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Abstract 
Game playing especially, Ayὸ game has been an important topic of research in artificial intelligence and several 
machine learning approaches have been used, but the need to optimize computing resources is important to 
encourage significant interest of users. This study presents a synthetic player (Ayὸ) implemented using 
Alpha-beta search and Learning Vector Quantization network. The program for the board game was written in 
Java and MATLAB. Evaluation of the synthetic player was carried out in terms of the win percentage and game 
length. The synthetic player had a better efficiency compared to the traditional Alpha-beta search algorithm. 
Keywords: intelligence,board game,win ratio, computing resources 
1. Introduction 
Developers are utilizing various computing techniques to create efficient games that will run in reasonable time 
to encourage interest from users. Ayὸ is an African game board made of a wooden substance. It is a rectangular 
board with twelve circular carved out pits (pockets) arranged in two rows of six pits, and each pit containing four 
seeds. The game belongs to the class of two-person, zero-sum game (Van den Herik, Uiterwijk, &Van Rijswijck, 
2002). In playing the game, a player selects one of the non-empty pits and starts sowing in a counter clockwise 
direction and whenever the sowing reaches the originated pit, it is ignored. Seeds are captured when the last seed 
falls in an enemy's pit containing 1 or 2 seeds. Additional seeds are captured in pits immediately preceding the 
captured pit if they contain 2 or 3 seeds. Capturing occurs only in the enemy's pits. The game ends when any 
player has obtained 25 or more seeds. Mancala is the general name for the many variations (Awale, Oware,Awari, 
et al.) of the game played throughout Africa, as well as in other parts of the world. Refer to (Allis, Van Der 
Meulen, & Vanden Herik, 1991; Allis, 1994; Romein & Bal, 2002) for further information. However, one 
limiting feature of strategically played board games like Ayὸ is that they consume computational resources 
(Romein & Bal, 2002), due to their huge game states. Awale for instance, has a game tree complexity of 
1031(Allis, 1994; Van den Herik et al., 2002). This feature makes playing the game on most low-cost devices 
computationally challenging. 
There is no doubt that numerous literature on computer games (Gomboc, Buro,& Marsland, 2005; Guid et al., 
2006; Al-Mahmuda, Mubin, Shahid, & Martens, 2010) exist, and the need to design more storage efficient 
algorithms for games has encouraged the proposition of several techniques. However, only few exist in terms of 
design and architecture for resource optimization.Allis (1994) proposed a Minimax Search Algorithm (MSA), 
which employed the backward induction to predict game in Awale. However, the main difficulty posed by 
minimax search is how to develop and apply an evaluation function to a game tree. A database containing all 
board positions with 35 or less seeds to improve the playing strength of Awale was constructed in (Lincke & 
Marzetta, 2000). The retrograde analysis was proposed to find the optimal play for all the possible board 
positions of Awari (Romein & Bal, 2002; Romein & Bal, 2003). However, both endgame databases and 
retrograde analysis techniques are expensive to implement as the game requires more storage space. 
Meta-heuristic based hybrid technique was proposed to mine endgame databases for relevant features that are 
useful in the construction of a static evaluation function (Davis & Kendall, 2002; Daoud, 2004). Akinyemi, 
Adebiyi, and Longe (2009) proposed a refinement based heuristic technique for human-like decision making for 
playing Ayὸ game. The performance of Minimax search and aggregate Mahalanobis distance function in 
Evolving an Ayo Player was investigated by (Randle, Olugbara & Lall, 2012). 
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The Learning Vector Quantization (LVQ) network is an algorithm widely used in the classification of 
high-dimensional data (Biehl, Ghosh,& Hammer, 2007). Successful applications of LVQ include medical image 
analysis, fault detection, or classification of satellite spectral data (Bojer, Hammer, & Koers, 2003; Kuncheva, 
2004; Schleif, 2006). Its popularity can be attributed to the modest implementation of its procedures and the fact 
that its complexity can be controlled during training according to specific needs. Both, the training algorithm and 
the resulting classification scheme are fairly easy to implement. In practice, the computational effort of LVQ 
training usually scales linearly with the training set size, and its classification depends on the (fixed) number of 
learning techniques (prototypes) andinput dimensionality (Biehl et al., 2007). This study therefore, proposes a 
synthetic player (called Ayὸ) that combined the Alpha-beta search algorithm with LVQ to enhancethe efficiency 
of Alpha-beta search. 
2. The Synthetic Player Framework 
The section describes the techniques and tools used in the design and implementation of the synthetic player for 
the game.  
2.1 Alpha-Beta Pruning 
Alpha-beta pruning is an algorithm that minimizes the game-tree search for some wrong moves. It simply 
identifies moves that are not beneficial and eliminate them from the game tree (Jones, 2008). The algorithm 
simply calculates and maintains two variables (alpha and beta) during the depth-first search of the game tree. 
The alpha variable defines the best move that maximizes the Alpha-beta search's best move while the beta 
variable defines the best move that minimizes the opposing player's best move.Although, Alpha-beta pruning 
method provides its best performance when the game tree is arranged such that the best choice at each level is 
the first one to be examined by the algorithm. That is, it only removes only one leaf node from the tree, but in 
larger game trees, this can result in fairly valuable reductions in tree size. In most cases, it will not necessarily 
remove large portions of the game tree. While simulating the playing of Ayὸ boardgame between Alpha-beta 
search and Random player (a computer program that uses stochastic algorithm to select any non empty pit to 
play), it was discovered after a careful analysis of the game data (playing patterns) generated by both players that 
Alpha-beta search made few wrong moves (though infrequent) by not distributing seeds from pits with heavily 
loaded seeds (called Odù in Yorubálanguage) as appropriate.Figure1illustrates an example of this problem, 
assuming the transition from state n to state n+1. For a given state n in the game, where it is the Alpha-beta's turn 
to make a move. Unfortunately, Alpha-beta search distributed the four seeds in pit E (Figure 1a) instead of 
distributing the 17 seeds in pit C (see Figure1b)which could have fetched additional 5 seeds (two seeds in pit c 
and 3 seeds in pit d as gains(see Figure1c). Unfortunately, Alpha-beta search had missed the opportunity to gain 
additional five seeds in that given state (state n).Not playing heavily loaded pits at the appropriate time may 
unnecessarily elongates the game length, which implicitly may affect computing resources.We intend to avoid 
this problem by combining LVQ with Alpha-beta to minimize this effect. The introduction of LVQ is to help in 
determining the appropriateness at which heavily loaded pits (Odù)are played. 

 
Figure 1. Wrong move by Alpha-beta search (a) versus the right move (b) 
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2.2 Learning Vector Quantization Network 
To minimize the Alpha-beta limitation, the key states (locations of heaped seeds that when played will shorten 
playing length) were determined experimentally using simulated games between Alpha-beta search and Random 
player. The key states were then used to train the LVQ in order to optimally select and play seeds in the heavily 
loaded pits appropriately, to reduce game length. The LVQ network architecture adapted from (Demuth & Beale, 
2001) and depicted in Figure2, has R number of elements in the input vector, S1 number of competitive neurons, 
and S2number of linear neurons.The network has two layers, the competitive and the linear layer. The neurons in 
a competitive layer distribute themselves to recognize frequently presented input vectors while the linear layer 
transforms the competitive layer’s classes into target classifications defined by the user.The LVQ for the Ayὸ 
player has eight (8) neurons in the hidden layer and one neuron in the output layer. The training data (derived 
experimentally)for the network is the vector [33.2, 27.2], which represents the class percentages or frequencies at 
which seeds are heaped in the pits (indices D, C, B, and A) of the Ayὸ player. In practice, these pits have large 
number of seeds as observed from the several simulated games played by the Alpha-beta search against the 
Random player. The network learning rate was 0.01 and its learning function was Learning Vector Quantization 
1 weight learning function (learn 1v1). The LVQ network was trained for a maximum of 500 epochs.The 
following equations were used as the LVQ input.  ܿ ൌ ݀																																																																														 ሺ1ሻ																																																																									௜ݐ݅݌௜:௜∈ሼ଻,଼…,ଵଶሽݔܽ݉݃ݎܽ ൌ 	∑ ௜ଵଶ௜ୀ଻6ݐ݅݌ 																																																																																							ሺ2ሻ 

ݒ																																																																														 ൌ ቂ  ሺ3ሻ																																																																																													ቃۂ݀ہܿ
where c is the pit (belonging to Ayὸ player) which contains the largest number of seeds, variable d is the 
averagenumber of seeds in the pits belonging to the syntheticplayer, and ۂ݀ہis the largest integer less than or 
equal to d. The input v is passed to the competitive layer which used the winner takes all Hebbian learning 
approach to determine the network's output, that is, the particular heavily loaded pit (Odù) to play. 

 
Figure 2. LVQ network architecture 

 
2.3 Performance Evaluation 
The Ayὸ board game was simulated in both Java and MATLAB R2012a environment. Java language was used 
to implement the Alpha-beta search algorithm due to its recursive nature. Moreover, creating recursive 
algorithms in Java can be easily accomplished. The MATLAB software includes Java Virtual Machine (JVM) 
software, that enables Java interpreter to be used via MATLAB commands, purposely to assist in the creation 
and running of programs that access Java objects. This feature enables MATLAB users to take advantage of the 
special capabilities of the Java programming language. The Java class implementing the Alpha-beta search 
algorithm was made available in the MATLAB workspace by placing it on the static Java class path and then 
invoked within the MATLAB environment. The Alpha-beta search algorithm implemented in this study used a 
4-level depth minimax search together with the LVQ described above to evolve the Ayὸ player. The simulation 
was run on an Intel (R) Pentium 2.20 GHz machine. Figure 3 depicts sample simulation result. To compare the 
performance of Alpha-beta search with the synthetic player (LVQ_Alpha-beta), several games between 
Alpha-beta search versus Random player (a program having its playing patterns or moves unpredictable) 
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andLVQ_Alphabeta versus Random player were simulated. Four simulation experiments were conducted as 
follows. The first experiment consisted of 1000 simulated games between Alpha-beta search versus Random 
player; and LVQ_Alphabeta against Random player. In the second experiment, 4000 simulated games between 
Alpha-beta versus Random and LVQ_Alphabeta against Random player were simulated. Similarly, the third and 
forth experiments consisted of 7000 and 10000 simulated games between the opposing players as configured for 
experiments 1 and 2 above. All experiments were repeated x times and the average game length for games 
played between LVQ_Alphabeta and Random player; and the average game length for games between 
Alpha-beta search against Random player were recorded and compared. Also recorded were the number of 
games won and loss by both LVQ_Alphabeta and Alpha-beta search against the Random player. The average 
game length (avl) is as defined as follows.  

݈ݒܽ	 ൌ 1݊ ൭෍ݐ௜௡
௜ୀଵ ൱																																																																																							ሺ4ሻ 

Where tiisthe average turns made by eitherLVQ_Alphabeta or Alpha-beta search against the Random playerin 
game i, and n is the total number of games played. The notation for the Win percentage is given as: 																						݁݃ܽݐ݊݁ܿݎ݁ܲ݊݅ݓ ൌ ሺ݃ܽ݉݁ݏ	݊݋ݓሻ/ሺ݈ܽݐ݋ݐ	ݏ݁݉ܽ݃	݀݁ݕ݈ܽ݌	݃݊݅݀ݑ݈ܿݔ݁	ݏݓܽݎ݀ሻ ൈ 100																				ሺ5ሻ	
The average number of turns used by all the three players- Random, Alpha-beta search and Ayὸ were noted. The 
Win percentage of games (excluding draws) played between the Random player and the Alpha-beta search, and 
the Random player versus the Ayὸ (LVQ-Alpha-beta) player were also recorded. 

 
Figure3. Sample screenshot of the board game 

 
3. Results 
The average game lengths recorded for both LVQ_Alpha-beta and Alpha-beta search against the Random 
playerare shown in Table 1. The overall average game lengths for the two players were 36.48 and 51.93 
respectively, resulting in approximately 30% reduction in game length usingLVQ-Alphabeta. Also shown in 
Table 1, is the percentage number of games (excluding draws) won by both Alpha-beta search and 
LVQ-Alphabeta players. The percentage numbers of games won by both players against the Random player 
were approximately70% and 83%, respectively.The results obtained in this study showed that the LVQ has 
enhanced the Alpha-beta search performance with shorter game length and with a higher win ratio. Thus, the 
addition of LVQ to Alpha-beta search has brought significant improvement in efficiency. The implication of this 
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result is that Ayo will reduce computing processing time and also run conveniently on low cost handheld 
devices. 
 
Table 1.Results of Random player versus LVQ_Aphabeta and Alpha-beta 

 Win Percentage Average game length (95%CI) 
Experiment LVQ_Alphabeta Alpha-beta search LVQ_Alphabeta Alpha-beta search 

#1 82.7(0.51) 70.5(0.55) 35.6(3.26) 47.9(8.21) 
#2 83.5(0.82) 70.6(0.59) 35.9(2.78) 47.6(7.01) 
#3 83.3(0.68) 70.4(0.27) 37.6(3.32) 54.4(6.35) 
#4 82.6(0.55) 70.3(0.18) 36.8(2.51) 57.8(9.85) 

 
4. Conclusion and Future Direction 
In this study, a synthetic player utilizing Alpha-beta search and LVQ network is presented. The synthetic player 
(Ayὸ) was simulated in MATLAB environment and evaluated in terms of the game length and win 
percentage.The result of performance evaluation has indicated that LVQ was able enhance Alpha-beta search by 
producing improved synthetic player for the Ayo board game that will optimize computing resources most 
importantly, the low-cost devices with limited capabilities. 
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