presence control scheme (see Section 2). In their
study, participants were presented with a series of actions
conveyed either through speech alone, gesture alone, or an iconic
(manner) gesture accompanying speech, and asked to select,
from a set of images of actions one that best matches what
was communicated. The authors were able to clearly distinguish
and compare understanding of actions both in uni-modal and
multi-modal communication. Hence, their method was able to
evaluate integration of information from the two communication
channels, a process vital for the utility of co-speech iconic
gestures (Cocks et al., 2011).

One of the aims of the work presented here is to investigate
whether the integration of speech and gesture occurs for a
non-human agent, such as a robot, in the same way that it
does for a human. Knowledge in this regard is as yet very
limited. Speech and gesture integration for robot-performed
pointing (deictic) gestures has been investigated (Ono et al., 2003;
Cabibihan et al., 2012b; Sauppé and Mutlu, 2014), this showed
that relative locations of referents could be better understood by
using gestures to supplement speech information. While these
studies provide some evidence for speech and deictic gesture
integration, iconic gestures have yet to be examined.Moreover, to
the best of our knowledge, it has never been investigated whether
this integration process is as reliable in robots as it is in people.

A key issue in robot gesturing, is joint coordination and
motion timing.Work on how the human brain processes gestures
suggests this may be of importance to gesture recognition, and
hence in studying speech and gesture integration. In their recent
meta-analysis of studies concerning the neural processing of
observed arm gestures Yang et al. identified three brain functions
associated with gesture processing: mirror neurons, biological
motion recognition, and response planning (Yang et al., 2015).
Of particular relevance here are mirror neurons, part of the brain
associated with performing actions that fire when those actions
are recognized. Gazzola et al. showed that mirror neurons still
fire when observing some robot motion (Gazzola et al., 2007).
However, they suggested that this depends on identification of
the goal of the motion. With gesture, the motion goal is often
not clear, and so mirror neuron based gesture recognition may
instead rely upon identification of motion primitives, component
parts of gestural motion based upon muscle synergies in the arm
(Bengoetxea et al., 2014).

A potential advantage in our study is we might overcome
any scripting-related issues by using our tele-operation control
scheme to copy both the shape, timing and joint coordination
of human movement. Note, however, that even a tele-operation
control system is limited by the design and the degrees of freedom
of the robotics system used. Moreover, the non-biological
appearance of the robot may interfere with identification of the
gestures. Hence, we included testing conditions that allowed us
to evaluate the comprehensibility of the gestures produced with
our system when presented on their own.

In this paper we aim to address the following research
questions: (1) can iconic gestures performed with our tele-
operation system be identified?; (2) is performance comparable to
when the same gestures are performed by a person?; (3) are iconic
gestures performed using our tele-operation system integrated
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with speech?; and (4) is integration as efficient for robot
performed multi-modal communication as human performed
multi-modal communication?

In detail, we pre-recorded a set of communications consisting
of verb phrases and appropriate iconic gestures produced by
the robot using our tele-operation system, and a matching set
by a human actor. The same actor was used for producing the
robot stimuli and the human stimuli (recorded on video) to
make the conditions as closely matched as possible. The recorded
stimuli were then used in an experimental study adapted from
the human–human communication literature (Cocks et al.,
2011) to investigate whether hand gestures on their own were
comprehensible for both robot and human, and whether they
could be integrated with speech.

To evaluate integration, we established whether the
understanding of the observers’ was changed as compared
to speech or gesture alone. Understanding was also directly
compared for the human (on video) and the robot (embodied
replay of recorded communications) within the same observers.
We sought to establish the extent of integration benefit achievable
with robotic communication, relative to the one observed for
a human communicator. We used videos of human gestures
in our study to ensure identical stimuli for all participants. We
reasoned they would be as efficient as live performances, given
high recognition and integration rates (close to ceiling) were
observed using video stimuli, in the study on which our work is
based (Cocks et al., 2011).

An additional motivation for our comparison of human
video communication with a physically present robot is that it
allows us to evaluate the differences between these two modes
of telecommunication for multi-modal communication. If the
performance of gesture understanding and integration for the
robot avatar is comparable to video communication, it will enable
further work on the salience and utility of these gestures in an
interactive context. Beyond the application of the results to the
utility of the NAO robot as an avatar, the tele-operated approach
allows us to make more general inferences for the design of
autonomous communicative robots.

Directly comparing participants’ comprehension of iconic
gestures and their integration with speech for human and robot
performers (in a single experiment) allows us to eliminate a range
of confounds that make it difficult to compare findings within the
literature. To the best of our knowledge we are the first to make
this direct comparison.

This paper is an extended version of our work published
in Bremner and Leonards (2015a). We extended our previous
work by adding in depth analysis of the gestures used, and the
performance of the tele-operation system in reproducing these
gestures. Additionally there is far more detailed discussion of our
results, including implications of related work in neuroscience on
human gesture processing.

2. MATERIALS AND METHODS

We conducted an experimental study with 22 participants (10
female, 12 male), aged 18–55 (M = 34.80 ± 10.88SD), all of

whom were Native English speakers. Participants gave written
informed consent to participate in the study, in line with the
revised Declarations of Helsinki (2013), and approved by the
Ethics Committee of the Faculty of Science, University of Bristol.

Stimuli consisted of a series of pre-recorded communications,
these were either speech alone, gesture alone, or speech and
gesture. Each communication was performed by either the
human actor (on video) or the NAO robot (physically present).
Video was used for the human stimuli to ensure repeatability,
and to allow direct comparison of data obtained for speech and
gesture integration in dependence of the type of communicator:
human or tele-operated robot. Hence, the experiment used a 2
(performer)× 3 (communication mode) within-subjects design.

2.1. Tele-Operation System
To reproduce gestures performed by a human actor on the
NAO humanoid robot platform from Aldebaran Robotics (see
Figure 1, for specifications see Gouaillier et al., 2009), we
designed a motion capture based tele-operation system. The
system was built using the ROS framework. Architecturally, ROS
can be described as a computation graph made up of software
modules (termed nodes), communicating with one another over
edges (Quigley et al., 2009). Communication is built on a
publisher/subscriber model where a node sends a message by
publishing it, and nodes using that message subscribe to it.

ROS offers a number of advantages that make it well suited
to our system. Firstly, its communication architecture means that
the system is inherently modular, so if one node fails the others
can keep running while the failed node is restarted. Secondly, this
modularity means nodes can be easily modified independently,
only needing to adhere to correct message structure, making the
system easily extensible. Thirdly, nodes can be written in different
programming languages, here some nodes use C++ and some
Python. Finally, ROS is well documented with a large library of
existing nodes on which to base our work, speeding development
time. Hence its use over viable alternatives such as YARP (Metta
et al., 2006) or URBI (Baillie et al., 2008).

In our tele-operation system we have developed separate
nodes to gather kinematic information of the human
tele-operator from several sensor systems. Each sensor node

FIGURE 1 | Control architecture of the tele-operation system. Circles

represent ROS nodes. © 2015 IEEE. Reprinted, with permission, from

Bremner and Leonards (2015a).
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then publishes its data as ROS messages, a NAO control node
subscribes to these message streams and then calculates the
required commands that are then sent to the robot. Figure 1
shows the system architecture schematic. Audio streaming
was handled separately from ROS using the GStreamer media
framework to develop a NAO module and corresponding PC
application to allow streaming of audio to the robot.

In order to ensure that gestures are reproduced on the robot
as closely as possible to the original human motion, hand
trajectories, joint coordination and arm link orientations must
be maintained. To this end arm link end points (i.e., shoulder,
elbow and wrist) are tracked using a Microsoft Kinect sensor; the
Nite skeleton tracker API from OpenNI is used to process the
Kinect data and produce the needed body points. A Kinect node
was written with the Nite API that uses the arm link end points
provided by the skeleton tracker to calculate unit vectors for the
upper and lower arm in the operator’s torso coordinate frame1,
these were then published as ROS messages. Sensor update rate
was 30 Hz.

The arm unit vectors are then used by the NAO control node
to calculate robot arm joint values that align the arm links of
the robot with those same unit vectors in the torso coordinate
frame of the robot1. An example mapping between human and
robot arm positions is shown in Figure 2. Data from the Kinect
were subject to high levels of noise, consequently the joint angles
were smoothed using a moving average filter with a 10 frame
window.

The filtering process added undesirable delay to the robot
commands. Consequently, each filtered value is then modified
by adding a trend term, calculated for each joint as a 10 frame
moving average of the change in position each frame, then
scaled by a factor of 4 (empirically determined) to produce a
command similar to, but slightly ahead of, the raw value. To
prevent overshoot due to sudden changes in velocity the filtered
output was limited to deviate from the un-filtered value by an
empirically determined maximum threshold value (0.04 rad).
The NAO control module executed these commands to ensure
the joints are still in motion when new commands are received, to
do this it sent motor demands to execute themotion over a longer
period than the update rate would require, so the controller
doesn’t decelerate more than demanded by the control node.
This process utilized the inbuilt NAO position controllers to
counteract commands being ahead of the raw value (resulting
from the trend term in the filter), and thus allowed smooth
handling of the stream of position demands.

Due to limitations of the resolution of the Kinect when
viewing the full body, it is not able to provide all degrees
of freedom (DoF) required. Specifically, finger flexion
and extension, and hand rotation relative to the forearm
(pronation/supination). To overcome these limitations
additional sensors were used: a Polhemus Patriot provides
pronation/supination, and 5DT data gloves provide finger
bend information. ROS nodes were developed for each of the
additional sensors, which publish that data as ROS messages at
30 Hz. The NAO node processes this additional data to calculate

1calculations are omitted here for brevity as they are relatively trivial.

FIGURE 2 | A tele-operator pose reproduced on the NAO robot. Black

arrows indicate the directions of the unit vectors along the arm links, the

coordinate frame of the torso is shown in RGB (XYZ). © 2015 IEEE. Reprinted,

with permission, from Bremner and Leonards (2015a).

the needed joint angles for the robot. It then combines the
calculated angles for all arm joints into a single message to send
to the robot each command cycle.

2.2. Phrase and Gesture Selection
In order to evaluate whether the tele-operation system could
produce comprehensible gestures, and whether the produced
gestures were integrated with speech they accompany, we first
had to determine a suitable set of phrases and accompanying
gestures. We selected 10 verb phrases, depicting common actions
(e.g., I played, I opened), chosen from those used by Cocks et al.
(2011), see Table 1 for the full list. An important feature of the
phrases selected is that they have more than onemanner in which
they can be conducted, and these manners can be conveyed with
manual gestures.

For each phrase two different iconic (manner) gestures
were determined that conveyed manner in which the action
was performed. This is an extension of the original design
as presented by Cocks et al. (2011), who used only a single
gesture for each phrase. We made this modification for two main
reasons, firstly to give us a larger range of gestures to evaluate
for comprehensibility on the NAO robot; secondly, and more
importantly, to better evaluate speech and gesture integration.
Indeed, we would argue that showing two different shifts in
meaning from a speech only interpretation provides stronger
evidence for integration.

To select appropriate gestures there are a number of factors
that must be considered. The primary aim for the gestures is
that they are sufficiently vague that they might convey multiple
possible meanings when viewed without words; at the same time,
they must still be interpretable without the need for speech. This
requirement also served to increase the ecological validity of the
gestures being used, as they were close to those that might be
performed in everyday speech. Note that this clearly contrasts
with a precise pantomime gesture of a particular action, which
is likely to have only one interpretation, and which is rarely used
in normal conversation (Cocks et al., 2011).

Another important requirement was that the gestures had to
be performable by the NAO robot, such that a fair comparison
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TABLE 1 | The 10 verb phrases, their preconceived meanings when accompanied with each of the two manner gestures (integration target), description

of the manner gestures.

Phrase Integration target Gesture description

I Cleaned 1. Dusting a lamp One hand open flat, palm down, moves diagonally from center line, at shoulder height, down and

outwards toward periphery and then back again twice

2. Scrubbing a pan One hand moves in a horizontal circle in center, hand is in a power grip, palm down

I Cut 1. Cutting with a craft knife One hand moves from center line, horizontally outwards toward periphery, hand in a precision grip

2. Chopping into a melon flat vertical palm moves in a downward chopping motion, in periphery

I Fixed 1. Hammering a nail One hand in a vertical closed power grip moves up and down twice in a curved path, in periphery

2. Sticking paper with tape Both hands in precision grip, palm down, hand length apart, move downwards as if pressing something

down, in center center

I Lit 1. Pulling a light pull One hand in a vertical closed power grip moves to shoulder height arm partially extended, then moves

vertically downwards, in periphery

2. Pressing a light switch One hand, with index finger extended, moves diagonally up and out away from the torso to finish just

below shoulder height, in periphery

I Measured 1. Pouring liquid into a measuring jug One hand adopts an vertical open power grip, the other a vertical precision grip above and to the side of

the other hand, the wrist is rotated in a pouring motion, both hands in center center

2. Using a tape measure Both hands adopt a precision grip, palm down, and move close together in center center, right hand

then moves horizontally away from the stationary left hand, toward periphery

I Opened 1. Pulling open a door One hand reaches out away from the body, adopts a vertical precision grip then retracts straight

backwards, in periphery

2. Opening a book one flat hand, horizontal, palm down in center center, hand moves up and out toward periphery with

wrist rotation to flip hand over

I Paid 1. Signing a check one hand in a precision grip tracing a curling path from the center out to the periphery

2. Handing over cash One hand open, palm horizontal and face up, hand moves out and up as if presenting an object on the

hand, in periphery

I Played 1.Playing chess One hand adopts a horizontal grip, palm down, in center, near the body then follows an arcing trajectory

forwards and releases the grip

2. Playing a cello One hand, in a horizontal fist, palm down, moves back and forth across the center-line of the body

I Read 1. Reading a newspaper Both hands in vertical closed power grip shoulder width apart

2. Reading a book Both hands in vertical closed power grip a hand length apart, in centre

I Rubbed 1. Using a pencil eraser One hand, horizontal closed power grip, palm down, moves left to right rapidly near centreline of body

2. Rubbing a balloon One hand partially open power grip moves vertically up and down twice, in periphery

could be made between gestures performed by a person and
the robot. While the NAO robot does have degrees of freedom
in its arm such that it can cover a wide range of human-like
movements (Gouaillier et al., 2009), it does have a number of
limitations relevant to the performance of gestures. The most
important of these is that the NAO only has three fingered,
one degree of freedom hands, where all fingers open and close
simultaneously. Hence, NAO is not capable of much in the
way of hand-shapes, a key component in many human upper
limb gestures. To accommodate for this restriction we selected
gestures which mainly comprised arm movements, for which
precise hand shape and finger movements were deemed less
critical. Note further, the NAO robot also has only one degree
of freedom in the wrist (pronation/supination), compared to the
3 degrees of freedom in the wrist of humans, a reduced range of
flexion in the elbow, and a safety algorithm to prevent the two

hands from colliding. While we have tried to select gestures that
are relatively unaffected by these restrictions, in order tomaintain
ecological validity, the human performer/tele-operator was not
instructed to accommodate any of these factors.

The final selection of gestures are described in Table 1. To
simplify descriptions, and aid analysis of gesture features, the
description of gesture space proposed by McNeil was used
(McNeill, 1992). To further aid description we use the terms
power grip: gripping with the whole hand, and precision grip:
gripping with the finger tips.

2.3. Materials and Procedure
The experiment stimuli consisted of recordings of the 10 verb
phrases detailed in Table 1. Each verb phrase was performed
twice, once for each of the iconic (manner) gestures that
portrayed how the action was performed. Two stimulus sets
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were recorded, the human performer stimuli was recorded
using a digital video camera, the robot stimuli was recorded
using the tele-operation system. In order to avoid inter-
individual variability in action performance, the same human
actor performed both human and robot stimuli.

To avoid possibly distorting participant perceptions due to the
presence of the data-gloves necessary for tele-operation, the two
stimulus sets were recorded separately. In order to ensure that
the stimulus sets were as similar as possible, prior to performing
without the data-gloves the actor reviewed the video of each tele-
operation performance. The two recordings of each stimulus item
were compared, and, where necessary, repeat performances were
recorded.

The robot communication stimuli were created by recording
the messages transmitted by the sensor nodes using the built
in recording capabilities of ROS. Audio was captured using
the GStreamer based software module. To allow immediate
verification, the robot was controlled and streamed to during
recording.

The human video stimuli and the recorded tele-operation
stimuli were then edited to produce a set of presentations lasting
approximately 5 s each, in three conditions: verbal only condition
(V; audio only no performer movement); gesture only condition
(G; gesture visible but audio not played); verbal-gesture condition
(VG; gesture seen and verbal phrase heard). In both G and VG
conditions, there were two different manner gestures so two
presentations were created for each verb phrase. Hence, each
action phrase came in five different versions per performer (V,
G1, G2, VG1, VG2).

To create the human stimuli the audio recorded during the
robot performances was added to the videos of the human
performance (i.e., replacing the original audio). Hence, identical
audio was used for both robot and human performances in the
3 condition with a verbal component. Audio-information was
overridden for the human stimuli to make sure that the audio
information provided was identical between both human and
robot stimuli. To prevent any lip-syncing issues, and eliminate
the possibility of facial gesture effects, the human performer’s
face was obscured in the video. The relative timing of speech
and gesture for the robot performances was based on video
recorded of the robot captured during stimulus recording with
the tele-operation system.

There were 10 experimental conditions in total: five
communicationmodes (V, G1, G2, VG1, VG2) for each of the two
performers. Ten action phrases were used in each experimental
condition; hence, each participant responded to 100 different
trials. The trials were split into 10 blocks, each containing all 10
phrases, and all 10 experimental conditions. To prevent ordering
effects, trial presentation order was counterbalanced across and
within blocks by means of pseudo-randomization using partial
Latin squares.

Following each stimulus presentation, participants were
presented with a set of six color photos of people performing
actions on the (12.1 inch) screen of a response laptop, and were
asked to select one. To do so they clicked with the laptop’s
mouse cursor on the photo they thought most closely matched
what had been communicated; doing so moves on to the next

stimulus presentation. The layout of the images, and hence the
location of the target(s) on the response screen, were randomized
between conditions and between phrases. Presentation of the
response images, and recording of responses was done using the
PsychoPy software (Peirce, 2007). Average experiment time was
20 min.

The response image set for each phrase consisted of: a gesture
only target for each gesture, that matched the corresponding
gesture but not the speech; an integration target for each of the
two manner gestures, which matched the corresponding speech
and gesture combination; a pair of unrelated foils, not matching
either the gesture or the speech, each one linked semantically to
one of the gesture-only images (Figure 3 shows an example set,
for “I paid”). For a particular gesture, one gesture only image
and one integration target were both semantically congruent with
it, so should have been selected with equal likelihood in the
G condition. Both of the integration targets were semantically
congruent with the speech, so in the V condition each should
have been selected with equal likelihood. In each of the VG
conditions only a single integration target was congruent for that
particular speech and gesture combination, hence it should be the
most probable image selection.

Figure 4 shows the experimental set-up. The video screen
and the NAO robot were both positioned 57 cm from the
participant. A 32 inch wide-screen TV was used to display the
video stimuli, thus, the human performer and robot appeared
to be of a similar size. The start of each trial was signaled to
the participant by playing a tone and displaying either human
or robot on the response laptop for 1 s to indicate which
presenter was next. This allowed the participant to concentrate
on the correct presenter from the outset of each trial. Each
trial consisted of playback of the performance of the phrase,
followed by automatic display of the response image set. Each
trial was initiated by the experimenter after the participant had
completed the previous trial; the experimenter was sat out of view
of the participant. Prior to the experimental trials, participants

FIGURE 3 | The response images for “I paid”: (A,B) match only the

gestures; (C,E) are the integration targets, both of which match the

speech only condition; (D,F) are the unrelated foils. © 2015 IEEE.

Reprinted, with permission, from Bremner and Leonards (2015a).
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FIGURE 4 | Set-up for the experiment. © 2015 IEEE. Reprinted, with

permission, from Bremner and Leonards (2015a).

performed two practice trials to ensure they understood the
experimental procedure.

3. RESULTS

3.1. Gesture Comprehension
Gesture comprehension was tested by calculating the proportion
of correct responses in the conditions with only gestures. To
evaluate each gesture, in both performance conditions, a chi-
squared test was used to compare the proportion of correct
responses for that gesture with chance (of the six images in the
response set two were the correct answer, so chance was at 0.33).
These results are shown in Figure 5. Almost every gesture (with
the exception of both the “I lit”gestures in the robot condition)
was identified significantly better than chance in both human
and robot conditions, with high average proportions of correct
responses (Mhuman = 0.943 ± 0.065SD;Mrobot = 0.802 ±

0.17SD). A Wilcoxon signed rank test (used as the data did
not meet assumptions needed for a parametric test) revealed a
significant difference between performers (p < 0.001) for the
same gestures even excluding the “I lit”gestures.

It is apparent from Figure 5 that sizeable differences in gesture
comprehension between performers existed only for some of the
gestures examined. Hence, the data were further analyzed, on a
per gesture basis, to find for which individual gestures there were
significant differences in recognition rate between performers.
As the data is binomial and paired (each participant viewed
human and robot performances of each gesture), we used an
exact McNemar test to evaluate differences. An exact McNemar
test for each gesture revealed gestures were identified correctly
significantly more frequently in the human performances than in
the robot performances for lit1 (p = 0.00098), lit2 (p = 0.00049),
and fixed1 (p = 0.00781). Cut2 approached being significantly
more frequently correctly identified in human performances than
in in robot performances (p = 0.0625). There were no other
significant differences in gesture identification between human
and robot performance conditions. Note, however, that these
results2 need to be treated with caution as performance was
almost at ceiling, resulting in small values for the dichotomous
variables used in the test calculations.

2For access to results data pertaining to this work please contact the lead author.

In order to investigate possible sources for the difference in
gesture comprehension found between human performer and
robot, controller performance was further analyzed for two of
the gestures; namely those for which significant differences had
been reported—lit1 and fixed1. First we compared the physical
movement profiles: for this, the recorded robot joint values
over the duration of each gesture were plotted along with the
joint values for the human performer as recorded by the Kinect
(Figure 6, Lit1, Figure 7, Fixed1). It is clear from the graphs
that joint co-ordination and velocity profiles, and hence hand
trajectories, are very comparable between human and robot for
the two gestures analyzed. However, two common differences can
be observed in both plots, firstly the elbow flexion has a limited
range of motion on the robot relative to the human, decreasing
the amplitude of the peak of the gesture (approximately 15%
reduction in vertical travel); further, they have a very brief pause
at the top of the stroke.

Secondly, the predictive filter caused the robot joints to
accelerate at a slightly different rate to the human joints when
the human joint velocity was at certain values; this resulted in
those joints finishing their motion approximately 0.1s early. It is
hard to quantify the significance of these differences. Although
they appear relatively small, critical visual examination of the
robot motion on these two gestures may provide further insight.
In both cases the hand trajectory is largely as expected and joint
coordination appears on visual inspection human-like. However,
the slightly shorter vertical travel is noticeably different from
what is expected for these two actions, but vertical travel is
still clearly perceptible. Further, in the human version of these
gestures ulnar/radial deviation in the wrist is used, a degree of
freedom lacking in the NAO robot. A pause in the gesture is
barely perceptible, and only in the oscillatory motion in fixed1,
appearing less smooth than expected.

To provide further insight into differences in gesture
performances, the gestures lit2, cut2, played1, and cleaned1 were
also analyzed by visual inspection. Though not significantly
different in identification between performers, cut2, played1
and cleaned1 all led to differences in identification performance
between human and robot performer (5). Similarly to lit1 and
fixed1, cut2 and played1 showed reduced vertical travel for the
robot performance due to a reliance on elbow flexion. It is also
apparent from lit1, lit2, cut2, and cleaned1 that the wrist rotation
sensor did not always give accurate readings. As a result, wrist
orientation differed visibly from the human version of these
gestures. Although we would have thought that hand-shape itself
should play only a minor role in these gestures, in lit2, and cut2,
a fairly particular hand-shape was adopted by the human which
the NAO was unable to approximate well enough.

3.2. Speech and Gesture Integration
To test for speech and gesture integration all stimulus item
scores were summed for every participant (the scores for a
particular phrase were the combined results for the two gestures
that accompanied each), hence we determined the proportion of
integration target choices (ITC). Figure 8 shows the proportion
of participant responses where the integration target was selected,
in dependence of the presented stimulus mode.
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FIGURE 5 | Proportion of correct identifications of each gesture for the two performance conditions, when gestures are presented alone. Correct

gesture identifications significantly greater than chance indicated with *p < 0.05. © 2015 IEEE. Reprinted, with permission, from Bremner and Leonards

(2015a).

FIGURE 6 | Joint values during the Lit1 gesture for human and robot performers.

Uni-modal presentations had a uni-modal image as a correct
answer as well as the integration image. In line with expectations
that each was equally likely to be chosen, ITC for the verbal
condition were made close to 50% of the time; the gesture
conditions favored the non-integration target image, with ITC
close to 40%. In the multi-modal presentation condition we
observed a distinct increase in the frequency with which the
integrated image was selected. Underlying the averaged values for
uni-modal image selection, a number of individual stimuli had a
particular image of the two viable image choices that was chosen
significantly more often than the other. In some cases this was
the integration target and in some cases it was not; integration
target choice in the multi-modal version of those stimuli did not
vary significantly from the value found in less extreme uni-modal
cases. Hence, this provides stronger evidence for multi-modal
integration in cases where a large change occurred.Moreover, this

shows the robustness of our approach to these variations as the
averaged values are close to those expected.

Accordingly, a 2 (presenter) × 3 (communication modus)
repeated measures ANOVA revealed a significant main effect of
communication mode [F(2,42) = 282.57, p < 0.0001]. Post-hoc
analysis (Tukey) confirmed that participants chose the integrated
images far less often in the gesture only condition (M =

0.39 ± 0.11SD) than in the verbal only condition (M = 0.49 ±

0.02SD, p < 0.0005). More importantly, participants selected
the image constituting the integrated information from speech
and gesture in the VG condition (M = 0.82 ± 0.08SD; p <

0.0005). Hence, there there is clear indication that ambiguity is
decreased by means of correct integration of speech and gesture
information.

We found no significant main effect for presenter [F(1,21) =

2.61, p = 0.12], nor a significant interaction between
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FIGURE 7 | Joint values during the Fixed1 gesture for human and robot performers.

FIGURE 8 | Proportion of integration target image selection for each

communication modality, in dependence of the communication

performance medium. Shaded symbols: robot communication, empty

symbols: human communication. Error bars represent ±1 SEM. *p < 0.0005;

**p < 0.0001. © 2015 IEEE. Reprinted, with permission, from Bremner and

Leonards (2015a).

communication mode and presenter [F(2,42) = 1.23, p =

0.30]. This first analysis seems to indicate that integration
of information conveyed in speech and gesture is of similar
efficiency for a human communication mediated by video or
mediated by a robot avatar.

So that we can gain a clearer picture of the pairwise
comparisons of integration target image choices, we propose
calculation of an estimate of the effect size of changes in ITC

proportions in dependence of condition. The method we have
utilized to do so is based on the method proposed by Cocks et al.
(2011) termed multi-modal gain (MMG). MMG is a means by
which we can estimate the change in probability of ITC between
uni-modal (speech or gesture alone) and multi-modal conditions
(speech and gesture together). To estimate the value of MMG,
the proportion of ITC in uni-modal communication (P(Uni)) is
estimated, and then subtracted from the proportion of ITC in the
VG conditions (P(Multi)), see Equation (1).

MMG = P(Multi)− P(Uni) (1)

To estimate the proportion of ITC in the uni-modal conditions
(P(Uni)) the weighted mean of ITC in the verbal (ITCV ) and
gesture (ITCG) conditions are summed, see Equation (2). The
basis for this calculation is that the different modalities vary in
how likely they are to be utilized by observers, i.e., it is assumed
that participants are more likely to be influenced by the modality
that they perceive as providing the most useful information.
Thus, the two weights, WV and WG, for the verbal and gesture
conditions respectively, are calculated as normalized proportions
of trials in which integration targets were selected (PCV for V
trials and PCG for G trials), see Equations (3) and (4).

P(Uni) = WV ∗ ITCV +WG ∗ ITCG (2)

WV = PCV/(PCV + PCG) (3)

WG = PCG/(PCV + PCG) (4)

Hence,MMG calculates a single figure for percentage gain, taking
into account how often the integration targets were chosen in
both uni-modal conditions (the results for both gestures for each
phrase were included together). The values for each performer
were calculated separately and are shown in Figure 9. By using
two gestures per phrase we found that for some phrases in the
verbal condition one of the two matching images was selected far
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FIGURE 9 | Group mean multi-modal gain for each performance mode.

Error bars show ±1 SD. © 2015 IEEE. Reprinted, with permission, from

Bremner and Leonards (2015a).

more frequently than the other. Hence, MMG for the preferred
integration target image was close to zero, i.e., gesture had no
effect; conversely, for the other integration target image MMG
was very high, i.e., gestures had a large effect. This gives us a
clear advantage over the original study of Cocks et al. (2011) as
we were less vulnerable to the variability of individual meaning
preferences, and hence could gain a clearer picture of whether
integration effected understanding by incorporating the scores in
a single calculation.

We conducted a two tailed t-test for each performer against
the null hypothesis of MMG = 0, the means of both samples
(MH = 0.393 ± 0.079SD;MR = 0.355 ± 0.095SD) differed
significantly from 0 [tH(21) = 23.12, p < 0.001, r =

0.98; tR(21) = 17.405, p < 0.001, r = 0.97]. It is important to be
aware that a maximum estimate forMMG is given by 1−P(Uni),
hence, MMGRmax = 0.56 and MMGHmax = 0.56 (i.e., 56 and
55% for the robot and human respectively). TheMMG values for
both performance modes are approaching ceiling.

The means of the two performers were compared using a
paired two tailed t-test, and this showed no significant differences
[t(21) = −2.005,Dif = 0.019, p > 0.05, r = 0.21]. However,
for testing the hypothesis that there is no difference between
performance modes this analysis was underpowered. In order
to allow us to more reliably test this hypothesis, i.e., that the
performance mode results are interchangeable, a repeatability
measure was used, intraclass correlation coefficient (ICC). The
MMG scores for each participant were calculated from responses
in multiple trials (so can be considered akin to a mean score),
hence we used ICC(2, k), as suggested in Shrout and Fleiss (1979).
We found significant correlation between the results, indicating
fair to substantial reliability [ICC(2, k) = 0.61, F(21,21) =

2.8, p = 0.011]. Taking these two analyses together, we thus
feel confident that participants’ ability to integrate gestures and
speech was independent of the performers.

4. DISCUSSION

The findings in this paper address the four research questions
proposed in Section 1. We found that (1) human observers

were able to identify upper limb manner gestures the majority
of the time when produced by a tele-operated NAO robot. (2)
Although identification of robot-performed gestures was worse
than that for human-performed gestures, it was still good enough
for them to be useful. More importantly, as gesture in human
communication is most commonly employed along with speech,
we found that (3) when such gestures were performed with
speech they were integrated with it; (4) this process was as
efficient for the robot as the human performances. Moreover,
this integration compensated for any difficulties in identification
of robot performed gestures. In the following sections we will
discuss these findings in more detail.

4.1. Gesture Comprehension
With the exception of those accompanying “I lit,” all gestures
used in this experiment were identified clearly above chance for
both the human and the robot when they were presented without
speech. Though robot gestures were more difficult to identify
than human gestures, the general ability to do so is in clear
contrast to earlier findings by Cabibihan et al. (2012a) and Zheng
and Meng (2012). In both these previous studies they found
robot performed gestures were difficult to identify on their own.
There are a number of possible causal factors for the differences
between our study and previous work. Possible factors are the
subtleties in gestures captured by the tele-operation scheme, the
different methods of response-gathering (restricted choices as
used here, in contrast to free response in related work), the types
of gestures used (they used more emblematic gestures, often
close to pantomime, in contrast to the iconic manner gestures
used here), or some combination of all of these. Whichever the
explanatory case, the work presented here provides evidence for
the idea that there is communicative value in robot performed
gestures.

We suggest that there might be a wider range of gestures
than those tested here that will have communicative value for a
robot. Therefore, we will look at common features of the gestures
used here that were correctly identified. It is also instructive to
examine these same features for gestures that were more difficult
to identify when performed on the robot than when performed
by a human. Differences in the performances likely account for
the lower mean recognition rate for robot performed gestures
(80.2%, compared to 94.3% for human performances).

The primary common feature is the importance of hand
trajectory, including the appropriate hand velocity profile. This is
used to convey easily identifiable relative motions that are either
part of the action being carried out, or of objects manipulated
by the action. This idea is supported by the work of Beattie
and Shovelton (2005), who found that gestures portraying
relative positions and movements are the most successful at
conveying information. Relatedly, when the trajectories could not
be correctly perceived gestures were harder to identify. The main
reason for this here was due to the reduced range of motion on
the NAO elbow flexion, and the lack of the ulnar/radial deviation
degree of freedom, resulting in smaller vertical travel for some
gestures, and in some cases increased jerk. Moreover, these
deviations might also cause difficulties in identifying motion
primitives used in gesture recognition (Bengoetxea et al., 2014),
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or limit the perception of the movement to being artificial where
different mental processes are applied (Yang et al., 2015).

One way in which this issue of gesture recognition has been
circumvented, is by having participants evaluate gestures not on
their meaning alone, but rather on what action they would do
in response, as this activates another area of the brain used in
gesture recognition (Yang et al., 2015). This was demonstrated
in the findings of Riek et al. where in speeded response trials
participants were reported to correctly identify responses to robot
performed co-operative gestures; they remained able to do so
even when the robot used non-human-like velocity profiles (Riek
et al., 2010). This suggests that the context in which the gestures
are used may be of importance in the ease with which they are
recognized.

A second common feature is hand orientation, as different
hand orientations for the same hand trajectory can convey
very different actions. Indeed, we found that for gestures
where the wrist rotation sensor provided erroneous information,
those gestures were less frequently correctly identified. As with
deviations in arm trajectory this might mean that movement
expected according to muscle synergies observed in human
gesture (Bengoetxea et al., 2014) is not observed. A final feature,
important for robots that do not possess fully articulated hands
such as NAO, is a minimal reliance on hand shapes; i.e., gestures
where arm trajectories and the degree to which the hand was
open or closed contained sufficient information. We found that
for some gestures hand shape was required for the gesture not to
be too ambiguous to be correctly identified.

A good illustration of the importance of these features can be
found in the gesture lit1, which, while being correctly identified
in the human presentation condition, was not identified correctly
in the robot presentation condition. The lit1 gesture comprises
a vertical hand motion demonstrating pulling a cord to switch
on a light (a common action in the UK). In the robot condition
the unrelated foil images were selected with close to identical
frequency as the target images. Examining the response image set
for “I lit,” we observed that the main differences between target
and foil images was hand orientation, and motion range. Hence,
we suggest, if gesture is to be used in uni-modal communication
for a robot, as an avatar or autonomously, which gestures are used
needs to be carefully examined, and the capabilities of the robot
platform taken into account.

While the evidence for the relevance of the aforementioned
deviations is limited, it does highlight an important factor both
for gestures in HRI and in human communication that merit
further investigation. We suggest this key factor is that the
differences between human and robot gestures are relatively
small, as shown in the performance analysis of the tele-
operation control scheme in producing closely matched joint
motion. Hence, our data provide further evidence for the notion
that people are well conditioned to making subtle gestural
discriminations and to identify biological motion and meaning
(Kilner et al., 2003; Yang et al., 2015). This is further reinforced by
our observations during the development of the range of gestures
to be tested.

To test how susceptible observers are to subtle variations
in robot performed gesture and how much this depends on

the context (e.g., whether observers are needed to physically
or socially interact with the robot) requires more compelling
evidence (see also Riek et al., 2010). Further, whether such effects
vary between deliberate gesture identification, and the use of such
gestures in conversation, also needs to be investigated. Indeed, by
testing subtle gesture effects for robot communication we may be
able to also learn more about the mechanisms underlying human
communication and gesture perception.

4.2. Speech and Gesture Integration
Our findings demonstrate that when performed together speech
and gesture are integrated, even when performance is mediated
by a tele-operated NAO robot. We observed a larger proportion
of integration target choices (ITC) in the multi-modal condition,
as compared to either uni-modal condition. Multi-modal
communication disambiguates the possible meaning of either
gesture or speech on their own. ITC differed between uni-
modal conditions, making it difficult to directly evaluate and
compare the extent of speech and gesture integration for
the two performers. To overcome this difficulty we followed
the methodology of Cocks et al. to calculate multi-modal
gain (MMG) (Cocks et al., 2011). MMG incorporates the
results from both uni-modal presentation conditions in a
calculation to estimate the change in probability of ITC
for multi-modal communication as a single value. Highly
significant values for MMG were found for both performance
conditions. More importantly, the extent to which speech and
gesture could be integrated was comparable between the two
performers, indicating that robot-performed gestures are as
efficiently integrated with speech as human-performed multi-
modal communication.

As the lit gestures were not identified correctly when presented
alone by the robot, it is instructive to examine the image choices
when presented alongside speech. For lit1 and lit2 gestures, the
correct target image was selected by 82% of participants and
95% of participants, respectively. This shows that participants
were able to compensate for the lack of clarity in the gesture
performance by using speech information to resolve ambiguity.

These results are somewhat surprising given previous work on
speech and gesture integration with mismatched appearance and
voice (here there is a clear mismatch of human voice and robot
appearance). Kelly et al. showed that when there was a gender
mismatch between voice and gesture performer, integration was
reduced, and required considered rather than automatic mental
processing (Kelly et al., 2010). Hayes et al. replicated these
findings with human voice and robot performed gestures (Hayes
et al., 2013). Similarly, we found that in speeded trials integration
of speech and beat gestures does not occur when using a robot
avatar to communicate (Bremner and Leonards, 2015b). The
work presented here differs from the aforementioned, in that
trials were not speeded.

We suggest that though integration of robot gesture and
human speech may not be an automatic process, it occurs
nevertheless. Whether there is a difference in mental processing
for the gestures examined here, and if there is, whether it
effects interaction with robot tele-operators requires further
investigation. One way in which this could be tested is to look
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not only at information comprehension, but also response times
in speeded trials.

As well as being important for tele-communication using
humanoid robot avatars, our findings also have implications for
design of communicative behavior in autonomous humanoid
robots. Perhaps the most important implication is that when a
humanoid robot needs to communicate this can be done more
accurately and efficiently by splitting semantic information across
verbal and gestural communication modalities. In addition,
our results demonstrate that multi-modal communications are
interpreted similarly whether the gestural component is mediated
by video only or by a tele-operated robot. Hence, autonomous
robots should, where possible, use gestures to produce more
natural seeming human-robot interaction. Thus, our work
reinforces findings in the literature that higher subjective ratings
are given to robots when they perform gestures (Han et al., 2012;
Aly and Tapus, 2013; Salem et al., 2013).

Importantly, the difference in gesture recognition between
human video and robot-embodied communication for gesture
only communication is compensated for in multi-modal
communication. That is to say, a humanoid robot avatar offers
comparable performance to video communication when using
speech along with gestures. Hence, a robot avatar operator might
take advantage of previously observed advantages of robots
over 2D communication media, such as enhanced engagement,
improved social presence and action awareness (Powers et al.,
2007; Adalgeirsson and Breazeal, 2010; Hossen Mamode et al.,
2013), while maintaining communicative efficacy.

4.3. Conclusion
We show in this paper, using a fully within subject design, that
using our Kinect based tele-operation system iconic manner
gestures conveyed on the NAO robot are recognizable. This
is despite physical restrictions in the degrees of freedom and
movement kinematics of NAO relative to a human. Further,
there seem to exist a large range of gestures which might be
conveyed successfully. More importantly, we show that such
robot-executed gestures can be integrated with simultaneously
presented speech as efficiently as human-executed gestures.
Whether this is because of, or despite the speech clearly
originating from a human operator, remains to be further
investigated. Hence, with regard to multi-modal semantic
information conveyance, a NAO tele-operated avatar can be
close to video mediated human communication in terms of
efficacy. These two findings provide strong evidence as to
the utility of a tele-operated NAO for conveying multi-modal
communication. Although gestures are not recognized quite as
well for the robot as they are for the human on video, they are
still recognized well enough to make it a viable communication
medium. We suggest the slight compromise in uni-modal
gesture recognition for a robot performer is compensated for by
the potential improvements in social presence and salience to
interlocutors.

Our findings also have implications for autonomous
communication robots, for which gesturing is an active
area of research, and has been shown to offer a number of
communicative benefits beyond information conveyance. Huang

andMutlu found that robot performed deictic gestures improved
participants’ recall of items in a factual talk; however, gestures
other types had minimal effects (Huang and Mutlu, 2014).
Bremner et al. showed that although higher certainty in the
information recalled was observed for parts of a monolog
that were accompanied by (beat and metaphoric) gestures, the
amount of information recalled was no better than for parts
without gesture (Bremner et al., 2011). However, Van Dijk
et al. found there was a positive influence on memory when
redundant iconic gestures were performed when describing
action performance (Dijk et al., 2013).

Other gesture effects beyond memory have been observed
by Chidambaram et al. (2012), who demonstrated a robot was
significantly more persuasive when it used gestures and other
non-verbal cues. Additionally, hand gestures have been found
to improve user ratings of robots on scales such as competence,
likeability, and intention for future contact in a number of studies
(e.g., Han et al., 2012; Aly and Tapus, 2013; Salem et al., 2013).
These findings suggest that performing gestures on a robot avatar
may have additional benefits to the robot operator that can be
capitalized on, and we are in a position to do so now that we have
shown they can be interpreted correctly.

We suggest that, when it is possible, robot communication
should be multi-modal to ensure clarity of meaning, and to
improve its efficiency and efficacy. This demonstration of the
utility of multi-modal communication is not only of importance
for our continuing work with tele-operated humanoid robot
avatars, but also for socially communicative autonomous
humanoid robots. We suggest our results might be generalizable
in this way as previous studies showed that participants treat
avatars similarly to how they do autonomous systems (von der
Pütten et al., 2010). Indeed, one of the applications of humanoid
tele-operation is as a tool to test what is important in terms of
robot behavior for successful HRI in so-called super Wizard of
Oz studies (Gibert et al., 2013).

4.4. Limitations and Future Work
While the work presented here provides initial insight into speech
and iconic gesture integration for robotic communicators, it has
a number of limitations which we hope to address in future
work. Firstly, the range of tested gestures was limited to manner
gestures where hand shape was not expected to be critical. In the
future we intend to expand on our findings that integration can
occur even for gestures that, as a consequence of differences in
physical capabilities, can not be realized in a precisely human-
like way by a robot. Limited evidence was found for this with the
“I lit” gestures which were poorly recognized when performed by
the robot.

The degree of similarity between robot performed and
the original human gestures was not objectively controlled,
other than visual inspection. Given our preliminary findings
on the effects of subtle gesture differences, and existing
literature on human sensitivity to biological motion, we suggest
the examination of the degree of similarity required for
comprehension and integration. Doing so would inform robot
design and control requirements (extending the ideas in Riek
et al., 2010). Additionally, we suggest that by both carefully
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controlling gesture motion requirements, and similarity to
human motion, one could more easily generalize our results
across different robot platforms.

Another limitation of our work was that all gestures used
were tested in a laboratory setting, with a limited set of
short communications. In future work we aim to improve the
ecological validity of our findings by investigating gestures in
more interactive settings (extending the ideas in HossenMamode
et al., 2013). In doing so we aim to look at a larger range of types
of gesture, situated within longer sentences, and accompanied
by other non-verbal behaviors such as gaze. An important
component of this further work will be timing of gestures relative
to speech (McNeill, 1992; Kendon, 2004). Though initial testing
has shown coordination between speech and gesture to be close to
that of the robot operator, whether it is close enough needs to be
experimentally verified to fully validate our robot avatar system
as a communication medium.

It is also important to note that our results might not
be generalizable across cultures. Different nationalities have
different gesturing conventions, and semantics (i.e., words
that are ambiguous in English are often not in other
languages). Further work is required to see if integration
varies across different cultures, particularly where gestures are

more (e.g., Italy), or less (e.g., Japan) prevalent in everyday
communication.
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