
Computer Vision and Image Understanding 148 (2016) 136–152 

Contents lists available at ScienceDirect 

Computer Vision and Image Understanding 

journal homepage: www.elsevier.com/locate/cviu 

A comparative study of pose representation and dynamics modelling for 

online motion quality assessment 

Lili Tao , Adeline Paiement , Dima Damen , Majid Mirmehdi ∗, Sion Hannuna , Massimo Camplani , 
Tilo Burghardt , Ian Craddock 

Faculty of Engineering, University of Bristol, Bristol BS8 1UB, United Kingdom 

a r t i c l e i n f o 

Article history: 

Received 28 March 2015 

Accepted 28 November 2015 

Keywords: 

Human motion quality 

Human motion assessment 

Continuous-state HMM motion analysis 

Motion abnormality detection 

a b s t r a c t 

Quantitative assessment of the quality of motion is increasingly in demand by clinicians in healthcare and 

rehabilitation monitoring of patients. We study and compare the performances of different pose representa- 

tions and HMM models of dynamics of movement for online quality assessment of human motion. In a general 

sense, our assessment framework builds a model of normal human motion from skeleton-based samples of 

healthy individuals. It encapsulates the dynamics of human body pose using robust manifold representation 

and a first-order Markovian assumption. We then assess deviations from it via a continuous online measure. 

We compare different feature representations, reduced dimensionality spaces, and HMM models on motions 

typically tested in clinical settings, such as gait on stairs and flat surfaces, and transitions between sitting and 

standing. Our dataset is manually labelled by a qualified physiotherapist. The continuous-state HMM, com- 

bined with pose representation based on body-joints’ location, outperforms standard discrete-state HMM 

approaches and other skeleton-based features in detecting gait abnormalities, as well as assessing deviations 

from the motion model on a frame-by-frame basis. 

© 2015 The Authors. Published by Elsevier Inc. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 
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1. Introduction 

Modelling and analysing human motion have been subject to ex-

tensive research in computer vision, in terms of feature extraction [1] ,

action representation [2,3] , action recognition [4,5] , and abnormality

detection [6] . While such works mostly apply to the challenging tasks

of motion and action detection and recognition, only a few manage

to provide a quantitative assessment of human motion quality . Such

assessment aims at quantifying the motion quality from a functional

point of view by assessing its deviation from an established model.

This has potential use in many scenarios, for example, in sport

applications [7] , and for physiotherapists and medics [8] , who may,

for example, estimate the normality of human movement, possibly

relative to a specific age group, or to quantify the evolution of their

mobility during rehabilitation with respect to a personalized, preop-

erative model. Interestingly, physiotherapists assess human motion

by visually observing a person’s ability to perform vital movements , such

as walking on a flat surface, sitting down, and gait on stairs, by rating

the deviation from a normal movement using standard scores [9,10] .

These well established scores are subjective and are insufficient to
∗ Corresponding author.Fax: +441179545209. 
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ffectively monitor patients on a regular basis, as they can only be

sed by well-trained specialists and thus require the patients to be

valuated in clinical practices. Automated motion quality assessment

an help in obtaining a more quantitatively accurate and temporal

inter-person and intra-person) comparative measure. It would

lso be essential for continuous assessment outside of a clinic, for

xample for use in the home for health and rehabilitation monitoring.

In addition to providing an overall score of ‘normality’, an online

ssessment measure can provide an immediate estimation of what

arts of the motion deviate from normal, towards a more detailed

nderstanding of the quality of the motion. The nature of online mea-

ures also enables assessing the motion before it has completed, thus

llowing to trigger alerts, such as fall prevention in cases of unusually

nstable gait. 

This paper details and evaluates a method, first introduced in [11] ,

or online estimation of the quality of movement from Kinect skele-

on data, and presents its application to clinic-related movement

ypes. To enable such an online assessment, a few challenges have

een dealt with: (1) motion-related features are extracted from skele-

on data and compacted into a lower-dimensional space to produce a

impler and more appropriate representation of pose, (2) a statistical

odel of human motion, that encapsulates both the appearance and

he dynamics of the human motion, is learnt from training data of

ultiple individuals, suitable for periodic and nonperiodic motions,
r the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 
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1 Microsoft Kinect 2, released in 2014, uses time-of-flight technology. 
3) an online quantitative assessment of motion is obtained by refer-

nce to the learnt model, which evaluates deviations in both appear-

nce and dynamics on a frame-by-frame basis. 

In [11] , we proposed a framework in order to address these

hallenges, where we extracted 3D joint positions as a low-level

eature, reduced their dimensionality while capturing their non-

edundant information using a modified diffusion maps manifold

ethod (challenge 1 above), modelled human movement with re-

pect to a custom-designed statistical model (challenge 2), and eval-

ated the movement from an online measure based on the likelihood

f the new observation to be described by such a model (challenge 3).

This paper updates and expands the work in [11] , providing

ore thorough comparative evaluations of its framework and a

omprehensive assessment of its individual modules, with the

ollowing additions: (a) in order to both demonstrate the versatility

f our framework and further evaluate it, we apply our method to

 variety of movement types, both periodic and non-periodic. (b)

e show that the statistical model we introduced in [11] is in fact

 continuous-state HMM, and we put it in perspective with more

onventional variations of general HMM-based models. In particular,

e compare their respective suitability to the task of capturing the

ynamics of movements. (c) We assess what is the optimal pose

epresentation for our HMM-based model of dynamics. First, as well

s the joint position feature extracted from the skeleton data, we

ropose and compare against additional possible low-level skeletal

eatures as some are more suitable for certain HMM models and

or describing certain motions. Second, we investigate the optimum

umber of dimensions required in the manifold representations

or describing the various low-level features. We also evaluate how

he optimal pose representation varies with motion type. (d) We

nvestigate whether the use of full-body information is beneficial for

uilding pose representations, in particular for movements that are

raditionally studied using partial-body information such as joints in

he analysis of gait. (e) We propose a new online measure for quality

ssessment, and we compare it with the measure presented in [11] . 

Evaluation is performed on clinic-related motions of gait on stairs,

alking on a flat surface, and transitions between sitting and stand-

ng – actions that are particularly relevant to the assessment of lower-

xtremity injuries. On the basis of testing on the dataset released

n [11] , a variety of common lower-extremity injuries are included

n the test sequences. The groundtruth is labelled by a qualified

hysiotherapist. 

Next, a review of the existing literature is provided in Section 2 .

ection 3 describes the framework for assessing the quality of a

ovement from skeleton data, introducing four variations of HMM

echniques that are tested on our dataset. The experimental results

re presented in Section 6 , followed by a discussion and conclusion. 

. Related work 

To consider the state-of-the-art, we now review related works on

obust feature extraction from skeleton data, building a model of hu-

an motion from training data, and motion abnormality detection

nd quality of motion assessment, from both computer vision and

linical points of view. 

.1. Skeleton data from the depth sensors 

A large number of studies have attempted to efficiently extract

eatures from RGB images for analysing human actions, e.g. see [3] ,

ut RGB data is highly sensitive to view-point variations, human

ppearance, and lighting conditions. Recently, depth sensors have

elped to overcome some of these limitations. Two commercially

vailable devices are the Microsoft Kinect and Asus Xmotion, for
hich the depth is computed from structured light 1 . These sensors

ave become popular for modelling and analysing human motion, for

xample in [12] , Uddin et al. extracted features from depth silhou-

ttes using Local Directional Patterns and applied Principal Compo-

ent Analysis (PCA) to reduce the dimensionality of their data. More

ommonly, motion analysis works exploit skeleton information de-

ived from depth. Using random forests, 3D human skeletons are es-

imated at each frame from depth data by the Microsoft Kinect SDK

13] (for 20 joints) or by the OpenNI SDK [14] (for 15 joints). A human

ody pose can be well-represented as a stick figure made up of rigid

egments connecting body joints. In this work, we use the OpenNI

DK to estimate skeleton data, as illustrated in Fig. 1 . We focus next

n methods that are based on skeleton features and refer the reader

o a recent survey on non-skeleton features in [2] . 

Existing skeleton-based approaches have either used the full set

f joints for general action recognition [15–18] or a subset chosen de-

ending on the specific action/application [8,19] . In [19] , only hips,

nees, ankles and feet joints were used for detecting abnormal events

uring stair descent. The method in [8] used feet joints along with

he projection of hand and torso joints for evaluating musculoskele-

al disorders on patients who suffer from Parkinson’s Disease (PD).

o avoid action-specific approaches, we use the full set of joints along

ith dimensionality reduction techniques, explained next. 

obust feature extraction from skeleton data 

A variety of low-level features have been used to represent the

keleton data: body joint locations [20] , body joint velocities [17] ,

ody joint orientations [16] , relative body joint positions [18] , rigid

egment angles [21] and transformations (rotations and translations)

etween various body segments [15] . Some of these proposed fea-

ures may be more suitable for describing certain motions than oth-

rs, e.g. the relative position and orientation between head and foot

ay provide sufficient description for the ‘sitting’ motion for some

pplications. 

The high dimensionality of full-body skeleton data contains

edundant information when modelling human motion, as will

e demonstrated in Section 3.2 . It is thus possible to employ di-

ensionality reduction methods to capture the intrinsic body

onfiguration of the input data. It is common to apply linear PCA for

imensionality reduction in appearance modelling, however, human

otion represented by skeleton data is highly non-linear and the

apping between the original data space and the reduced space

s better described by non-linear mapping. Non-linear manifold

earning methods have therefore been exploited for human motion

ecognition [22] , such as locality preserving projections (LPP) [23]

nd isometric feature mapping (ISOMAP) [24] . 

While these approaches achieve dimensionality reduction for

on-linear data, they are not necessarily unerring in handling outliers

nd/or very noisy data. The estimated skeleton will often be noisy. In

act the Kinect’s skeleton pose estimation has mostly been trained

or poses required for a gaming platform [25] . In case of occlusion

r self-occlusion, the positions of joints are only roughly estimated

 Fig. 1 d, e). Furthermore, we are using the Kinect on a non-planar

urface which does lead to less efficient skeleton proposals from the

evice. Some motion analysis approaches, such as [8] , convolved the

eature subspace with a Gaussian filter to achieve temporal smooth-

ess. Others re-trained the pose estimator, e.g. for sign-interpreted

esture recognition [26] . 

Reducing the dimensionality of noisy data is still a challenging

roblem. Gerber et al. [27] introduced an extension of Laplacian

igenmaps to cope with noisy input data, but such representation de-

ends on the density of the points on the manifold, which may not be

uitable for non-uniformly sampled data, such as skeleton data. 
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Fig. 1. RGB-D data and skeletons at bottom, middle, and top of the stairs ((a) to (c)), and examples of noisy skeletons ((d) and (e)). 
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2.2. Human motion modelling 

Human motion (e.g. walking, jumping, sitting, kicking) typically

consists of one or more body-part configurations that occur in a

predefined order and could be periodic (e.g. walking, waving). A

model of human motion thus often incorporates the related body-

part configurations as well as temporal modelling of transitions

and durations of these configurations. In the literature, there have

been various approaches for the modelling of human motion. Only a

few works model motions in order to assess their quality, while the

majority build motion models for supervised recognition of actions

(i.e. classifying the motion into a set of predefined labels). The mod-

elling requirements may differ between these two tasks, for example

in the sensitivity to modelling motion and sub-motion durations.

Nevertheless, we review here the main works on modelling human

motion regardless of their application. 

Motion can be analysed by providing spatio-temporal features to a

classifier. In [19] , such features were extracted from lower body joints

to train a binary classifier in order to distinguish abnormal motions

from normal. These features can be made up of 3D XY-Time volumes

computed from RGB [28] and depth images [29] . However, spatio-

temporal volume representations are not suitable for online analysis

as the motion analysis can only take place once the full motion se-

quence is observed. 

Motion can also be seen as a sequence of body-part configura-

tions. Dynamic Bayesian networks, such as Hidden Markov models

(HMMs) and their variations, are the most popular generative models

for sequential data and have been successfully used as probabilistic

models of human motion, e.g. human gait [16,30,31] . In HMMs,

each hidden state is associated with a collection of similar body

poses and a transition model encapsulates sequences of body-part

configurations. The most common HMM model is one that uses a

fixed number of discrete states, known as the classical HMM, along

with a discrete observation model. This has been used to recognise

10 basic actions in [16] , and to classify motions between normal and

abnormal in [12] . Continuous HMMs, which also use discrete states

but continuous observation models such as a mixture of Gaussians,

were used to recognise 22 actions in [31] and to distinguish normal

from abnormal motions in [32] . Particularly in [32] , optical flow

features, together with feet position and velocity, were used to detect

abnormalities during stairs descent from RGB data. The model uses
0 hidden states with full-covariance Gaussian mixture emissions

nd random initialisation of the EM algorithm. A single extra state

ith high covariance, low mixture proportion, and low transition

robabilities were added for regularisation. 

Apart from classical HMMs, extensions of HMMs introducing

ore flexible models have been widely applied. A hierarchical HMM

HHMM) was used in [33] along with a time-varying transition prob-

bility. Three-level hierarchies were implemented representing com-

osite actions, primitive actions and poses respectively. In [34] , a

actored-state HHMM was used to define each state as a hierarchy of

wo-levels for each action and tested on a dataset of 4 basic actions. 

For periodic motions, a cyclic HMM was tried on 4 basic actions

n [35] . HMM variations that model state durations are frequently

pplied in activity recognition where temporal dependencies can be

ound. For example, Duong et al. [36] modelled the duration of each

tomic action within an activity using a Coxian distribution, and thus

odelled the activity by an HMM with explicit state durations. To

he best of our knowledge, HMM modelling of state duration has never

een applied to the modelling of human motion. 

nline motion models 

Depending on the application, the analysis can be either run

ffline incorporating data across the motion sequence, or processed

nline analysing an incoming frame before the entire motion is

omplete. Online motion models are important for scenarios such

s surveillance, healthcare, and gaming. Most HMM-based motion

odelling approaches mentioned above require temporal segmen-

ation, and therefore are restricted to offline processing. The work in

33] dealt with online gesture recognition using a hierarchical HMM.

o achieve online recognition, the method extended the standard

ecoding algorithm to an online version using a variable window

37] , since the Viterbi algorithm cannot be directly applied to online

cenarios. 

Nowozin and Shotton [38] developed an online human action

ecognition system by introducing action points for precise temporal

nchoring of human actions. Recently, works based on incremental

earning have been applied to human motion analysis. In [39] , an

ncremental covariance descriptor and on demand nearest neighbour

lassification were used for online gesture recognition. Instead of

sing incremental features, the work in [40] proposes a general

ramework via nonparametric incremental learning for online action
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Fig. 2. Proposed pipeline for movement quality assessment: the dashed lines denote a 

learning phase that is performed off-line to create the two models represented by the 

dashed rectangles. 
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2 Although the performance of the OpenNI SDK skeleton tracker suffers severely 

when the subject is not facing the camera. 
ecognition which can be applied to any set of frame-by-frame

eature descriptors. 

.3. Quality of motion assessment 

We define the quality of motion as a continuous measure of the

bility of the person to perform the motion when compared to a ref-

rence motion model. Such a model represents the normal range of

otions (we simply refer to normal motion in the rest of the arti-

le.) for the relevant population group, or it could be a personalized

odel, and can be used to assess rehabilitation or pathological deteri-

ration in mobility of humans for healthcare purposes. For example,

uantitatively assessing the ability to balance on one leg following

 knee replacement surgery could be used to track a person’s reha-

ilitation. Similarly, Parkinson’s patients’ ability to stand up from a

itting position deteriorates with time, and continuous assessment of

his functionality is needed to evaluate the progress of the disease [8] .

he number of works targeting quality of motion are rare, with most

ttempting to perform abnormality detection as binary classification.

hus, we first briefly review some abnormality detection methods,

nd then focus on the small number of works on quantifying the de-

ree of abnormality in human motion. We finish by presenting the

urrent clinical approach for analysing motion quality. 

.3.1. Abnormality detection 

Abnormality detection methods build a binary classifier to

iscriminate between normal and abnormal instances. Two main

pproaches exist, those that assume prior knowledge of expected

bnormalities, and those that do not. In the first approach, the work

f [19] used two support vector machine (SVM) binary classifiers

hat recognised normal and abnormal motions respectively, based on

pace-time features. The approach was tested on stairs descent and

scent motions, and it labelled normal and abnormal motions (e.g.

all or slip) from the classifier with the strongest response. Similarly,

he work of [12] trained two HMMs on normal and abnormal gaits.

lassification was also based on comparing the likelihood of the test

equence using both of these HMM models. No clear definition of

abnormal’ was provided in [12] , and abnormalities encompassed a

ide range of anomalies. 

Abnormal motions may be highly variant and difficult to define

 priori. Most abnormalities are rare and difficult to capture dur-

ng training. The second approach, where there is no prior knowl-

dge of abnormalities, predicts them as variations from the model of

ormal motion, built solely from regular/normal examples. This ap-

roach thus aims to quantitatively estimate the dissimilarity from the

ormal model—a kind of novelty detection. While this is a sensible

ompromise, the motion model needs to capture as much variation

f normal motion examples as possible to avoid high false negative

ates. 

In [41] , hierarchical appearance and action models were built for

ormal movements to detect abnormalities from RGB silhouettes in a

ome environment. For both hierarchies, appearance and action, the

ntra-cluster distance within a node was used to set a threshold for

bnormalities. 

The work that is most closely related to ours is [32] which used

 single HMM for detecting abnormalities during stairs descent from

GB (only) data. The HMM was trained on sequences of normal

descending stairs’ motion, and a threshold on the likelihood was

elected to detect abnormal sequences. Their results showed their

ystem can successfully detect nearly all anomalous events for data

aptured in a controlled laboratory environment, but is highly reliant

n accurate feet tracking. 

.3.2. Quality assessment of motion 

Quality assessment focuses on calculating a discrete or continuous

core that measures the match between a motion and a pre-trained
odel. Wang et al. [8] presented a method for quantitatively eval-

ating musculoskeletal disorders of patients who suffer from PD.

ne motion cycle from the training data was selected as a reference,

nd all other cycles were aligned to the reference for encoding

he most consistent motion pattern. The method was tested for

alking, as well as standing up, motion on PD and non-PD subjects.

esults demonstrated that the method is able to quantify a clinical

easurement which reflects a subject’s mobility level. However, the

pecific features used (step size, arms and postural swing levels, and

tepping time) make it difficult to generalise to other motions. 

In a recent work on action assessment from RGB data, presented

n [7] , the quality assessment was posed as a supervised non-linear

egression problem. The method provided a feedback score on how

ne performs in sports actions, particularly diving and figure skating,

y comparing a test sequence with the labelled scores provided by

oaches. Training a regression model required a relatively large num-

er of labelled data points covering the spectrum of possible feedback

cores. 

In [11] , we proposed a continuous measure of motion quality,

omputed online, as the log-likelihood of a continuous-state HMM

odel. To the best of our knowledge, [11] is the first and only work to

ddress the problem of online quality assessment. 

. Proposed methodology 

In this section, we describe our pipeline for assessing the quality

f motion from skeleton data, as illustrated in Fig. 2 . Skeleton data are

rst obtained from the OpenNI SDK [14] . Then, a low-level feature ex-

raction stage ( Section 3.1 ) determines a descriptor from the skeleton

ata. This is followed by a dimensionality reduction step that is made

ess sensitive to noise and non-linear manifold learning ( Section 3.2 ).

n the reduced space, the significant and non-redundant aspects of

he pose and the dynamics of the motion are expected to be pre-

erved. A model of the motion is then learnt off-line from instances

f ‘normal motion’ ( Section 3.3 ). The quality of movement is assessed

y measuring the deviation of a new observation from the learned

odel ( Section 5 ). 

This pipeline was first presented in our previous work [11] where

nly one possible low-level skeleton feature and one possible mo-

ion model were discussed. Here, we introduce and compare differ-

nt low-level features, and we assess our motion modelling method

ith respect to more traditional discrete HMM-based models. 

.1. Skeleton data representation 

Skeleton data are view-invariant 2 and depth information allevi-

tes the effect of human appearance differences and lighting varia-

ions. As a first step, we apply an average filter over a temporal win-

ow for each joint position independently in order to compensate for

he high amount of noise typically found in OpenNI skeletons. 
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Fig. 3. First dimension of gait data in reduced space, using JP low-level feature. (a) original diffusion maps according to [27] , (b) robust diffusion maps according to [11] . 
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Given J joints, where J = 25 or J = 15 for skeletons from the

Microsoft Kinect2 SDK or OpenNI SDK respectively, and a pose
ˆ 
 = [ ̂ c 1 , . . . , ̂  c J ] 

T ∈ R 

3 J×1 comprising smoothed 3D positions ˆ c i in J ,

a normalised pose C = g( ̂  C ) is computed to compensate for global

translation and rotation of the view point, and for scaling due to

varying heights of the subjects. The normalising function g ( · ) could

be Procrustes alignment or other alignment approaches depending

on which feature is in use. Let F t be the low-level skeleton feature

at time t . Using features that previously appeared in works such as

[16–18,20] , we scrutinize four possible alternative feature descriptors

for normalised pose: 

1. Joint Positions (JP): concatenate and vectorise 3D coordinates

ˆ c i of all the joints at time t , to give features F t = C t . 

2. Joint Velocities (JV): concatenate and vectorise the 3D veloci-

ties of all the joints, to give features F t = C t − C t−1 . 

3. Pairwise Joint Distances (PJD): Given 3D positions of a

normalised pose, we calculate a J × J Euclidean distance

matrix between all pairs of joints where d i j = 

∥∥c i − c j 
∥∥.

Since this is a symmetric matrix with zero entries along

the diagonal, we obtain a J(J − 1) / 2 feature vector F t =
[ d 12 , . . . , d 1 J , d 23 , . . . , d (J−1) J ] 

T . The pairwise joint distances

give unique coordinate-free representation of the pose

kinematics. 

4. Pairwise Joint Angles (PJA): The Kinect skeleton of the human

body consists of J − 1 line segments connecting pairs of neigh-

bouring joints. Assuming the segment e i connects two joints J i 
and J i +1 , the Euler angle between two segments is computed

as ρi j = arccos ( 
e T 

i 
·e j 

‖ e i ‖ ‖ e j ‖ ) . Our feature vector F t is a (J − 1)(J −
2) / 2 vector that consists of all the Euler angles for all segments,

such that F t = [ ρ12 , . . . , ρ1(J−1) , ρ23 , . . . , ρ(J−2)(J−1) ] 
T . Concate-

nating all the Euler angles between any two body segments

captures the full 3D angles between body parts. 

In the rest of this paper, unless specified otherwise, these four fea-

ture descriptors are computed using all 25 or 20 body-joints from

Kinect2 SDK or OpenNI SDK, respectively, and so represent the whole

skeleton. 

3.2. Robust manifold learning 

As previously noted, skeleton data is highly redundant for mod-

elling motion and does not represent its true complexity. To reduce

the dimensionality of the low-level feature F i , we select a non-linear

manifold learning method - diffusion maps - which is a graph-based

technique with quasi-isometric mapping �, from original higher

space R 

N to a reduced low-dimensional diffusion space R 

n , where

n � N . Given a training set F , where F i ∈ F , the method is capable of

recovering the underlying structure of a complex manifold, has ro-

bustness to noise, and is efficient to implement when compared to

conventional non-linear dimensionality reduction methods [42] . 

Building diffusion maps requires computing a weighted adjacency

matrix W with the distances between neighbouring points weighted

by a Gaussian kernel G : 

w i, j = G 

(
F i , F j 

)
(1)
he optimal mapping � is obtained from the eigenvalues δ and the

orresponding eigenvectors ϕ of the Laplace-Beltrami operator L [42] ,

( F i ) �→ [ δ1 ϕ 1 ( F i ) , . . . , δn ϕ n ( F i ) ] 
T 

, (2)

etaining the first n eigenvectors (corresponding to the first n eigen-

alues). An approximation of the operator L is computed, following

43] , from the matrix W . However, skeleton data can suffer from a

elatively large amount of noise, and outliers, especially when parts

f the body are occluded. In [11] , we proposed a modification of the

riginal diffusion maps by adding an extension similar to that pro-

osed in [27] for Laplacian eigenmaps. We modified the entries of

he adjacency matrix as 

 i j = (1 − β) G ( F i , F j ) + βI( F i , F j ) 

ith I( F i , F j ) = 

{
1 , F i ∈ K i or F j ∈ K j 

0 , otherwise 
, (3)

here K i is a set of neighbours of F i , and I(�) is an indicator function

ith the weighting factor β that was introduced in [27] . The indi-

ator function avoids disconnected components in Laplacian eigen-

aps, thus reducing the influence of outliers. 

Fig. 3 illustrates the first dimension of the dimensionality reduced

P data for gait, clearly indicating that the original diffusion maps

ould not capture the intrinsic cyclic nature of the gait, while the

obust diffusion maps method better captures the periodicity of the

alking cycles. 

Mapping testing data - The Nyström extension [44] extends the

ow dimensional representation computed from a training set to new

amples, by evaluating the mapping of a new data F t as 

′ 
k (F t ) = 

∑ 

F i ∈ F 
L (F t , F i ) ϕ k (F i ) (4)

ith �′ 
k 
(F t ) the k th component of �′ ( F t ), k = 1 . . . n . The operator L ( F t ,

 i ) is obtained in the same fashion as in [43] , but based on our new

efinition of w i j with the added indicator function I(�) . We use this

apping O = �′ ( F t ) as our high-level feature for building a motion

odel. 

.3. Human motion modelling 

HMM-based methods can efficiently represent temporal dynam-

cs of motion, and later in Section 5 , we show how they naturally can

e applied to motion quality assessment. The term ‘continuous HMM’

s often used to refer to models where the observation vector is con-

inuous in R 

n [45,46] . As the observation space is continuous in our

ase, all the models presented next are in fact ‘continuous HMMs’,

ut we use only ‘HMM’ for brevity. 

Four variations of an HMM-based motion model are explained

ext in order of complexity and novelty of usage for human motion

odelling. Their main characteristics are summarised in Table 1 . 

otation. We use the following notation throughout the section.

uppose M is the number of possible states denoted S = { S 1 . . . S M 

} ,
here the state at time t is q t ∈ S . The M × M transition matrix

s A = 

{
a i j 

}
, where a i j = P 

(
q t = S j | q t−1 = S i 

)
, and let π = { πi } be

n initial state distribution, where π = P ( q = S ) . The observation
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Table 1 

Characteristics of the four HMM models. 

Model State type Modelling of time 

information 

(Continuous) 

Observation model 

Transition model 

λa Discrete None GMM Transition matrix 

learnt using the 

Baum–Welch 

method 

λb Discrete Explicit state 

duration 

λc Discrete, manually 

defined 

Explicit through the 

manual definition of 

the states 

SVM classifier 

λd Continuous Implicit within the 

internal state 

Parzen estimates of 

PDFs 

Analytical 

p  

P  

s  

b  

e  

w

3

 

fi  

w  

w  

G

b

w  

c  

o  

a  

a

P  

u  

m  

o

3

 

e  

t  

t  

p  

b  

a  

b

 

t  

t  

t  

{  

m  

a  

θ  

a  

s

 

t  

m  

l  

m

w  

s  

i  

l  

3

 

c  

t  

t  

m  

s  

w  

i  

a  

c  

d

 

j  

d  

t  

w  

[  

b  

b  

w  

p  

fi  

p  

P  

p

P  

T  

p

b  
robability distribution is denoted by B = 

{
b j ( O t ) 

}
, where b j ( O t ) =

 

(
O t 

∣∣q t = S j 
)
, j = 1 . . . N is the probability of observing O t when in

tate S j . For continuous observations, the observation probability

 j ( O t ) is defined as a probability density function (PDF). Here, differ-

nt continuous observation models are used for the four HMMs that

e now introduce. 

.3.1. Classical HMM 

We refer to an HMM with continuous observation densities and

nite number of discrete hidden states as a ‘classical’ HMM, in line

ith [45] . A classical HMM has three basic elements which can be

ritten in a compact form as λa = { A, B, π} . In our implementation,

aussian mixture models are used as the observation model: 

 j ( O t ) = 

I ∑ 

i =1 

c ji N 

(
O t ;μ ji , σ ji 

)
(5) 

ith I the number of components in the mixture, 
∑ I 

i =1 c ji = 1 , and

 ji ≥ 0. Such HMMs are trained by maximising the probability of the

bservation sequences given by the model, λa 
∗ = arg max 

λa 

P ( O | λa ) ,

nd is solved by the Baum-Welch method. In testing, the likelihood of

 new sequence, given the trained model, is calculated as, 

 (O | λa ) = 

∑ 

q 1 , ... ,q T 

πq 1 P ( O 1 | q 1 ) 
T ∏ 

t=2 

P ( O t | q t ) P ( q t | q t−1 ) (6)

sing the forward algorithm. The ‘ classical’ HMM is a parametric

odel, as the number of states M needs to be decided a priori, or

ptimised based on an evaluation set. 

.3.2. HMM with explicit state duration density 

When modelling human motion, we note that the time elapsed at

ach body-pose configuration can be indicative of the quality of mo-

ion. For example, freezing during the walking cycle is highly indica-

ive of deteriorating functional mobility, e.g. in Parkinson’s and stroke

atients. In classical HMMs, the state duration, i.e. the time elapsed

etween transiting to a state and transiting out of it, is not modelled

nd they would have difficulty discriminating the evolution of the

ody motion through time. 

To overcome the problem, and keep the semantic meaning in

he latent states while dealing with the lack of transition between

hem, explicitly modelling the state duration can help to address

he problem [45] . A state duration model can be built as D =
 

P (d | S 1 ) . . . P (d | S M 

) } , where the state duration for each state S j is

odelled by the probability density P ( d | S j .). We implement this prob-

bility with a Poisson distribution P (d 
∣∣S j ) = P (d; θ j ) = 

e 
−θ j θd 

j 

d! 
, where

j is the mean duration of state S j . By this definition, the likelihood of

 state duration observation d q r at time t depends only on the current

tate q r and is independent of the duration of the previous state. 
The probabilities in the trained HMM model are thus expanded

o λb = { A, B, π, D } , with B implemented as in (5) . Again λb is a para-

etric model with a discrete number of states M as its parameter. The

ikelihood of the observed sequence O = { O 1 . . . O T } given the trained

odel is calculated as, 

P (O | λb ) = 

R ∑ 

r=1 

∑ 

q 1 , ... ,q r 

∑ 

d 1 , ... ,d r 

πq 1 P (d 1 | q 1 ) P (O 1 , . . . , O d 1 | q 1 ) 
r ∏ 

i =2 

P (q i | q i −1 ) P (d i | q i ) P (O i −1 ∑ 

k =1 

d k +1 
, . . . , O d i 

| q i ) 
(7) 

here P (O i , . . . , O j | q ) = 

j ∏ 

k = i 
P (O k | q ) , and r is the number of different

tates reached during the sequence, restricted to a minimum R = 
 T D �
n case of a maximum state duration D . As with classical HMMs, the

ikelihood of a sequence can be obtained using the forward algorithm.

.3.3. HMM with a discriminative classifier 

Classical HMM has been employed efficiently when the motion

an be broken into distinct sub-motions [46,47] . However, some mo-

ions can not be automatically divided into such sub-motions by

he training of the conventional Gaussian mixture-based observation

odel, and require uniformly splitting the motion cycles in training

equences into M manually defined states. For a smooth motion (e.g.

alking), such splitting of the motion cycle may lead to poor discrim-

nation between the states when training the observation model. To

void this, the traditional Gaussian mixture-based observation model

ould be replaced by a discriminative classifier which is trained to

iscriminate the poses of one state from another. 

Given a set of extracted features from the training data, the ob-

ective is to build a suitable classifier which better discriminates the

ata. In this work, SVMs as large margin classifiers are used, al-

hough other classifiers could also be employed. Combining SVMs

ith HMMs has been previously applied, e.g. in speech recognition

48] and facial action modelling [49] , where the posterior class proba-

ility is approximated by a sigmoid function [50] . We employ this hy-

rid classification method for our observation model, following [49]

here the multi-class SVM is implemented using one-versus-one ap-

roach. In total, M(M − 1) / 2 SVMs are trained for the pairwise classi-

cation representing all possible pairs out of M classes. For each SVM,

airwise class probability αi j = P ( S i | S i or S j , O t ) is calculated using

latt’s method [51] . Such pairwise probabilities are transformed into

osterior probabilities as, 

 ( q t = S j 
∣∣O t ) = 1 / 

[ 

M ∑ 

j =1 , j � = i 

1 

αi j 

− ( M − 2 ) 

] 

. (8)

he continuous observation probabilities b j ( O t ) are formed by the

osterior probabilities using Bayes’ rule, 

 j (O t ) ∝ P ( q t = S j 
∣∣O t ) /P ( q t = S j ) . (9)
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Fig. 4. Example of PDF that defines the observation model in model λd . The plot shows 

the marginal of the PDF for the first manifold dimension. 
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Similar to classical HMMs, the discriminative approach is para-

metric and relies on the number of states M . The model λc = { A, B, π}
does not differ from λa in training or testing, but the observation

model is based on the discriminative classifier. 

3.3.4. Continuous-state HMM 

In the previous model λc , the hidden state represents the pro-

portion of motion completion at the current frame, which is by na-

ture continuous. Thus in [11] , we proposed a statistical model that

described continuous motion completion, as an approach that is

highly suited to motion quality assessment. This model is in effect

a continuous-state HMM, and we represent it here from that per-

spective. Continuous-state HMMs have been widely used in signal

processing in general, for example in [52] where a continuous-state

HMM model of deforming shapes was implemented for monitoring

crowd movements. 

We introduced in [11] the continuous variable X with value x t ∈ [0,

1] to describe the progression of motion, i.e. the proportion of motion

completed at frame t which linearly increases from 0 at the start of

the motion to 1 at its end. For periodic motions, x t is analogous to

the motion’s phase, and increases within one cycle of the motion, and

then resets to 0 for the next cycle. The hidden state of our continuous-

state HMM is then q t = x t . 

The crucial advantage of using this continuous state variable is

that the motion does not have to be discretized into a number of seg-

ments, the model is non-parametric, and the problem of choosing an

optimal M becomes irrelevant. However, the infinite number of possi-

ble states makes the commonly used approaches for training an HMM

and evaluating an observation sequence impractical since these al-

gorithms are based on integrating over a finite number of possible

states. Thus, novel algorithms were introduced in [52,53] , e.g. based

on particle filtering. Our model differs from these HMMs, both in the

definition of the observation model and state transition probabilities,

and in the algorithms used to perform the training and evaluation. 

In our continuous-state HMM, the observation model is the PDF

b x t (O t ) = f O t (O t | q t = x t ) . We learn this probability from training data

as 

f O t (O t | q t = x t ) = 

f O t ,x t (O t , x t ) 

f x t (x t ) 
, (10)

using a Parzen window estimator. The kernel bandwidth of the es-

timator is a parameter of this method that we set empirically so as

to avoid over-smoothing of the PDFs. Learning the observation model

requires knowing or estimating x t for the training data. For simplicity,

we assume that our training data represents motions with uniform

dynamics (i.e. uniform speed within motion or motion cycle), and we

compute x t proportional to time. An example observation model PDF

is shown in Fig. 4 for the motion of ascending stairs. 

We define the transition model A analytically as the PDF 

f x t ( x t | x t−1 ) = 

1 

σ
√ 

2 π
e 

− 1 
2 

(
�x t −v �τt 

σ

)2 

, (11)

where �x t = x t − x t−1 , τ t is the time at frame t , and �τt = τt − τt−1 .

This transition model thus assumes proportionality between the pro-

portion of motion completion x and time τ . v is the speed of the mo-

tion and is estimated as 

v = 

1 

N 

N ∑ 

i =1 

�x i 
�τi 

, (12)

so that the model adapts to different motion speeds. During training,

v is computed for the complete motion or motion cycle. When evalu-

ating a test sequence, v is computed within a sliding window in order
o handle sequences with non-constant speeds, although its values

re kept within empirically determined limits for a normal move-

ent. The size of the window will be discussed later in this section.

he standard deviation σ in (11) modulates the constraint that �x

s proportional to �τ . Its choice has been determined empirically so

s to enforce a strong constraint when evaluating the probability of a

equence ( σe v al = 10 −3 ), and a weaker constraint ( σest = 7 e −3 ) when

stimating x t . This relaxation of the proportionality constraint when

stimating x t aims at increasing flexibility of the model to describe

otion dynamics that deviate from normal due to significant speed

ariations. Note that such abnormal motions would still be penalised

y significantly lower probabilities P ( O | λd ) due to the lower σe v al . 

To summarise, the continuous-state HMM, first proposed in a dif-

erent formulation as a statistical model in [11] , is defined by λd =
 A, B, π} where A is defined analytically and B is estimated from train-

ng data. The initial state distribution π is uniform to enable evalua-

ion from any point in the motion. 

Similarly to finite state HMMs, the likelihood of a sequence of ob-

ervations O = { O 1 . . . O T } under model λd is an integration over all

ossible values for the hidden states 

 ( O | λd ) = 

∫ 
{ x 1 , ... ,x T } 

f O,x 1 , ... ,x T ( O, x 1 , . . . , x T ) 

= 

∫ 
{ x 1 , ... ,x T } 

f x 1 ( x 1 ) f O 1 ( O 1 | x 1 ) 
T ∏ 

i =2 

f O i ( O i | x i ) f x i ( x i | x i −1 ) . (13)

he derivation of (13) , that exploits Markovian properties, can be

ound in [11] . 

Such an integral over an infinite number of possibilities is imprac-

ical to compute. The approximation we present next allows reducing

13) to a more easily solvable form. From our definition of the transi-

ion model in (11) , given a value x t−1 of variable X at frame t − 1 , its

alue x t at frame t follows a normal distribution around x t−1 + v �τt 

ith standard deviation σ . In the ideal case of a perfectly normal mo-

ion, σ should tend to 0 and the normal distribution would tend to

 Dirac distribution. For σ small enough, that is to say for a strong

nough constraint on the evolution of X during the motion, we can

se the approximation σ ≈ 0, which leads to 

 ( O | λd ) ≈ f x 1 
(

ˆ x 1 
)

f O 1 
(
O 1 | ̂  x 1 

) T ∏ 

i =2 

f O i 
(
O i | ̂  x i 

)
f x i 

(
ˆ x i | ̂  x i −1 

)
. (14)

he notation ˆ x i highlights that this value is the most likely for X at

rame i given x i −1 and �τi 
, i.e. ˆ x i = x i −1 + v �τi 

. 

When computing P ( O | λd ) using this approximation, the values ˆ x i 
eed to be estimated. This can be done by maximising their likelihood
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onditional on the sequence of observations: 

 ̂

 x 1 , . . . , ̂  x T } = arg max 
x 1 , ... ,x T 

f x 1 , ... ,x T ( x 1 , . . . , x T | O ) 

= arg max 
x 1 , ... ,x T 

f O,x 1 , ... ,x T ( O, x 1 , . . . , x T ) 

f O ( O 1 , . . . , O t ) 

= arg max 
x 1 , ... ,x T 

f x 1 ( x 1 ) f O 1 ( O 1 | x 1 ) 
T ∏ 

i =2 

f O i 

× ( O i | x i ) f x i ( x i | x i −1 ) . (15) 

n our implementation, this estimation is performed using uncon-

trained nonlinear optimisation. Similar to the estimation of v , and

or the sake of efficiency, we estimate { ̂  x 1 , . . . , ̂  x T } within a window of

ynamic width ω t , to encompass the frames for which ˆ x t has not yet

onverged. This strategy is based on the empirical observation that

he estimated value ˆ x i at a previous frame i does not change signifi-

antly after a few iterations. In practice, we consider ˆ x i to have con-

erged when its change is less than 10 −3 for 2 consecutive iterations.

. Comparison of HMM models 

The four HMMs introduced above attempt to describe motion by

apturing the dynamics of body poses. A key aspect of the models is

he relation of their hidden state q t with these body poses and with

ime. In models λa and λb , a direct association between q t and body

ose ensues from the training of the Gaussian mixture-based obser-

ation model that groups similar body poses into distinct states. For

odels λc and λd , the internal state is associated with sub-motions,

.e. distinct phases of the motion, and these sub-motions tend to have

haracteristic body poses. Note that in this last case, the states might

ot have distinctive body poses. For example, in walking, the body

oes through similar poses at various points in time within one cycle.

n examination of the relation between the hidden states, and both

ody poses and motion phases or time, provides an insight into the

espective effectiveness of the models at describing motions and their

ynamics. We now perform this analysis for the case of gait motion

n stairs. 

Fig. 5 plots the various states corresponding to the training data in

ifferent colours, in a graph that represents both time/motion phase

horizontal axis) and the first dimension of the high-level feature O ,

.e. body pose (vertical axis). In model λa , the states are predomi-

antly separated in the domain of body poses, and many of them span

he same temporal regions. This lack of separation of the states in the

emporal domain limits their ability to discriminate the stages of the

otion. As another consequence, transition between different states

s not necessary for motion evolution. This may lead to poor mod-

lling of the dynamics of the motion, as will be shown in Section 6

here freezes of gait often cannot be detected by model λa . Note in

ig. 5 that increasing the number of states M does not significantly

mprove the description of dynamics as the additional separation is

redominantly in the domain of body pose O than in the motion

hase/time domain. 

The explicit modelling of state duration in model λb addresses the

roblem of state stagnation in model λa . Although the possible states

re still badly separated in the temporal domain, as seen in Fig. 5 ,

he explicit modelling of state duration enables model λb to better

escribe the dynamics of motions, and in particular to detect freezes

f gaits. 

Another way of addressing the issues of model λa is to define the

idden states as corresponding to distinct temporal regions, by man-

ally dividing a motion uniformly into equal-length segments. This

s the strategy used in model λc . Note that, depending on the type

f motion, several of the resulting states may correspond to similar

ody poses. This is for example the case of gait, as discussed earlier

nd illustrated in Fig. 5 where several distinct states are located in the

ame region of the embedded space. Consequently, as mentioned in
ection 3.3 c, the observation model produced by the classical HMM

raining algorithm may be poorly discriminative, and requires to be

eplaced by a more robust classifier. It should be stressed that the

umber of possible states significantly impacts the ability of such a

odel to represent the temporal dynamics of the motion. Indeed, in

 model with too few possible states, the probability of staying in a

ell populated state may be higher than transiting to the next one,

esulting in the same state stagnation problem than in model λa . On

he other hand, when the number of possible states is too high, the

ody poses of distinct states may become too similar and overcome

he discrimination power of the classifier, leading to a reduction in

erformance. This is illustrated in Fig. 6 (c), where the best ROC curves

re obtained for 15–30 states, while deteriorating quickly when the

tate is less than 10 or higher than 40. Further, discriminative classi-

ers, such as SVMs, cannot naturally handle unknown observations,

nd would therefore not clearly attribute a state to an unusual ob-

erved body pose. 

We note in model λc that an increase in the number of states

while remaining within the ”discriminative zone” of the classifier)

eads to a better representation of the dynamics of the motion. Model

d extends this idea by having a continuous state, thus imposing an

nfinite number of possible states. Its observation model does not rely

n a discriminative classifier, but instead it exploits non-parametric

stimations of conditional PDFs, as explained in Section 3.3 d. When

wo or more significantly different states are equally probable given

n observation, as for example in the gait model of Fig. 4 , model λd 

elies on the relative rigidity of its transition model to handle these

mbiguities. 

. Quality assessment measures 

Using any one of our four models trained on normal motion se-

uences, one can detect anomalies in new observations and assess

he quality of the motion based on the likelihood of the new observa-

ion to be described by the model. An online assessment of the mo-

ion, computed on a frame-by-frame basis, would be desirable for

riggering timely alerts when the observed motion drops below a

hreshold in its level of normality. A straightforward way of obtaining

n online measure would be to compute the likelihood P ( O | λi ) within

 sliding window. However, this strategy may prove to be difficult to

pply, as the choice of window size requires a delicate compromise

etween a sufficient number of frames, in order to capture and anal-

se the dynamics of the movement, and a small enough window so as

o preserve the instantaneous properties of an online measure. More-

ver, this window size would have to be adjusted for each type of

otion, and also for instances of a motion performed at significantly

ifferent speeds. 

To overcome these problems, we propose a dynamic measure 

 t = log P ( O t | O 1 , . . . , O t−1 , λi ) , (16) 

hat is the log-likelihood of the current frame given the pre-

ious frames and the model. For models λa , λb , and λc ,

 ( O t | O 1 , . . . , O t−1 , λi ) may be simply computed as 
P ( O | λi ) 

P ( O 1 , ... ,O t−1 | λi ) 
us-

ng two calls to the forward algorithm. In the case of model λd ,

his measure can only be obtained after the convergence of x t , and

 ( O t | O 1 , . . . , O t−1 , λi ) may be calculated using the approximation of

14) as f O t 

(
O t | ̂ x t 

)
f x t 

(
ˆ x t | ̂ x t−1 

)
. 

In [11] , we proposed a similar online measure, that instead of

aiting for the convergence of x t , integrated P ( O t | O 1 , . . . , O t−1 , λi )
ver the dynamic sliding window of size ω t which was defined for

odel λ in Section 3.3 d., in order to account for the updated values
d 
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Fig. 5. States defined in models λa (top row), λb (2nd row), λc (3rd row), and λd (bottom row). For the discrete models ( λa - λc ), colours denote different states, while for the 

continuous model ( λd ) continuous colour gradient is used based on the value of the internal state. 

Fig. 6. Frame classification accuracy for gait on stairs: ROC curves using our online measure M ω t for different number of states for feature type JP. 
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of x t that are re-estimated within the window: 

M ω t = 

t ∑ 

j= t min 

log P 
(
O j | O 1 , . . . , O j−1 , λi 

)
= log 

t ∏ 

j= t min 

P 
(
O j | O 1 , . . . , O j−1 , λi 

)
= log 

t ∏ 

j= t min 

P ( O 1 , ... ,O j ,λd ) 
P ( O 1 , ... ,O j−1 ,λi ) 

= log P ( O 1 , ... ,O t ,λd ) 

P ( O 1 , ... ,O t min −1 ,λi ) 
= log P 

(
O t min 

, . . . , O t | O 1 , . . . , O t min −1 , λi 

)
, 

(17)

with t min the first frame of the sliding window. Thus M ω t can be

seen as the log-likelihood of the sliding window given the previ-

ous observations. This conditionality in the probability alleviates the
ffect of the window size that we discussed earlier. In our experi-

ents, for convenience and efficiency, we limit ω t to a maximum of

5 frames, although it rarely goes above 10 frames. For models λa ,

b , and λc , the forward algorithm does not require the estimation of

 t as it sums probabilities over all possible states, so the value of ω t 

annot be determined automatically. Instead, we set it to a constant

alue ω, and we explore the influence of its choice on the results in

ection 6 , where we shall also compare our two online measures M t 

nd M ω t . 

In addition to these two measures of dynamics quality, we also

roposed in [11] a measure of pose quality, computed independently

or each frame as: 

 pose = log f O ( O i ) . (18)
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Table 2 

Optimal number of states for each low-level feature for each discrete-state 

HMM (models λa , λb , λc ) and motion type. For the continuous-state HMM 

(model λd ), the number of states is undefined and hence the parameter is not 

applicable (N/A). For gait on flat surface, sitting, and standing motions, only 

models λc and λd were evaluated. 

Motion Motion model JP JV PJD PJA 

Gait on stairs λa 3 4 3 3 

λb 3 3 4 4 

λc 20 20 20 15 

Walking on a flat surface λc 15 5 5 7 

Sitting λc 10 7 7 5 

Standing λc 15 15 5 7 

All λd N/A N/A N/A N/A 
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. Experimental evaluation 

To demonstrate the performance of the motion quality analysis

ramework, we analysed the motions of walking on a flat surface,

ait on stairs, and transitions between sitting and standing, which

re particularly critical for rehabilitation monitoring in patients with

usculoskeletal disorders, disease progression in PD patients, and

or many others. For the analysis of such motions, we compared

ifferent low-level features, dimensions of the manifold embedding,

nd motion models, as proposed in Sections 3.1 –3.3 respectively.

e also investigated whether full-body information is consistently

eeded for all tested movement types. We tested gait on stairs on the

ataset SPHERE-staircase2014 (first introduced in [11] ) as well as two

ew datasets SPHERE-Walking2015 and SPHERE-SitStand2015 for the

ssessment of gait on a flat surface and of sitting and standing move-

ents respectively 3 The datasets were used to perform abnormality

etection by applying the online measures M t ( Eq. 16 ) and M w t 

 Eq. 17 ), both on a frame-by-frame basis and for the whole sequence.

.1. Datasets 

SPHERE-Staircase2014 dataset [11] – This dataset includes 48

equences of 12 individuals walking up stairs, captured by an Asus

motion RGB-D camera placed at the top of the stairs in a frontal and

ownward-looking position. It contains three types of abnormal gaits

ith lower-extremity musculoskeletal conditions, including freezing

f gait (FOG) and using a leading leg, left or right, in going up the stairs

i.e. LL or RL respectively). All frames have been manually labelled as

ormal or abnormal by a qualified physiotherapist. We used 17 se-

uences of normal walking from 6 individuals for building the model

nd 31 sequences from the remaining 6 subjects with both normal

nd abnormal walking for testing. 

SPHERE-Walking2015 dataset – This dataset includes 40 se-

uences of 10 individuals walking on a flat surface. This dataset was

aptured by an Asus Xmotsion RGB-D camera placed in front of the

ubject. It contains normal gaits and two types of abnormal gait, sim-

lating , under the guidance of a physiotherapist, stroke and Parkin-

on disease patients’ walking. We used 18 sequences of normal walk-

ng from 6 individuals for building the model, and 22 sequences from

 other subjects with both normal and abnormal gaits for testing. The

esting set includes 5 normal, 8 Parkinson, and 9 Stroke sequences. 

SPHERE-SitStand2015 dataset – This dataset includes 109 se-

uences of 10 individuals sitting down and standing up in a home

nvironment. Since the Asus Xmotion RGB-D camera is unable to

rack the skeleton for movements that cause self-occlusions, the data

as captured using a Kinect 2 camera instead. It contains normal and

wo types of abnormal motions, including (a) restricted knee and re-

tricted hip flections and (b) freezing. We used 9 sequences of normal

ovement from 8 individuals for building each sitting and standing

odel, and 91 sequences from two other subjects with normal and

bnormal movements for testing, including 31 normal and 12 abnor-

al sitting, and 36 normal and 12 abnormal standing. The abnormal

equences comprise 4 samples of each abnormality type. 

In the following experiments, we first compare the methods

n the SPHERE-Staircase2014 dataset. Then, we show that the

ethods can be extended to other types of human motion, both

eriodic and non-periodic, using the SPHERE-Walking2015 and

PHERE-SitStand2015 datasets. 

.2. Parameter setting 

Number of states – Three of the motion models ( λa , λb and λc )

re parametric, expecting the number of states M to be identified in
3 To be released to the public domain soon. 

s  

S  

t

dvance. It is commonly known that classical HMM models are sen-

itive to the number of states. To select the appropriate number, we

lotted our results as ROC curves of frame classification accuracy us-

ng our online measure on all test sequences for different numbers

f states. Fig. 6 shows the ROC curves together with their area under

he curve (AUC) values when using feature JP. Both λa and λb models

eem insensitive to the number of states, especially when M ≥ 5. The

erformance of motion model λc is highly sensitive to the number of

tates with significantly improved performance for 10 < M < 40. As

iscussed in Section 4 , this is as expected, since walking cycles are

niformly divided into several states, and fewer states may lead to

igh probabilities of self-transitions which would then fail to explain

he temporal evolution of the motion. On the other hand, having a rel-

tively larger value of M may cause difficulty in discriminating data,

hus leading to poor recognition results. 

To choose the optimal number of states, the model with the max-

mal value of AUC was selected. We followed the same process to ob-

ain the optimal number of states for low-level features JV, PJD, and

JA for each of the discrete-state HMMs, as summarised in Table 2

odel λd does not require optimizing the number of states, since its

idden variable is continuous. 

Temporal window size – ω t is also a parameter for models λa , λb ,

nd λc (see Section 5 ). We investigated the effects of different tem-

oral window sizes on the detection accuracy when computing M ω t .

e chose the optimal settings (feature type and the number of states)

hat provided the best results for each of the models and tested with

ifferent temporal window sizes set to 1, 5, 10, 15, 20 and 25 frames.

his test was not performed for model λd as ω t is set dynamically for

hat model (see Section 3.3 d. for details). 

As shown in Table 3 , the best results for model λa , λb and λc 

or gait on stairs were obtained with a temporal window size of 15

rames, although smaller number of frames, such as 5 or 10, are not

ar in performance. Selecting too small a size of window may al-

ow the noise to prevent capturing the abnormality of a frame, while

oo large a window may include both abnormal and normal frames

ithin the window and would thus fail to detect the abnormality. 

Choice of online measure – As discussed earlier, models λa , λb ,

nd λc obtained the best results when computing measure M ω t with

 temporal window size of 15 frames. The measure M t is equiva-

ent to M ω t at a window size of 1 frame (as in the 1st column of

able 3 ). The often worse results achieved with M t for models λa , λb ,

nd λc were caused by errors obtained from unsmoothed likelihoods

etween frames, while with M ω t , the likelihoods were smoothed by

 temporal window. 

Table 4 reports AUC values in the case of gait on stairs, and shows

hat model λd did not suffer from unsmoothed likelihoods and ob-

ained its best results with M t , due to the time averaging delaying

he detections of M ω t . For other motion types such as sitting and

tanding, where the scores are averaged over the full sequences (see

ection 6.5 ), this timely detection of abnormal events is less impor-

ant and both measures perform comparatively. 
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Table 3 

AUC values at different temporal window sizes for different models of the gait on stairs motion, in each case using the optimal feature and the optimal 

number of states. 

Temporal window size 

Motion model 1 frame 5 frames 10 frames 15 frames 20 frames 25 frames 

λa 0.60 0.62 0.64 0.66 0.65 0.64 

λb 0.70 0.71 0.72 0.73 0.68 0.66 

λc 0.68 0.72 0.74 0.75 0.73 0.71 

Table 4 

AUC results for gait on stairs movement for different skeleton representations (low-level features and manifold dimensions) for each of the four models, 

using M ω t with optimal ω t for the discrete models and both online measures ( M t / M ω t ) for the continuous model. 

Manifold dimension n 

Motion model Feature 1 2 3 4 5 

JP 0.37 0.35 0.39 0.35 0.40 

λa JV 0.64 0.60 0.66 0.66 0.63 

PJD 0.38 0.36 0.43 0.46 0.46 

PJA 0.43 0.52 0.53 0.58 0.56 

JP 0.64 0.62 0.65 0.67 0.68 

λb JV 0.60 0.58 0.62 0.65 0.64 

PJD 0.66 0.70 0.73 0.70 0.70 

PJA 0.56 0.61 0.61 0.61 0.64 

JP 0.71 0.71 0.73 0.73 0.73 

λc JV 0.62 0.64 0.64 0.62 0.62 

PJD 0.72 0.75 0.75 0.75 0.75 

PJA 0.57 0.58 0.64 0.63 0.61 

JP 0.81 / 0.75 0.81 / 0.74 0.82 / 0.75 0.81 / 0.74 0.81 / 0.74 

λd JV 0.65 / 0.65 0.60 / 0.60 0.60 / 0.61 0.59 / 0.59 0.59 / 0.58 

PJD 0.74 / 0.70 0.83 / 0.80 0.74 / 0.65 0.62 / 0.54 0.61 / 0.50 

PJA 0.57 / 0.57 0.63 / 0.61 0.67 / 0.63 0.69 / 0.64 0.66 / 0.65 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c  

p  

b  

p  

T  

P  

i  

a  

s  

c  

p  

t  

t

 

h  

s  

d  

t  

c  

l  

w  

(  

t  

n

 

m  

a  

t  

J  

s

 

i  

a  

i  

c  
6.3. Gait on stairs 

6.3.1. Comparison of different skeleton representations 

To select the most effective representation for the skeleton data,

we applied the four low-level features introduced in Section 3.1 while

we varied the dimensionality n of the manifold between 1 and 5.

The frame classification ROC curves and their AUC in Fig. 7 show the

performance accuracy for each different skeleton representation and

model. All the curves are plotted using their optimal number of states,

as stated in Table 2 , and their optimal window size ω t . Table 4 reports

the AUC values obtained by each composition of low-level features,

dimensionality values for n , and motion models. Values obtained us-

ing both online measures M t and M ω t are provided for model λd .

Only measure M ω t with the optimal window size ω t was used for

models λa , λb , and λc , since for these three models, M t is equivalent

to M ω t with a non-optimal window size of 1 frame. 

As observed in Fig. 7 and Table 4 , for model λa , the JV feature pro-

vided significantly better results than the JP, PJA and PJD features. This

can be explained by the fact that the joint velocities are calculated

based on two consecutive frames, and hence the feature can capture

a significant extent of the dynamics of the motion, counterbalancing

the difficulty of model λa ’s ability in describing the motion’s dynam-

ics; the other types of features only consider the current frame. For

model λb , there was no remarkably significant variation in the re-

sults for the different features, however, the PJD feature performed

best across all dimensions. For model λc , again PJD provided the best

outcome in all dimensions. Further, Table 4 shows that for all the best

results of the three discrete models λa , λb , and λc , the accuracy does

not depend strongly on the dimensionality of data. In summary, we

chose the JV feature for model λa and PJD feature for models λb and

λc with the first 3 manifold dimensions as the optimum skeleton rep-

resentation for these three models, as highlighted in Table 4 . 

For model λd , although the best result in Table 4 was for the PJD

feature in 2D, the JP feature performed best in the majority of the

cases and still obtained results very close to feature PJD’s best out-
ome, even when based on only the 1st manifold dimension. The su-

eriority of the JP feature over PJA and PJD in 1D may be understood

y considering the PDFs of their observation models (depicting the

ath of normality of motion), plotted in the first column of Fig. 8 .

he normality path for JP is more constrained, i.e. narrower, than for

JA and PJD, thus the accepted variance around the normality path

s smaller, making the model more discriminative. In the case of JV,

lthough the normality path is as narrow as for JP (in the 1st dimen-

ion), the results were the least performing of the four features when

onsidered across all the dimensions. We attribute this to the incom-

atibility of using absolute speeds in the low-level feature at the same

ime as relative speeds in the HMM modelling where variable v at-

empts to normalise the motions speeds. 

When using more than one dimension, the accuracy remained

igh for the JP feature, due to the PDF in these dimensions also having

mall variances around the normality path. For PJA, the use of more

imensions (up to 4) improved the results by combining their respec-

ive discriminative powers, but adding the 5th dimension failed to

ontribute further gains. However, when a dimension had particu-

arly low discriminative power, its impact on the results of the model

as negative. For example, the third dimension of the PJD feature

bottom right plot of Fig. 8 ), and the second dimension of the JV fea-

ure (middle plot of the second row), did not exhibit a clear preferred

ormality path. 

Although the best AUC was obtained by the PJD feature in a 2D

anifold, it was only marginally higher than for JP in a 3D manifold,

nd the ROC curve for JP indicates consistently better performance

han that of PJD’s (see Fig. 7 (d)). Hence, to conclude, we chose the

P feature for model λd with 3 manifold dimensions as the optimum

keleton representation (keeping consistency on all four models). 

The average processing time (in milliseconds per frame) for build-

ng high-level features are 1.18, 1.14, 10.06 and 29.32 for JP, JV, PJD

nd PJA features, respectively. The experiments were performed us-

ng Matlab on a workstation with an Intel I7-3770S CPU 3.1GHz pro-

essor and 8GB RAM. The number of dimensions of the manifold does
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Fig. 7. Comparison of different skeleton representations (low-level features with their respective optimal manifold dimensionality) for models (a) λa , (b) λb , (c) λc , and (d) λd , at 

abnormal frame detection for the gait on stairs movement. The plots are for the optimal state numbers (see Table 2 ) and online measure for each model: M ω t with ω t = 15 for 

models λa , λb , and λc , and M t for model λd . 
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ot affect the processing time, since its selection is performed after

enerating the manifold space. 

.3.2. Comparison of the motion models 

We evaluated and compared the ability of each model to detect

arious abnormalities in the sequences under optimal parameter set-

ings. Abnormal frames were detected when the measure of normal-

ty, M ω t or M t , dropped below a threshold. Returning to Fig. 7 , it

hows the true positive rate against false positive rate at different

hreshold values. It is clear that model λd performed better than the

ther models at detecting abnormal frames. 

Significantly, when an expert, e.g. a physiotherapist, observes a

atient, he/she anticipates a disruption in the normal cycle of gait.

his would be before it could reasonably be identified by an auto-

ated system. This is an artefact of using frame by frame labelling,

specially for RL and LL events. When the expert notes a minimal re-

uction in the speed of the swinging leg, he/she anticipates that the

eel strike will not take a place at ‘normal’ position. Hence, the expert

lassifies all of the frames leading up to that point as abnormal. How-

ver, in terms of the pose trajectory along the manifold, the motion is

ormal, other than a very subtle reduction in speed. Our approach is

obust to subtle changes in gait velocity as this is present in normal

ait as well. Thus, we provide an alternative measure by detecting the

bnormality based on the whole event. This motion analysis is still

nline, since abnormal events are detected as new frames are being

cquired, without having to wait for the full sequence to be available.

e first eliminated noise in the frame classification by removing iso-

ated clusters of less than 3 normal or abnormal frames. Then, we

efined an abnormal event as succession of (at least) 3 consecutive

bnormal frames. 
We counted as true positive (TP) detections any event that had at

east three frames detected as abnormal, while false negatives (FN)

ere events with less than three detected frames. False positive (FP)

etections were either detected events that did not intersect by at

east three frames with a true abnormal event, or normal periods

etween abnormal events that had all their frames classified as ab-

ormal. The abnormatity event classification results are illustrated in

ig. 9 and Table 5 . Fig. 9 presents precision and recall values when

arying the threshold on the frame classification measure M ω t or

 t , all other parameters being set optimally for each motion model.

ote that this is not the usual Precision against Recall (PR) plot for

vent detection, since the threshold we are varying here is not on the

easure of likelihood of abnormal event, but on a measure of likeli-

ood of abnormal frame, hence, the unusual aspect of the plot. Defin-

ng a measure of the likelihood of an abnormal event is not in the

cope of this study, but will be the focus of our future work. 

For each model, the point closest to the top-right corner of the

lot (indicated with a square) was chosen as the best precision-recall

ompromise, and its corresponding measure threshold was used to

btain the results reported in Table 5 . As observed in the table, al-

hough models λa and λb are able to detect all the abnormal events,

he very high number of wrongly detected events (FPs) makes the

odels impractical. Model λc shows it is able to detect most abnor-

al events with only two missed detections, while model λd gives

he fewest errors (FP+FN). 

The average processing time (in milliseconds per frame) of each

otion model are 15.99, 16.27, 30.16 and 153 for λa , λb , λc and λd ,

espectively. These numbers are computed when using the optimal

anifold dimensions, optimal low-level feature and the correspond-

ng optimised number of states for each model. Note that models λa ,

b , and λc have been implemented using an optimized toolbox, while
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Fig. 8. Marginals of the observation model PDFs of model λd over the first three manifold dimensions, for the gait on stairs movement and each low-level feature. These PDFs 

depict the path of normality of motion, with warmer colours indicating more likely states. 

Table 5 

Detection rate of abnormal events in the gait on stairs scenario for best Precision-Recall results in each model. 

Type of sequence No. of abnormal events λa λb λc λd 

Precision = 0.63 Precision = 0.67 Precision = 0.75 Precision = 0.84 

Recall = 1 Recall = 1 Recall = 0.95 Recall = 0.87 

TP FP FN TP FP FN TP FP FN TP FP FN 

Normal 0 0 2 0 0 2 0 0 4 0 0 4 0 

RL 25 25 12 0 25 8 0 25 7 0 23 1 2 

LL 22 22 16 0 22 17 0 20 1 2 16 1 6 

FOG 13 13 5 0 13 7 0 13 7 0 13 4 0 

Total 60 60 35 0 60 30 0 58 19 2 52 10 8 
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λd has a non-optimized Matlab implementation. For all models, there

is no significant additional cost by using extra dimensions. 

λa and λb were found to be significantly worse in distinguishing

normal and abnormal movements, thus in the rest of the article, the

results from these models are not presented. 

6.3.3. Selection of body joints 

The results we present are produced using all body joints. This

strategy allows our method to be applied to any motion type, as will

be shown next. We also believe that, even though some motions

may intuitively seem sufficiently represented using selected body

joints – such as lower body joints in the case of walking – the

exploitation of full body information may add beneficial informa-
ion on the overall balance of the person. We demonstrate this

y performing the analysis using different subsets of body joints

n the case of gait on stairs using the JP low-level feature, a 3D

anifold and model λd . We first use lower body joints only, then in

 second test use Orthogonal Marching Pursuit (OMP) to select the

ow-level features that are most relevant for deriving the high level

eatures. Fig. 10 shows that the high level features reconstruction

rror is dramatically reduced using the 9 most significant low-level

eatures, and does not improve significantly using more of them.

herefore, in our second test we use the 9 most significant low-

evel features selected by OMP and summarized in the first row of

able 6 . Note that these features correspond to both legs and arms

ata. 
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Fig. 9. Upper: Precision and recall values for event detection in the gait on stairs scenario when varying the threshold on frame classification, plotted for the best parameter setting 

for each motion model. Bottom: Split of the scatter plot into four, for better visualisation. 

Fig. 10. Selection of low-level features using the Orthogonal Marching Pursuit: high 

level feature reconstruction error as a function of the number of low-level features. 
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Table 6 

Low-level features used in the feature selection tests, and AUC results using both 

online measures ( M t / M ω t ). 

Lower body joints OMP selection Full body 

z left hand 

xyz torso y left elbow 

xyz left hip y left foot 

xyz right hip y right hand 

Low-level features xyz left knee y right foot All joint coordinates 

xyz right knee z left foot (45 features) 

xyz left foot x left hand 

xyz right foot x right elbow 

(21 features) z right foot 

(9 features) 

AUC 0.74 / 0.77 0.71 / 0.71 0.82 / 0.75 
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The ROC curves obtained for frame classification, and the preci-

ion and recall values for abnormal event detection, are shown for

oth tests in Fig. 11 . The AUC values are reported in the second row

f Table 6 . Our first observation is that, although the best results are

btained using the 21 lower body features, with AUC of 0.74 and 0.77

sing M t and M ω t respectively, the only 9 features selected by OMP,

nd that mix lower and upper body information, are very close with

UC of 0.71 for both measures. Secondly, the lower joints results are

ignificantly worse than the best result of using all body joints that

ad a AUC of 0.82 using M t . We conclude from these two observa-

ions that upper body joints contain information that may contribute

ignificantly to the analysis of gait and that should not be discarded. 
.4. Walking on a flat surface 

The abnormal sequences in the SPHERE-Walking2015 dataset dif-

er from the previous gait on stairs ones in that all frames are ab-

ormal. The continuous scoring of our method is a particularly use-

ul feature in this case, while its frame-by-frame analysis ability is

ess relevant. Therefore, to test the performance of different mod-

ls on this dataset, one overall continuous score is provided for each

equence. In order to assess the ability of this score to discriminate

bnormal from normal movements for each model, we compute the

UC of the ROC curves of sequence classification accuracy. Note that

hese AUCs are different to the ones used in Section 6.3 for per-frame

lassification accuracy. 

We show the results of models λc and λd in Table 7 using different

ow-level features and manifold dimension n . The table shows that

or both models, feature JP provides a good representation of the data

hat can discriminate the normal and abnormal walking movements.

eatures PJA and PJD for model λc , and JV and PJD for model λd , also

ield very good results. 
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Fig. 11. ROC curves of frame classification (top) and precision and recall values for abnormal event detection (bottom) using the lower body joints (left), the 9 low-level features 

selected by OMP (middle), and all body joints (right). 

Table 7 

AUC results in the case of the walking on a flat surface motion for different skeleton 

representations and measures for models λc ( M t ) and λd ( M t / M ω t ). 

Motion Manifold dimension n 

model Feature 1 2 3 4 5 

λc JP 0.96 1.00 0.99 1.00 1.00 

JV 0.93 0.79 0.86 0.95 0.85 

PJA 0.91 0.98 1.00 0.96 0.98 

PJD 1.00 1.00 1.00 1.00 1.00 

λd JP 0.96 / 1.00 0.99 / 1.00 0.95 / 1.00 0.99 / 1.00 0.93 / 1.00 

JV 0.95 / 0.98 0.88 / 0.86 0.87 / 0.95 0.91 / 0.95 1.00 / 1.00 

PJA 0.89 / 0.91 0.82 / 0.88 0.91 / 0.96 0.94 / 0.96 0.94 / 0.96 

PJD 0.96 / 1.00 0.91 / 0.96 0.92 / 0.95 0.89 / 0.93 0.93 / 0.98 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8 

AUC results in the case of the sitting movement for different skeleton representa- 

tions and measures using models λc ( M t ) and λd ( M t / M ω t ). 

Motion Manifold dimension n 

model Feature 1 2 3 4 5 

λc JP 0.82 0.96 0.99 0.97 0.97 

JV 0.88 0.87 0.85 0.83 0.77 

PJA 0.59 0.67 0.68 0.63 0.73 

PJD 0.80 0.92 0.93 0.92 0.86 

λd JP 0.99 / 1.00 0.99 / 0.99 0.98 / 0.99 0.97 / 1.00 0.95 / 1.00 

JV 0.69 / 0.73 0.70 / 0.79 0.72 / 0.70 0.71 / 0.66 0.61 / 0.59 

PJA 0.67 / 0.67 0.61 / 0.56 0.68 / 0.68 0.65 / 0.70 0.62 / 0.66 

PJD 0.42 /0.47 0.77 / 0.79 0.76 /0.81 0.86 / 0.92 0.81 / 0.85 

Table 9 

AUC results in the case of the standing movement for different skeleton representa- 

tions and measures using models λc ( M t ) and λd ( M t / M ω t ). 

Motion Manifold dimension n 

model Feature 1 2 3 4 5 

λc JP 0.88 0.98 1.00 0.98 0.99 

JV 0.88 0.98 0.95 0.85 0.71 

PJA 0.83 0.74 0.84 0.86 0.83 

PJD 0.90 0.84 0.97 0.95 0.97 

λd JP 0.85 / 0.86 0.44 / 0.50 0.56 / 0.62 0.85 / 0.76 0.88 / 0.75 

JV 0.92 / 0.95 0.86 / 0.84 0.92 / 0.97 0.91 / 0.97 0.88 / 0.91 

PJA 0.34 / 0.39 0.38 / 0.51 0.59 / 0.56 0.66 / 0.64 0.59 / 0.60 

PJD 0.82 / 0.87 0.95 / 0.95 0.84 / 0.84 0.85 / 0.86 0.78 / 0.77 

6

 

q  

s  

l  

t  

p  
For model λd , we note that the advantage of M t over M ω t is not

as obvious as in Section 6.3 . This may be due to the averaging of the

scores over the full sequence, which makes a timely detection of ab-

normal events less relevant. The results obtained for this movement

are overall more satisfactory than in Section 6.3 with gait on stairs.

We explain this by the easier challenge of this test (whole sequence

vs per-frame analysis), linked to the abnormality type. 

Fig. 12 highlights the potential of our continuous scores to help

differentiate between the two types of abnormality (Parkinson and

Stroke) in our SPHERE-Walking2015 dataset. Fig. 12 a shows that the

dynamics score M t can successfully differentiate normal gaits from

both types of abnormalities, while Fig. 12 b shows that the pose score

may also help in distinguishing Parkinson’s from stroke gaits. Indeed,

Parkinson sequences tend to have lower pose scores than stroke se-

quences, due to their pose being consistently abnormal throughout

the sequence (blue curve in Fig. 13 ), while the pose in stroke se-

quences vary periodically between strongly abnormal and nearly nor-

mal within each gait cycle (red curve in Fig. 13 ). This result denotes a

clear potential of our method for clinical applications, which will be

further assessed in future works. 
.5. Sitting and standing 

As in Section 6.4 , in the SPHERE-SitStand 2015 dataset the se-

uences are either fully normal or fully abnormal, thus an overall

core is provided for each sequence to assess its overall abnormality

evel. Tables 8 and 9 show the sequence-wise AUC values of the sit-

ing and standing movements, respectively, obtained by the different

ose representations and motion models. For the sitting motion, both
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Fig. 12. Quality measures for each of the walking sequences: (a) dynamics measure M t , and (b) pose measure M pose for normal sequences (green), Parkinson sequences (blue), 

and stroke sequences (red).(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article). 

Fig. 13. Comparison of the pose measure M pose in two examples of Parkinson (blue) and stroke (red) sequences. M pose is consistently low in the Parkinson sequences, while it 

varies periodically in the stroke one.(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article). 
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odels λc and λd perform better with the JP feature. For the standing

otion, model λc also performs better with JP, while model λd should

se either JV or PJD. Both models perform similarly well at detecting

bnormal sequences, with best AUCs of model λc at 0.99 and 1.00 for

he sitting and standing motions respectively, and 1.00 and 0.97 for

odel λd . 

. Conclusion 

In this work, we have studied the efficiency of different pose rep-

esentations and HMM-based dynamics models for describing and

ssessing the quality of four motions used by clinicians to assess func-

ional mobility. The results show that the continuous-state HMM is

etter suited for describing motion dynamics than classical, discrete-

tate HMMs when a frame-by-frame analysis is required. For glob-

lly analyzing whole sequences, both the continuous-state HMM and

he classical (discrete-state) HMM with discriminative classifier per-

ormed well. Furthermore we have found that the adequacy of the

ose representation to modelling pose variations plays a key role in

he ability of the dynamics model to represent and discriminate the

otion. 

The proposed method provides a continuous score for assessing

he level of abnormality of movements. We showed in this work

hat this score can generalise to various movement and abnormal-

ty types. Future work will include further assessing the clinical rele-

ance of this continuous score by comparing it against manual scor-

ng schemes that are routinely used in clinical practice. 

Moreover, although the robust manifold helps to reduce the ef-

ects of noise, abnormal poses may be seen as noisy normal data in-

tead of being properly represented and picked up as abnormal. The

bility of our pose representation at discriminatingly representing
bnormal poses should therefore be evaluated as part of future work.

raining on a large variety of poses (both normal and abnormal) for

uilding the pose manifold may address this possible limitation of

ur current pose representation. 
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