
A complete characterisation of local existence for

semilinear heat equations in Lebesgue spaces

R. Laistera,, J.C. Robinsonb, M. Sierże↪gab, A. Vidal-Lópezc
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Abstract

We consider the scalar semilinear heat equation ut − ∆u = f(u), where
f : [0,∞)→ [0,∞) is continuous and non-decreasing but need not be convex.
We completely characterise those functions f for which the equation has a
local solution bounded in Lq(Ω) for all non-negative initial data u0 ∈ Lq(Ω),
when Ω ⊂ Rd is a bounded domain with Dirichlet boundary conditions. For
q ∈ (1,∞) this holds if and only if lim sups→∞ s

−(1+2q/d)f(s) < ∞; and for
q = 1 if and only if

∫∞
1
s−(1+2/d)F (s) ds <∞, where F (s) = sup1≤t≤s f(t)/t.

This shows for the first time that the model nonlinearity f(u) = u1+2q/d is
truly the ‘boundary case’ when q ∈ (1,∞), but that this is not true for q = 1.

The same characterisation results hold for the equation posed on the
whole space Rd provided that in addition lim sups→0 f(s)/s <∞.
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1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UWE Bristol Research Repository

https://core.ac.uk/display/323894548?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1. Introduction

This paper concerns local existence of solutions of the scalar semilinear
heat equation

ut −∆u = f(u), u(0) = u0 ≥ 0, (1)

on the whole space Rd and on smooth bounded domains Ω ⊂ Rd with Dirich-
let boundary conditions, when u0 ∈ Lq(Ω), 1 ≤ q < ∞. Throughout and
without loss of generality we assume that Ω contains the origin.

We give a complete solution to the classical problem of characterising
those functions f for which (1) has a local solution that is bounded in Lq(Ω)
for all non-negative initial data in Lq(Ω). It is perhaps surprising that such
results are not already available in the literature, but they are not; nor do
our characterisations follow from what has previously been proved about (1).
Indeed, most previous results focus on the particular nonlinearity f(u) = up,
with more general treatments assuming that f is convex. We impose no
such restrictions in this paper, requiring only that f : [0,∞) → [0,∞) is
continuous and non-decreasing.

The main contribution this paper makes is in identifying the correct char-
acterisation for both the case q > 1 and q = 1. Given the ‘correct’ assump-
tions on f , the methods of proof for existence/non-existence are not difficult,
but still require some care. The non-existence results rely on lower bounds
on the heat kernel, and in particular on lower bounds for the action of the
heat semigroup on initial conditions equal to the characteristic function of a
ball. In a very imprecise way, they show that for q > 1 the model equation
with f(u) = up ‘tells the whole story’, but that this is decidedly not the case
when q = 1.

Local well-posedness of (1) for smooth data falls within the scope of
the standard theory of parabolic equations that goes back half a century
[13]. In the early 1980s the well-posedness theory was extended by Weissler
[23, 24, 25] to include initial data in Lebesgue spaces, with a locally Lipschitz
source term f satisfying a Lipschitz bound of the form

|f(u)− f(v)| ≤ C|u− v|(1 + |u|p−1 + |v|p−1) (2)

providing sufficient conditions for local existence (and uniqueness).
In particular, in these papers and in much subsequent work, attention

was almost exclusively focused on the canonical model with f(u) = |u|p−1u
introduced by Fujita [8]. For this particular nonlinearity, given q ∈ (1,∞),
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the pioneering results of [23, 24, 25] along with those of Giga [10] and Brezis
& Cazenave [3] identify a critical exponent p? = 1 + 2q/d such that (1) with
f satisfying (2) is locally well posed in Lq if and only if p ≤ p?; for p > p?

one can find initial data in Lq for which there is no local solution. While for
q > 1 the equation is well behaved when p = p?, for the case q = 1 Celik
& Zhou [6] showed that for the critical exponent p? = 1 + 2/d there are L1

initial data for which there is no solution (resolving a problem posed in [3]).
This theory has been extended in a number of ways. One natural direction

was to extend the theory towards weaker classes of data (e.g. measure-valued
initial conditions), see Brezis & Friedman [5], for example. Along these lines,
Baras & Pierre [2] obtained a necessary and sufficient condition on the initial
condition for local existence of solutions when f is convex.

A second direction focuses on finite-time blowup versus global existence.
In most of these analyses, the particular form of the Fujita nonlinearity
f(u) = |u|p−1u or a related convexity assumption plays a crucial role, see for
example [1, 4, 7, 8, 9, 12, 17]. For example, the homogeneity of up facilitates
the use of similarity solutions - such scale invariance also makes transparent
the role of the critical exponent, while for a general convex f one can use
Jensen’s inequality. Note that we do not consider finite-time blowup here,
but rather local non-existence, i.e. ‘immediate blowup’ in some sense.

However, most of the above results break down if we only make the as-
sumption that f is monotonic. In this case, in order to describe fully the
conditions on f ensuring that an initial condition in Lq gives rise to a lo-
cal solution we need a better understanding of the delicate balance between
the smoothing action of the heat flow and the converse effect of the growing
source. In this paper we provide, for every q ∈ [1,∞), a precise characteri-
sation of those f for which the equation (1) has local solutions bounded in
Lq(Ω) for all non-negative initial data u0 ∈ Lq(Ω). Note that this includes
the delicate case q = 1.

First we show that for q ∈ [1,∞), if

lim sup
s→∞

s−(1+2q/d)f(s) =∞ (3)

then there exists a non-negative u0 ∈ Lq(Ω) for which equation (1) has no
local solution that is bounded in Lq(Ω). Since the existence of a finite limit
in (3) implies that f(s) ≤ C(1 + s1+2q/d) for some constant C, monotonicity
of solutions along with classical results for (4) yields local existence in this
case for q ∈ (1,∞). It follows (see Theorem 3.4) that equation (1) has at
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least one local Lq-bounded solution for every non-negative u0 ∈ Lq(Ω) if and
only if

lim sup
s→∞

s−(1+2q/d) <∞.

The ‘moral’ of this is that for q ∈ (1,∞), the model problem with f(s) = sp

in some sense tells the whole story, since the critical case lies precisely on
the boundary between local existence/non-existence. (This idea has perhaps
always been implicit in the discussions in the literature, but has not had a
rigorous proof until now.)

The case q = 1 is more delicate, and is well known to be significantly
more challenging. As remarked above, Celik & Zhou [6] showed that for the
canonical equation

ut −∆u = up (4)

with p = p? = 1 + 2/d there is non-negative initial data in L1(Rd) and L1(Ω)
for which there is no local solution. One might therefore conjecture that for
q = 1 the condition in (3) can be weakened to

lim sup
s→∞

s−(1+2/d)f(s) > 0

(i.e. the limit is finite but strictly positive) and still ensure non-existence for
some non-negative u0 ∈ L1(Ω). In fact significantly more is true: we show
that the condition

∞∑
k=1

s
−(1+2/d)
k f(sk) =∞

for some sequence such that sk+1 ≥ θsk (for some θ > 1) is sufficient for such
a non-existence result. In particular, if f satisfies this condition there are
non-negative data in L1(Ω) for which there is no solution with u(t) ∈ L1(Ω)
for any t > 0.

For any particular f this divergent series condition seems awkward to
check in practice, so we show that it is equivalent to the integral condition∫ ∞

1

s−(1+2/d)F (s) ds =∞, where F (s) = sup
1≤t≤s

f(t)

t
. (5)

Remarkably, if the integral in (5) is finite, then a version of an argument
due to Sierże↪ga [20] guarantees local existence of an L1-bounded solution for
every non-negative u0 ∈ L1(Ω) (in fact the solution is in L∞(Ω) for every
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t > 0). As a consequence we obtain our second main result (Corollary 4.5),
namely that equation (1) has at least one local L1-bounded solution for every
non-negative u0 ∈ L1(Ω) if and only if∫ ∞

1

s−(1+2/d)F (s) ds <∞, where F (s) = sup
1≤t≤s

f(t)

t
.

Here the ‘moral’ is that the model problem does not tell the whole story.
We note here that we do not treat the question of uniqueness in this

paper, but concentrate solely on local existence. For this reason we do not
require any Lipschitz-type assumptions on f (such as (2)).

The paper is organised as follows. In Section 2 we prove some preliminary
lower bounds on solutions of the heat equation for an initial condition that
is the characteristic function of a ball; these are the key estimates that we
use in our proofs. Section 3 contains the results for q > 1, with Section 4
treating q = 1. In Section 5 we discuss the problem posed on the whole space
and on a bounded domain with Neumann boundary conditions, and we end
with a brief recapitulation and discussion of open problems.

2. Lower bounds on solutions of the Dirichlet heat equation

An important ingredient of our arguments is the following simple lemma,
which gives a lower bound on the action of the heat equation on the char-
acteristic function of a Euclidean ball. We write Br(x) for the open ball
in Rd of radius r centred at x, denote by χr the characteristic function of
Br := Br(0), and use ωd for the volume of the unit ball in Rd.

The solution of the heat equation on Ω with Dirichlet boundary condi-
tions,

ut −∆u = 0, u|∂Ω = 0, u(x, 0) = u0(x) ∈ L1(Ω)

can be given in terms of the Dirichlet heat kernel KΩ by the expression

u(x, t) = [S(t)u0](x) :=

∫
Ω

KΩ(x, y; t)u0(y) dy.

The proofs of the results in this section use the following lower bound on
KΩ: if the line segment joining x and y is a distance at least δ from ∂Ω, then
the Dirichlet heat kernel KΩ(x, y; t) is bounded below by the Gaussian heat
kernel on Rd,

KΩ(x, y; t) ≥ e−d
2π2t/4δ2(4πt)−d/2e−|x−y|

2/4t for all t > 0. (6)

5



(See van den Berg [22], Theorem 2 and Lemmas 8 and 9.)

Lemma 2.1. There exists an absolute constant cd ∈ (0, 1), which depends
only on d, such that for any r, δ > 0 for which Br+2δ ⊂ Ω,

S(t)χr ≥ cd

(
r

r +
√
t

)d
χr+

√
t, (7)

for all 0 < t ≤ δ2.

Proof. Note that since, by assumption, Br+2δ ⊂ Ω, it follows that for every
x ∈ Br+

√
t we have dist(x, ∂Ω) ≥ δ while 0 < t ≤ δ2; and so for such x and t

the lower bound in (6) implies that

[S(t)χr](x) =

∫
Br(0)

KΩ(x, y; t) dy

≥ e−d
2π2/4 (4πt)−d/2

∫
Br

e−|x−y|
2/4t dy.

The latter integral is radially symmetric and decreasing with |x| and so
for |x| ≤ r +

√
t, choosing any unit vector u we can write

[S(t)χr](x) ≥ e−d
2π2/4 (4πt)−d/2

∫
Br((r+

√
t)u)

e−|z|
2/4t dz

= e−d
2π2/4 π−d/2

∫
Br/2

√
t((

1
2

+ r
2
√
t
)u)

e−|w|
2

dw.

Observing that

Br/2
√
t((

1
2

+ r
2
√
t
)u) ⊆ Bρ/2

√
t((

1
2

+ ρ

2
√
t
)u)

if ρ ≥ r, it follows that for r/
√
t ≥ 1 we have

[S(t)χr](x) ≥ e−d
2π2/4 π−d/2ωd

∫
B1/2(u)

e−|w|
2

dw =: c′d.

On the other hand, if r/
√
t ≤ 1 then

[S(t)χr](x) ≥ e−d
2π2/4 π−d/2

(
r

2
√
t

)d
e−9/4 =: c′′d(r/

√
t)d.
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So with cd = min(c′d, c
′′
d)

[S(t)χr](x) ≥ cd

(
r

max(r,
√
t)

)d
≥ cd

(
r

r +
√
t

)d
.

We will use this result in the form of one of the following two simple
corollaries.

Corollary 2.2. There exists an absolute constant αd > 0, depending only on
d, such that for any r, δ > 0 for which Br+2δ ⊂ Ω,∫

Ω

S(t)χr dx ≥ αdr
d,

for all 0 < t ≤ δ2.

Proof. Integrating the inequality in (7) over Ω yields∫
Ω

S(t)χr dx ≥ cd

(
r

r +
√
t

)d ∫
Ω

χr+
√
t dx = cdωdr

d.

Corollary 2.3. There exists an absolute constant βd > 0, depending only on
d, such that for any r, δ > 0 for which Br+2δ ⊂ Ω,

S(t)χr ≥ βd χr+
√
t,

for all 0 < t ≤ min(δ2, r2).

3. Initial data in Lq(Ω), q ∈ (1,∞)

Given these preliminaries we can prove our first non-existence result. We
take the following definition from [18] as our (essentially minimal) definition
of a solution of (1). Note that any classical or mild solution is a local integral
solution in the sense of this definition [18, p. 77–78].

Definition 3.1. Given f : [0,∞) → [0,∞) and u0 ≥ 0 we say that u is a
local integral solution of (1) on [0, T ) if u : Ω× [0, T )→ [0,∞] is measurable,
finite almost everywhere, and satisfies

u(t) = S(t)u0 +

∫ t

0

S(t− s)f(u(s)) ds (8)

almost everywhere in Ω× [0, T ).
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We will be interested in solutions with non-negative initial data u0 ∈
Lq(Ω) that remain bounded in Lq(Ω). To this end we make the following
definition.

Definition 3.2. We say that u is a local Lq solution of (1) if u is a local
integral solution on [0, T ) for some T > 0 and u ∈ L∞((0, T );Lq(Ω)). If
every non-negative u0 ∈ Lq(Ω) gives rise to a local Lq solution then we say
that (1) has the local existence property in Lq(Ω).

We now show that there are non-negative initial conditions in Lq(Ω) for
which there is no local Lq solution if f satisfies the asymptotic growth con-
dition

lim sup
s→∞

s−(1+2q/d)f(s) =∞

(which is (9), below). This condition is modelled on the stronger condition

lim sup
s→∞

s−γf(s) =∞ for some γ > q(1 + 2/d),

which was used by Laister et al. in [15] to construct a non-negative initial
condition in Lq(Ω) for which any local integral solution is not in L1

loc(Ω) for
any t > 0 small (a stronger form of non-existence than we obtain in Theorem
3.3). (A similar condition was used to analyse the problem on the whole
space in [14].)

Note that our assumption in Theorem 3.3 does not imply any lower
bounds on the function f itself, nor does our result require them; for ex-
ample, we impose no condition on the behaviour of

lim inf
s→∞

s−(1+2q/d)f(s),

as in Weissler [24] (Theorem 5, Corollaries 5.1 and 5.2), nor do we require f
to be continuous.

Theorem 3.3. Let f : [0,∞)→ [0,∞) be non-decreasing. If q ∈ [1,∞) and

lim sup
s→∞

s−(1+2q/d)f(s) =∞ (9)

then there exists a non-negative u0 ∈ Lq(Ω) such that

ut −∆u = f(u), u|∂Ω = 0, u(0) = u0 (10)

has no local Lq solution.
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Proof. Set p = 1 + (2q/d). It follows from (9) that we can choose a sequence
φk such that

φk ≥ k and f(φk) ≥ φpke
k/q.

We now construct an initial condition in Lq(Ω) that is the sum of charac-
teristic functions on a sequence of balls of decreasing radius. More precisely,
set

rk = εφ
−q/d
k k−2q/d,

and choose the initial data

u0(x) =
∞∑
k=1

uk, uk = β−1
d φkχrk ,

where βd is the constant from Corollary 2.3 and ε is chosen sufficiently small
that B3rk ⊂ Ω for every k. Noting that

‖uk‖qLq = ωdr
d
k β
−q
d φqk = ωd

(
εφ
−q/d
k k−2q/d

)d
β−qd φqk = ωdβ

−q
d εdk−2q,

i.e. that ‖uk‖Lq = ω
1/d
d β−1

d εd/qk−2, it follows that

‖u0‖Lq ≤
∑
k

‖uk‖Lq = β−1
d εd/q

∑
k

k−2 <∞.

Now, if a solution u(t) of (10) exists, then it can be written using the
variation of constants formula,

u(t) = S(t)u0 +

∫ t

0

S(t− s)f(u(s)) ds. (11)

Since u ≥ 0 and f ≥ 0, it is immediate that

u(t) ≥ S(t)u0 ≥ S(t)uk, (12)

for any choice of k. Choosing and fixing one k for now, we can neglect the
first term in (11) and use the lower bound in (12) to obtain

u(t) ≥
∫ t

0

S(t− s)f(S(s)uk) ds, (13)

since f is non-decreasing. To aid readability, and in a slight abuse of notation,
we now write χ(r) for χr.
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Corollary 2.3 with δ = rk implies that

S(s)uk = S(s)[β−1
d φkχ(rk)] ≥ φk χ(rk +

√
t) ≥ φk χ(rk), 0 ≤ s ≤ r2

k,

and so
f(S(s)uk) ≥ f(φk)χ(rk), 0 ≤ s ≤ r2

k,

since f is non-decreasing. Using Corollary 2.3 again

S(t− s)f(S(s)uk) ≥ βdf(φk)χ(rk), 0 ≤ s ≤ t ≤ r2
k.

Now, using the lower bound in (13), it follows that for any1 t ∈ [tk/2, tk],
where tk = r2

k,

[u(t)](x) ≥
∫ t

0

S(t− s)f(S(s)u0) ds

≥
∫ r2k/2

0

βdf(φk)χ(rk) ds

≥ 1

2
βd r

2
k f(φk)χ(rk).

Thus

‖u(t)‖qLq ≥
∫
B(rk)

|u(t)|q dx ≥ c r2q
k f(φk)

qrdk

= crd+2q
k f(φk)

q

≥ c[εφ
−q/d
k k−2q/d]d+2qφ

[1+(2q/d)]q
k ek

= ck−2q(1+2q/d)ek.

Since the right-hand side tends to infinity as k →∞, it follows that u is not
an element of L∞((0, T );Lq(Ω)) for any T > 0.

We remarked above that Laister et al. [15] showed that under the stronger
condition

lim sup
s→∞

s−γf(s) =∞, γ > q(1 + 2/d)

1We prove a lower bound valid for t in an interval since a priori our definition of a local
Lq solution requires only that u(t) ∈ Lq for almost every t.
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there is non-negative initial data in Lq(Ω) for which any local solution is not
in L1

loc(Ω) for all small t > 0. It is an interesting open question whether such
strong blowup still occurs under the weaker condition in Theorem 3.3.

A combination of the blowup result of Theorem 3.3 and classical results
for the Fujita equation now give our first characterisation theorem, on local
existence in Lq(Ω) when q > 1.

Theorem 3.4. Let f : [0,∞)→ [0,∞) be non-decreasing and continuous. If
q ∈ (1,∞) then (10) has the local existence property in Lq(Ω) if and only if

lim sup
s→∞

s−(1+2q/d)f(s) <∞. (14)

Proof. It remains only to show that (10) has a local solution bounded in
Lq(Ω) when (14) holds. In this case it follows that there exists a constant C
such that

f(s) ≤ C(1 + sp), where p = 1 + 2q/d,

and now one can use comparison (see Theorem 1 in Robinson & Sierże↪ga
[19], for example) and standard existence results for the equation

ut −∆u = C(1 + up)

(Corollary 3.2 in Weissler [24]) to guarantee that (10) has the local Lq(Ω)
existence property.

One could rephrase the above result in terms of the quantity

γ? = sup{γ ≥ 0 : lim sup
s→∞

s−γf(s) =∞}.

With q? = d(γ? − 1)/2 equation (10) does not enjoy local existence for all
non-negative initial data in Lq for q < q?, but does for q > q?. In this way
q? defines a ‘critical exponent’ for the general class of non-decreasing f we
consider here. Provided that q? > 1, local existence/non-existence in the
critical space Lq

?
is determined by the behaviour of

lim sup
s→∞

s−γ
?

f(s).

When q? = 1 the situation is more delicate and somewhat surprising, as we
now show.
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4. Initial data in L1(Ω)

4.1. A condition for non-existence of a local L1 solution

As just remarked, the behaviour of solutions for initial data in L1(Ω) is
more delicate. Celik & Zhou [6] showed that when f(s) = s1+2/d, there is
initial data in L1(Ω) for which there is no local L1 solution. This suggests
that when q = 1 the requirement of Theorem 3.3 can be weakened. Indeed,
the requirement that the sum in (15) diverges is clearly weaker than the
asymptotic condition,

lim sup
s→∞

s−(1+2/d)f(s) > 0;

blowup can even occur for certain f for which the above lim sup is zero, such
as f(s) = s1+2/d/ log(e + s)β with 0 < β ≤ 1. In particular, algebraic growth
f(s) = s1+2/d is not in fact the true ‘boundary’ for L1 blowup. We examine
this example in a little more detail in Section 4.4.

Note that in the statement of the following theorem we do not include the
hypothesis that f is continuous; this is not required for this blowup result.

Theorem 4.1. Suppose that f : [0,∞)→ [0,∞) is non-decreasing and that
there exists a sequence {sk} such that

sk+1 ≥ θsk for some θ > 1,

and
∞∑
k=1

s−pk f(sk) =∞, (15)

where p = 1+ 2
d
. Then there exists a non-negative initial condition u0 ∈ L1(Ω)

such that
ut −∆u = f(u), u|∂Ω = 0, u(x, 0) = u0 (16)

has no local integral solution that remains in L1
loc(Ω) for t > 0 (so in partic-

ular no local L1 solution exists).

Before we give the proof proper, it is instructive to present a much sim-
plified argument for the ‘L1-like’ initial data u0 = δ0, a delta function centred
at the origin (such data is L1-like so far as

∫
δ0 = 1). To further simplify the

argument we pose the problem on the whole space Rd.

12



Since in this case

[S(s)δ0](x) = (4πs)−d/2e−|x|
2/4s

it follows that for each k,

S(s)δ0(x) ≥ φkχ√s for s ≤ tk := cφ
−2/d
k

(where c = e−1/2d/4π).
Now for any t > 0, using the fact that

∫
Rd S(t)χr = ωdr

d,∫
Rd

∫ t

0

S(t− s)f(S(s)δ0) ds ≥
∫
Rd

∑
k

∫ tk

tk+1

S(t− s)f(S(s)δ0) ds

≥
∑
k

f(φk)

∫ tk

tk+1

∫
Rd

S(t− s)χ√s ds

= ωd
∑
k

f(φk)

∫ tk

tk+1

sd/2 ds

= cωd
∑
k

f(φk)(t
(2+d)/2
k − t(2+d)/2

k+1 )

(tk = cφ
−2/d
k ) ≥ c′ωd

∑
k

f(φk)(φ
−p
k − φ

−p
k+1)

(φk+1 ≥ θφk) ≥ c′(1− θ−p)ωd
∑
k

f(φk)φ
−p
k =∞,

using (15). The proof of Theorem 4.1 will follow very similar lines.

Proof. (Theorem 4.1.) Define φk = c−1
d sk, and set

un(x) =
1

n2
αdnχ(1/αn) where αn = (n2φζn)1/d,

with ζn to be chosen later. Let

u0(x) =
∞∑

n=n0

un(x),

with n0 chosen such that

1

αn0

< δ0 :=
1

3
inf
x∈∂Ω
|x|.
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Note that 1/αn ≤ δ0 and so B1/αn+2δ0 ⊂ Ω for all n ≥ n0, and that

‖u0‖L1 ≤
∞∑
n=1

‖un‖L1 = ωd

∞∑
n=1

n−2 <∞.

Arguing as in the proof of Theorem 3.3, for any choice of n we have∫
Ω

u(t;u0) dx ≥
∫

Ω

∫ t

0

S(t− s)f(S(s)un) ds dx.

We now consider the action of the heat semigroup on the initial data
v0 = ψαdχ1/α. It follows from Lemma 2.1 with r = 1/α and δ = δ0 that

S(s)v0 ≥ cdψ
αd

(1 + α2s)d/2
χ(1/α)+

√
s,

so [S(s)v0](x) ≥ cdφk for

|x| ≤ 1

α
+
√
s while s ≤ tk = min

(
δ2

0,

(
ψ

φk

)2/d

− 1

α2

)
,

and this range is non-empty provided that φk ≤ ψαd.
Now for any 0 < t < δ2

0, using Corollary 2.2 we have∫
Ω

∫ t

0

S(t− s)f(S(s)v0) ds dx ≥
∑
k

∫
Ω

∫ tk

tk+1

S(t− s)f(S(s)v0) ds dx

=
∑
k

∫ tk

tk+1

∫
Ω

S(t− s)f(S(s)v0) dx ds

≥ c′
∑
k

f(cdφk)

∫ tk

tk+1

∫
Ω

S(t− s)χα−1+
√
s dx ds

≥ αdc
′
∑
k

f(cdφk)

∫ tk

tk+1

(
1

α
+
√
s

)d
ds

≥ c′′
∑
k

f(cdφk)

∫ tk

tk+1

sd/2 ds,

where the sum in k is taken over those values for which

1

αd
≤ ψ

φk
≤
(
t+

1

α2

)d/2
.
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Let us consider k that satisfy this requirement and the additional con-
straint that φk+1/α

dψ ≤ 1/2. For each such k we have∫ tk

tk+1

sd/2 ds =
2

2 + d
(t
d/2+1
k − td/2+1

k+1 )

=
2

2 + d


[(

ψ

φk

)2/d

− 1

α2

]d/2+1

−

[(
ψ

φk+1

)2/d

− 1

α2

]d/2+1


=
2

2 + d

(
ψ

φk

)1+2/d
(1−

(
φk
αdψ

)2/d
)d/2+1

−φ
1+2/d
k

φ
1+2/d
k+1

(
1−

(
φk+1

αdψ

)2/d
)d/2+1


≥ 2

2 + d

(
ψ

φk

)1+2/d
(

1− φ
1+2/d
k

φ
1+2/d
k+1

)(
1−

(
φk+1

αdψ

)2/d
)d/2+1

≥ σ

(
ψ

φk

)1+2/d

,

using the facts that φk+1 ≥ θφk and φk+1/α
dψ ≤ 1/2. So certainly∫

Ω

∫ t

0

S(t− s)f(S(s)v0) ds ≥ c′′σ
∑
k

f(cdφk)

(
ψ

φk

)1+2/d

= c′′′ψp
∑
k

f(sk)s
−p
k ,

where the sum is taken over{
k :

2

αd
≤ ψ

φk+1

<
ψ

φk
≤
(
t+

1

α2

)d/2}
. (17)

For any fixed t with 0 < t < δ2
0, once n is sufficiently large that tn4/d ≥ 1

the set in (17) with ψ = n−2 and α = αn = (n2φζn)1/d certainly contains

{k : 1 ≤ φk and φk+1 ≤ 1
2
φζn} = {k : k0 ≤ k ≤ kn},

where k0 is the smallest value of k for which φk ≥ 1 and by choosing ζn such
that φkn+1 ≤ 1

2
φζn we can achieve any desired sequence kn.

15



Since
∑∞

k=1 f(sk)s
−p
k =∞ (by (15)) we can choose kn such that

n−2p

kn∑
k=k0

f(sk)s
−p
k

diverges as n→∞.

We note that if we assume in addition that f(s) ≥ cs for some c > 0,
then under the conditions in Theorem 4.1 there is in fact no local integral
solution of (16). Indeed, suppose that there is a local integral solution u :
Ω × [0, T ) → [0,∞). Then by Definition 3.1, u is finite almost everywhere
on Ω × [0, T ). Since all our estimates are performed within Bδ0 , we have in
fact shown that there is a ball B ⊂ Ω and a time δ2

0 > 0 such that∫
B

u(y, s) dy =∞ for all s ∈ (0, δ2
0).

Now fix τ = min(T, δ2
0) and choose any (x, t) ∈ B× [τ/2, τ ]. Since u satisfies

(8),

u(x, t) ≥
∫ t

0

∫
Ω

K(x, y; t− s)f(u(y, s)) dy ds

≥ c

∫ τ/4

0

∫
B

K(x, y; t− s)u(y, s) dy ds,

using the assumption that f(s) ≥ cs. For s ∈ [0, τ/4] and t ∈ [τ/2, τ ] we
have t−s ∈ [τ/4, τ ]. By the continuity and positivity of K there exists κ > 0
such that

K(x, y;σ) ≥ κ for all (x, y, σ) ∈ B ×B × [τ/4, τ ],

whence

u(x, t) ≥ cκ

∫ τ/4

0

∫
B

u(y, s) dy ds =∞.

Therefore u = ∞ on B × [τ/2, τ ], contradicting the requirement that u is
finite almost everywhere on Ω× [0, T ).
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4.2. An equivalent integral condition for blowup

Since the condition in (15) is potentially awkward to check in practice,
we now formulate an equivalent integral condition. Note that when f(s)/s
is non-decreasing, the integral condition in (ii) of the lemma below becomes
the more conventional ∫ ∞

1

s−(1+p)f(s) ds =∞.

Lemma 4.2. Suppose that f : [0,∞)→ [0,∞) is non-decreasing and p > 1.
Then the following two conditions are equivalent.

(i) There exists a sequence {sk} such that sk+1 ≥ θsk, θ > 1 and

∞∑
k=1

s−pk f(sk) =∞.

(ii)

∫ ∞
1

s−pF (s) ds =∞, where F (s) = sup
1≤t≤s

f(t)

t
.

Proof. First we show that (i) implies (ii). We can augment the sequence {sk}
to a new sequence σk so that we still have

∞∑
k=0

σ−pk f(σk) =∞

but now in addition, choosing 1 < α < p, we can ensure that

1 < θ ≤ σk+1

σk
≤ θα,

by including points θjsk until sk+1 ≤ θj+αsk.

17



Setting σ0 = 1 we can write∫ ∞
1

s−pF (s) ds =
∞∑
k=0

∫ σk+1

σk

s−pF (s)

≥
∞∑
k=0

∫ σk+1

σk

s−pF (σk) ds

≥ 1

p− 1

∞∑
k=0

(σ
−(p−1)
k − σ−(p−1)

k+1 )
f(σk)

σk+1

=
1

p− 1

∞∑
k=0

σ−pk f(σk)

{
σk
σk+1

− σpk
σpk+1

}
≥ 1

p− 1
(θ−α − θ−p)

∞∑
k=0

σ−pk f(σk),

from which (ii) follows.
We now show that (ii) implies (i). Choose θ > 1 and for k = 0, 1, 2, . . .

let σk = θk; note that F (s) ≤ F (σn+1) for all s ∈ (σn, σn+1]. There exists a
sequence {kn} with kn ≤ n and kn+1 ≥ kn such that F (σn+1) = f(τn)/τn for
some τn ∈ (σkn , σkn+1]. Thus

F (s) ≤ F (σn+1) ≤ f(σkn+1)

σkn
for all s ∈ (σn, σn+1].

Therefore∫ ∞
1

s−pF (s) ds =
∞∑
n=1

∫ σn+1

σn

s−pF (s) ds ≤
∞∑
n=1

f(σkn+1)

σkn

∫ σn+1

σn

s−p ds.

Now observe that there is an increasing sequence nj such that

knj
= kn < knj+1

for n = nj, . . . , nj+1 − 1,
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and so

∞∑
n=1

f(σkn+1)

σkn

∫ σn+1

σn

s−p ds =
∑
j

f(σknj +1)

σknj

∫ σknj+1

σknj

s−p ds

<
∑
j

f(σknj +1)

σknj

∫ ∞
σknj

s−p ds

≤ 1

p− 1

∞∑
n=1

f(σknj +1)

σknj

σ1−p
knj

=
θp

p− 1

∞∑
j=1

σ−pknj +1f(σknj +1).

Taking sj = σknj +1 yields (i).

4.3. An integral condition for local existence

We now show that the integral condition in (ii) of Lemma 4.2 is sufficient
for the L1 local existence property. We will use the following theorem from
Robinson & Sierże↪ga [19] (Theorem 1, after Weissler [25]) which guarantees
the existence of a solution u(t) of (1) given the existence of a supersolution
v(t), i.e. a function satisfying (18). For later use we remark that Ω = Rd, with
S(t) denoting the action of the heat semigroup (defined by convolution with
the Gaussian kernel) is an admissible choice in Theorem 4.3 (see discussion
in the ‘Final comments’ in [19]).

Theorem 4.3. Take u0 ≥ 0. If f : [0,∞) → [0,∞) is continuous and
non-decreasing and there exists a v ∈ L1((0, T )× Ω) such that

S(t)u0 +

∫ t

0

S(t− s)f(v(s)) ds ≤ v(t) for all t ∈ [0, T ] (18)

then there exists a local integral solution u of (1) on [0, T ] with u(x, t) ≤
v(x, t) for all x ∈ Ω and t ∈ [0, T ].

This theorem is proved by constructing a sequence of supersolutions vn(t)
defined by setting v0(t) = v(t) and

vn+1(t) = F (vn) := S(t)u0 +

∫ t

0

S(t− s)f(vn(s)) ds.
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Such a sequence is monotonically decreasing, is bounded below by S(t)u0,
and hence has a pointwise limit u(t) which can be shown to satisfy

S(t)u0 +

∫ t

0

S(t− s)f(u(s)) ds = u(t) for all t ∈ [0, T ]

using the Monotone Convergence Theorem.
Using this result we prove a local existence theorem; the argument is

adapted from the proof of Proposition 7.2 in Sierże↪ga [20]. Note that our
standing assumption that Ω is bounded is an important ingredient in the
proof, since we require χΩ ∈ L1(Ω).

Theorem 4.4. If f : [0,∞)→ [0,∞) is continuous, non-decreasing, and∫ ∞
1

s−(1+2/d)F (s) ds <∞, where F (s) = sup
1≤t≤s

f(t)

t
(19)

then for every non-negative u0 ∈ L1(Ω) there exist a T > 0 such that (10)
has a solution

u ∈ L∞loc((0, T );L∞(Ω)) ∩ C0([0, T ];L1(Ω)).

In particular, (10) has the local L1 existence property.

Proof. If u0 = 0 then v(t) ≡ χΩ is a supersolution, since

S(t)u0 +

∫ t

0

S(t− s)f(S(s)χΩ) ds ≤
∫ t

0

S(t− s){f(1)χΩ} ≤ tf(1)χΩ ≤ χΩ

for all t sufficiently small.
To treat u0 6= 0, define f̃(s) = f(s) for s ∈ [0, 1] and f̃(s) = sF (s) for

s > 1. Then f(s) ≤ f̃(s) and f̃(s)/s : [1,∞)→ [0,∞) is non-decreasing. In
particular, any supersolution for the equation

ut −∆u = f̃(u) (20)

is also a supersolution for (10), and therefore to show that (10) has a solution
it suffices to find a supersolution for (20).

Rewritten in terms of f̃ , the integral condition in (19) becomes∫ ∞
1

s−(2+2/d)f̃(s) ds <∞,
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and after the substitution s = τ−d/2 we obtain∫ 1

0

τ d/2f̃(τ−d/2) dτ <∞.

We now show that for any A > 1, v(t) = AS(t)u0 +χΩ is a supersolution
of (20) on some suitable time interval, i.e. satisfies the condition (18) in
Theorem 4.3. In order to do this, first recall the smoothing estimate

‖S(t)u0‖L∞ ≤ t−d/2‖u0‖L1

(see Lemma 7 in Brezis & Cazenave [3], for example).
We therefore obtain

S(t)u0 +

∫ t

0

S(t− s)f̃(v(s)) ds = S(t)u0 +

∫ t

0

S(t− s)f̃(AS(s)u0 + 1) ds

= S(t)u0 +

∫ t

0

S(t− s)

(
f̃(AS(s)u0 + 1)

AS(s)u0 + 1

)
(AS(s)u0 + 1) ds

≤ S(t)u0 +

∫ t

0

S(t− s)

∥∥∥∥∥ f̃(AS(s)u0 + 1)

AS(s)u0 + 1

∥∥∥∥∥
L∞

(AS(s)u0 + 1) ds,

where for notational convenience we have written 1 in place of χΩ. Since the
L∞ norm is a scalar constant and S(t− s) is linear, it follows that

F (v)(t) ≤ S(t)u0 +

{∫ t

0

∥∥∥∥∥ f̃(AS(s)u0 + 1)

AS(s)u0 + 1

∥∥∥∥∥
L∞

ds

}
[AS(t)u0 + χΩ],

as S(t)χΩ ≤ χΩ for all t > 0. Now, using the fact that f̃(s)/s is non-
decreasing for s ≥ 1,

F (v)(t) ≤ S(t)u0 +

{∫ t

0

f̃(‖AS(s)u0 + 1‖L∞)

‖AS(s)u0 + 1‖L∞
ds

}
[AS(t)u0 + χΩ]

≤ S(t)u0 +

{∫ t

0

f̃(2As−d/2‖u0‖L1)

2As−d/2‖u0‖L1

ds

}
[AS(t)u0 + χΩ],

for t sufficiently small, since

‖AS(s)u0 + 1‖L∞ = ‖AS(s)u0‖L∞ + 1 ≤ As−d/2‖u0‖L1 + 1 ≤ 2As−d/2‖u0‖L1
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for s sufficiently small.
Therefore F (v)(t) is bounded above by

S(t)u0+(2Ac‖u0‖L1)2/d

(∫ t(2Ac‖u0‖L1 )−2/d

0

τ d/2f̃(τ−d/2) dτ

)
[AS(t)u0 + χΩ]

≤ AS(t)u0 + χΩ,

provided that t is sufficiently small. Local existence of a solution u(t) with
u(t) ≤ v(t) = AS(t)u0 + χΩ now follows from Theorem 4.3. That u(t)
is bounded in L1(Ω) now follows from Theorem 4.3. It follows that u ∈
L∞loc((0, T );L∞(Ω)), i.e. is a classical solution. Then from the integral con-
dition on f , f(u) ∈ L1((0, T );L1(Ω)), whence from (8) it follows that u ∈
C0([0, T ];L1(Ω)).

We have therefore obtained the following characterisation of those f for
which there is local existence in L1(Ω).

Corollary 4.5. If f : [0,∞)→ [0,∞) is continuous and non-decreasing then
(10) has the local L1 existence property if and only if∫ ∞

1

s−(1+2/d)F (s) ds <∞, where F (s) = sup
1≤t≤s

f(t)

t
.

We note that one can apply the ‘local existence’ part of this character-
isation (i.e. Theorem 4.4) to a nonlinearity g that is not non-decreasing by
finding a non-decreasing function f(s) such that g(s) ≤ f(s), applying The-
orem 4.4 and then deducing local existence by comparison. The example of
the following section provides an example of this along with an illustration
of the application of Corollary 4.5.

4.4. An example: f(s) = s1+2/d/[log(e + s)]β

We mentioned before the proof of Theorem 4.1 that the family of nonlin-
earities

f(s) =
sp

[log(e + s)]β
, p = 1 + 2/d, β ≥ 0,

provides an interesting set of examples, particularly in the light of the (erro-
neous) expectation that f(s) = s1+2/d lies on the ‘boundary’ between those
functions for which (1) does and does not have the local L1 existence prop-
erty.
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Strictly, such a function f only falls within the scope of our results when
it is non-decreasing, which occurs if and only if β ≤ λp, where λ ' 3.15 is
the largest positive root of the equation ex = e2x. It follows from Corollary
4.5 that

(i) if 0 ≤ β ≤ 1 then (1) does not have the L1 local existence property;

(ii) if 1 < β ≤ λp then (1) does have the L1 local existence property;

and since although when β > λp the function f(s) is not monotone, it is
bounded above by the monotone sp/ log(e + s)λp, which provides a superso-
lution and hence (see Theorem 6.2 in Sierże↪ga [20], for example)

(iii) if β > λp then (1) does have the L1 local existence property;

Within this family the function f(s) = sp/ log(e + s) lies on the ‘bound-
ary’. Obviously one could refine this with the addition of an arbitrary number
of repeated logarithms.

5. Results for the whole space and for Neumann boundary condi-
tions

It is worth remarking that since they rely only on Gaussian lower bounds
for the Dirichlet heat kernel, the non-existence results of Theorems 3.3 and
4.1 are valid with essentially the same proofs for the equations posed on
the whole space Rd. They are also valid for Neumann boundary conditions
(∂u
∂n

= 0 on ∂Ω), since

KΩN
(x, y; t) ≥ KΩD

(x, y; t), x, y ∈ Ω, t > 0,

where ΩN and ΩD denote the Neumann and Dirichlet heat kernels, respec-
tively (the proof follows by comparison, or one can use probabilistic methods,
see Corollary 2.5 in [21], for example).

However, local existence results on the whole space require some ad-
ditional assumptions. It is easy to see that if f(0) 6= 0 then any non-
negative initial condition gives rise to a solution that is not in Lq(Rd) for
any q ∈ [1,∞). Indeed, since then u(t) ≥ 0 for all t ≥ 0 we have

u(t) ≥
∫ t

0

S(t− s)f(u(s)) ds ≥
∫ t

0

S(t− s)f(0) ds = tf(0) /∈ Lq(Rd).
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We also require a ‘bounded derivative at zero’ condition, namely

lim sup
s→0

f(s)

s
<∞. (21)

Without this condition we can find a non-negative u0 ∈ Lq(Rd) for which the
solution is not bounded in Lq(Rd) for all t > 0.

Indeed, if (21) does not hold then there exist sn → 0 such that sn ≤ n−2

and f(sn) ≥ n2sn. Consider initial data

u0 =
∞∑
n=1

c−1
d snχn−2/ds

−q/d
n

(xn)

where the xn are chosen such that B(xn, n
−2/ds

−q/d
n ) are disjoint. Note that

‖u0‖Lq <∞ and that n−2/ds
−q/d
n ≥ 1.

Then

S(s)u0 ≥
∞∑

n=n0

snχn−2/ds
−q/d
n

(xn)

for all s ≤ 1. So for t ≤ 1 we have

u(x, t) ≥
∫ t

0

∞∑
n=1

S(t− s)n2snχn−2/ds
−q/d
n

(xn) ds

≥
∫ t

0

∞∑
n=1

cdn
2snχn−2/ds

−q/d
n

(xn) ds

= tcd

∞∑
n=1

n2snχn−2/ds
−q/d
n

(xn)

and so∫
Rd

|u(x, t)|q dx ≥ ωd(tcd)
q

∞∑
n=1

n2qsqnn
−2s−qn = ωdtcd

∞∑
n=1

n2(q−1) =∞.

Now, for q > 1 if we have, with p = 1 + 2q/d,

lim sup
s→∞

s−pf(s) <∞ and lim sup
s→0

f(s)

s
<∞

24



then
f(s) ≤ C(s+ sp)

for some C > 0. For f(s) = C(s+sp) we can guarantee the local Lq existence
property on Rd as follows. First, results guaranteeing the Lq local existence
property on the whole space when f(s) = 2Csp can be found in Weissler
[23, 24] (the analysis there is valid on the whole space), Theorem 1 in Giga
[10], or Robinson & Sierże↪ga [19] (see ‘Final comments’). So given a non-
negative u0 ∈ Lq(Rd), let u(t) be the local Lq solution obtained in this way.
Now define v(t) = e2Ctu(t). Then

vt −∆v = 2Ce2Ctu+ e2Ct(ut −∆u)

= 2Ce2Ctu+ e2Ct2Cup

= 2C(v + (e2Ct)1−pvp)

≥ C(v + vp)

provided that (e2Ct)1−p ≥ 1/2. This is legitimate since v is a strong, classical
solution for t > 0. It then follows easily that v is a supersolution in the
integral sense of Theorem 4.3 on some small time interval. The existence of
such a supersolution, which is bounded in Lq(Rd), then implies the existence
of a solution bounded in Lq(Rd) using Theorem 4.3.

For q = 1 local existence follows from the arguments in Theorem 4.4, now
taking

F (s) = sup
0≤t≤s

f(t)

t

and observing that if u0 ≥ 0 and is non-zero then S(t)u0 > 0 for all t > 0 (this
follows immediately from the expression for S(t)u0 in terms of the Gaussian
kernel). (If u0 = 0 then obviously u(t) = 0 is a solution since f(0) = 0 by
the limsup condition at s = 0.)

We summarise formally in the following theorem.

Theorem 5.1. Let f : [0,∞) → [0,∞) be continuous and non-decreasing
and let Ω = Rd. Then

(i) for q ∈ (1,∞) equation (1) has the local Lq existence property if and
only if

lim sup
s→0

f(s)

s
<∞ and lim sup

s→∞
s−(1+2q/d)f(s) <∞;
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(ii) equation (1) has the local L1 existence property if and only if

lim sup
s→0

f(s)

s
<∞ and

∫ ∞
1

s−(1+2/d)F (s) ds <∞,

where F (s) = sup0≤t≤s
f(t)
t

.

6. Concluding remarks

We have completely characterised those non-negative, non-decreasing,
continuous functions f for which the equation

ut −∆u = f(u), u|∂Ω = 0, u(0) = u0 ∈ Lq(Ω), u0 ≥ 0,

has at least one local solution that is bounded in Lq(Ω). For 1 < q <∞ this
occurs if and only if

lim sup
s→∞

s−(1+2q/d)f(s) <∞,

while for q = 1 this occurs if and only if∫ ∞
1

s−(1+2/d)

(
sup

1≤t≤s

f(t)

t

)
ds <∞. (22)

We have also given results for the equations on the whole space Rd and for
the Neumann problem on a bounded domain.

The non-existence parts of our arguments are perhaps the most novel,
using lower bounds on the Dirichlet heat kernel due to van den Berg [21, 22]
to give lower bounds on solutions of the heat equation with characteristic
functions as initial data, and hence lower bounds on solutions of the semi-
linear problem. The L1 case behaves very differently from the problem in
spaces with higher integrability, with the appearance of the upper bound

sF (s) = s sup
1≤t≤s

[f(t)/t]

in both the blowup and existence criteria something of a surprise.
An open question left by our Lq-based analysis is whether we have ‘strong

blowup’, u(t) /∈ Lq for all t > 0, when q > 1 and

lim sup
s→∞

s−γf(s) =∞, γ ∈ [1 + 2q/d, q(1 + 2/d)],
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or whether there is a true transition from such strong blowup (obtained in
[15] for γ > q(1 + 2/d) to only the unbounded behaviour lim supt→0 ‖u(t)‖Lq

(obtained here in Theorem 3.3 when γ = 1 + 2q/d). A related question is
whether it is possible to exclude the existence of local integral solutions for
a wider class of f than we do in the discussion at the end of Section 4.1 (we
currently require f(s) ≥ Cs for some C > 0).

The relationship between our results and those of Baras & Pierre [2],
who provide a necessary and sufficient condition for local existence for given
initial data u0 ∈ L1

loc(Ω) when f : [0,∞) → [0,∞) is a convex function
with f(0) = 0, is unclear. For convex f it should be possible to obtain our
necessary and sufficient condition for the L1 existence property for L1 data
(22) from their condition. However, we think that the straightforward nature
of our argument and its wider applicability is a major strength, and we have
not attempted this analysis.

It would be interesting to attempt to prove similar characterisation results
in other scales of spaces, such as Sobolev spaces or Besov spaces. These would
require different techniques, given that our current arguments do not take
into account the smoothness of solutions but only their integrability.

Seeking generalisation in a different direction, one could ask whether there
is a way of identifying the critical Lebesgue space for the more general class
of positive but not necessarily monotone f , or even for general f with sign-
changing initial data.

Finally, we note that we have not attempted here to consider the problem
of uniqueness. For the nonlinearity f(u) = |u|p−1u Ni & Sacks [17] proved
non-uniqueness for the critical value of p (Theorem 3); see also Matos &
Terraneo [16] and Haraux & Weissler [11]. It would be interesting to see
whether it is possible to obtain an exact characterisation of those f that
admit unique solutions, perhaps based on asymptotic conditions generalising
(2) in the way that our conditions for local existence generalise the growth
rates of the canonical example f(u) = |u|p−1u.
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