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Abstract: As a universal framework, U-model has established an enabling design prototype for the control of non-linear 

dynamic plants with concise and applicable linear approaches. This study is devoted to a remaining fundamental research 

question, that is, while U-model methodology is applied to a linear dynamic plant control system design, how different it is 

from classical linear approaches. Taking up an initial research, this comparative study uses pole placement controller design as 

an example to implement with two approaches in terms of U-Model based design and classical control design. Design 

efficiency and effectiveness are compared analytically and computationally via numerical experiment, which justifies the 

superiority of U-model in designing linear control systems (or at least in designing pole placement control). In addition, the 

study provides benchmark examples for users with their ad hoc applications. 
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1 Introduction
*
 

The main proposition of control engineering is to design 

a controlled system to reasonably correspond to a requested 

performance or design specification. To assess a control 

design scheme applicable or not, justification on the 

feasibility of model structure, no matter of representing 

linear systems or non-linear systems, should be properly 

presented. In linear control system, there are many 

available approaches to cope with control problems, in the 

main, the approaches are based on two model structures, 

state-space model (Brogan, 1974) and polynomial model 

(Åström and Wittenmark, 1995). This paper presents 

comparative studies on pole placement controller design of 

linear dynamic plants based on polynomial models, that is, 

classical model and U-model, which purposely 

demonstrates the superiority of U-model based design 

approach. 

U-model, a control oriented expression converted from 

original linear or non-linear models, is a time-varying 

parameter polynomial set which covers all existing smooth 

non-linear discrete time model as its subset (Zhu, Zhao and 

Zhang, 2015). Furthermore, U-model presents an intuitive 

appeal and a straightforward algorithm structure to reduce 

computational burden in controller design with both linear 

and nonlinear systems. For example, while classical pole 

placement design (Åström and Wittenmark, 1995) 

configures poles associated with every plant model, U-

model design only needs to specify the desired poles of 

characteristic polynomials and steady error, then obtains 

controller outputs for any given models. 

By introducing basic idea and properties of pole 

placement controller design with classical approach and U-

model approach, this study provides comparison and 

demonstration of these two approaches. As U-model 

approach is relative new and less attended, it is hoped that 
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the comparison can provide confidence and assurance in 

applications. To justify the study, a few of research 

questions are listed below, which subsequently guides the 

study to provide possible solutions. 

Research question one: How the U-model can be used 

for pole placement controller design? 

Research question two: What are the 

differences/characteristics of U-model approach in 

comparison to classical approach in pole placement 

controller design? 

Research question three: Are there limitation or 

restriction for U-model based linear control systems 

design? 

The rest of the study is divided into two sections. In 

section 2, classical pole placement method and U-model 

method are introduced to obtain the controller, respectively. 

In section 3, two linear plants are selected to demonstrate 

the design procedures of two methods and the 

corresponding simulation results are presented with 

graphical illustrations.  

2 Pole Placement and U-model 

To establish a basis for the study, the main concepts and 

algorithms of classical pole placement design and U-model 

design are outlined in this section. 

2.1 Pole placement 

It is assumed that the a general single-input, single-

output (SISO) system (Åström and Wittenmark, 1995) can 

be described by 

             d uA q y t B q y t v t   (1) 

where A and B are polynomials in the forward shift 

operator q ,  y t is the plant output,  
d

y t is the desired 

output, a function of control input  u t , and  v t is a 

disturbance. 

The polynomial A and B have the degrees deg A n and 

deg B  deg
0A d . Parameter

0
d , which is called the pole 

excess, represents the integer part of the ratio of time delay 
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and sampling period. Mathematically, 
0

d means the 

number of poles minus the number of zeros. It is 

sometimes convenient to write the process model in the 

delay operator
1

q


. This can be done by introducing the 

reciprocal polynomial 

    * 1 n
A q q A q

 
   (2) 

where n  deg A . The model can then be written as 

           * 1 * 1

0 0
A q y t B q u t d v t d

 
      (3) 

where 

  * 1 1

1
1

n

n
A q a q a q

  
    

  * 1 1

1
1

n

n
b qB q b q

  
     

with
0

m n d  . Notice that since 𝑛  was defined as the 

degree of the system, then
0

n m d  , and trailing 

coefficients of
*

A  may thus be zero. 

When the system is dealt with discrete time, the design 

method is purely algebraic. The continuous systems 

simultaneously is written as 

       
d

Ay t B y t v t    (4) 

It is assumed that A and B are relatively prime. Also, A

is monic that the coefficient of the highest power in 𝐴 is 

unity. 

A general linear controller is described as 

      
d

Ry t Tw t Sy t    (5) 

where R , T and S are polynomials, and  w t is the 

reference input.  

To determine the controller, controller (5) can be 

describe as 

      
d

T S
y t w t y t

R R
    (6) 

Controller (6) is structured as Fig. 1.  

This control law represents a negative feedback with the 

transfer operator S R  and a feedforward with the transfer 

operator T R . This is the general pole placement 

controller design where T R  and S R  are the poles 

should be specified. 

 
Fig. 1: A general pole placement design controller 

 

Taking system (4) and controller (5) to obtain the plant 

output  y t : 

      
BT BR

y t w t v t
AR BS AR BS

 
 

  

      
d

AT BS
y t w t v t

AR BS AR BS
 

 
  (7) 

The close-loop characteristic polynomial is thus become 

 
c

AR BS A    (8) 

Expression (8) is solved by Diophantine equation. 

Only R and S can be determined by Diophantine 

equation. Other conditions must be introduced to also 

determine the polynomial T in the controller (5). The 

response from the command signal
c

u is required to the 

output be described by the dynamics 

    
m m m c

A y t B u t   (9) 

It then follows from output (7) that the condition below 

must be held: 

 m

c m

BBT BT

AR BS A A
 


  (10) 

This model following condition indicates that the 

response of the close-loop system to command signals is as 

specified by the model (9). Whether model-following can 

be achieved depends on the model, the system, and the 

command signal. If it is possible to make the error equal to 

zero for all command signals, then perfect model-following 

is achieved. 

Condition (10) implies that there are cancellations of 

factors of BT and
c

A . Factor the 𝐵 polynomial as 

 B B B
 

   (11) 

where B

is a monic polynomial whose zeros are stable and 

so well damped that they can be cancelled by the controller 

and B


corresponds to unstable or poorly damped factors 

that cannot be cancelled. It thus follows that B

must be a 

factor of
m

B . Hence 

 
'

m m
B B B


   (12) 

Since B


is cancelled, it must be a factor of
c

A . 

Furthermore, it follows from condition (10) that
m

A must 

also be a factor of
c

A . The close-loop characteristic 

polynomial thus has the from 

 
0c m

A A A B


   (13) 

Since B


is a factor if B and
c

A , it follows from 

expression (8) that it also divides R . Hence 

 
'

R R B


   (14) 

And the Diophantine expression (8) reduces to 

 
' '

0 m c
AR B S A A A


     (15) 

Introducing equation (12), (13) and (14) into equation 

(11) gives 

 
'

0 m
T A B   (16) 

Consider a discrete-time plant process described by the 

transfer function 

 0 1

2

1 2

b z bB

A z a z a




 
  (17) 

Let the desired close-loop system be 

 0 2

2

1 2

m m m

c

m m m

B b z b
A

A z a z a


 

 
  (18) 

The controller is thus characterized by the polynomials 

Plant 
𝑇

𝑅
 

𝑆

𝑅
 

+ 
𝑤 𝑡  𝑦𝑑 𝑡  𝑦 𝑡  

− 



 1

0

b
R z

b
    (19) 

 1 1 2 2

0 0

m m
a a a a

S z
b b

 
    (20) 

 0

0

m
b

T z
b

   (21) 

Process above shows a simple discrete-time example 

how to establish a controller by pole placement. Since the 

design method is purely algebraic, there is no difference 

between discrete-time and continuous-time controller. 

2.2 U-Model  

The U-model is a time-varying parameter polynomial 

which can present smooth non-linear object. Under a U 

mapping, the U-model output  1u t  oriented polynomial 

below, 

      * , 1y t f U t   

          * 1 , , , 2 , , ,y t y t n u t u t n      

        2
1 1 1 1

M
U t const u t u t u t      

(22) 

where  1U t  is assumed that it is equal to  
d

y t . 

Correspondingly, its regression equation is given as 

      
0

1
M j

jj
y t t u t


    (23) 

where 𝑀 is the degree of model input (controller output) 

 1u t  , the time varying parameter vector

       1

0

M

M
t t t R  


  is a function of past inputs 

and output         2 , , 1 , ,u t u t n y t y t n    , 

and the parameters  
0 L

  . 

To work out  1u t  , root-solving algorithm is adopted 

to resolve as 

        
0

1 1 0
M j

d jj
u t y t t u t


      

    (24) 

where  is a root-solving algorithm, such as Newton-

Raphson algorithm (Chong and Zak, 2013). A detailed 

analysis on the root solving issues has been presented (Zhu 

and Guo, 2002). 

For a linear plant model, 

  
   

 
0

1

1
d

y t t
u t

t






    (25) 

where  
1

t is the coefficient associated with  1u t   (for 

linear time invariant models,  
1

t is a constant).  
0

t  

(nonzero) is the summation of the rest of the terms in the 

linear model (Zhu and Guo, 2002). 

The U-model is defined as a general linearized model 

from the nonlinear polynomial model through the 

conversion to the U-model (23) and then assigned with 

required poles through a linear feedback control algorithm 

(Zhu, Zhao and Zhang, 2015).  

There is an example for expediently understanding the 

polynomial to the U-model conversion. 

The polynomial model is  

 
         

   

2
0.1 1 2 0.5 1 1

0.8 1 2

y t y t y t y t u t

u t u t

     

  
 (26) 

And the U-model can be expressed as equation (23), 

            2

0 1 2
2 1y t t t u t t u t         (27) 

where      
0

0.1 1 2t y t y t    ,    
1

0.8 2t u t   , 

and    
2

0.5 1t y t    . 

It is worthwhile to mention that for linear systems, the 

polynomial has only two main factors: 
0

 and
1
 . 

The general linear controller is described as controller 

(5): 

      
d

Ry t Tw t Sy t    (28) 

By letting    
d

y t y t , the designed U-model can be 

linked to the reference  w t as 

      
d

c

T T
y t w t w t

R S A
 


  (29) 

where polynomial
c

A is the close-loop characteristic 

equation and specified in advance, that is 

 
c

R S A    (30) 

To cancel the possible output offset in steady state, i.e., 

to make steady state error equal to zero at the controlled 

output, polynomial T is specified with 

  1
c

T A   (31) 

The key idea of the design is to specify the desired close-

loop characteristic polynomial
c

A , then resolve the 

polynomials R and S through a Diophantine equation (Zhu 

and Guo, 2002). After the desired plant output  
d

y t is 

desired, the controller output  1u t  can be determined by 

resolving one of the root of the U-model (23), which the 

algorithm (24) and (25) has present. 

The whole framework of U-model in using linear pole 

placement approaches to design control systems with linear 

polynomial plant models is shown in Fig. 2. 

 
Fig. 2: A U-model-based pole placement control system 

 

3 Case Studies 

3.1 Preparation 

Consider two linear dynamic plant models for the 

computational experiments for two examples. 

Plant 1: 
     

   

0.5 1 0.8 2

1 0.4 2

t y t y t

u t u t

y    

   
  (32) 

Plant 2:  
2

0.5832 7.2610

0.4463 3.8730

s
G s

s s




 
  (33) 

𝑅𝑦𝑑 𝑡 = 𝑇𝑤 𝑡 − 𝑆𝑦 𝑡  𝛹 Plant 

𝑤 𝑡  𝑦𝑑 𝑡  𝑢 𝑡 − 1  𝑦 𝑡  



Specify the desired close-loop characteristic equation 

with 

 
2

0.1761

1.3205 0.4966
c

z
A

z z


 
  (34) 

The control systems of two plants will be designed with 

both classical approach and U-model approach. Therefore 

provide computational comparisons. 

3.2 Classical pole placement control 

Solution to Plant 1 

The first step is to convert the linear dynamic plant (32) 

into the same formula as formula (17) using z-transform as 

 
 

  2

0.4

0.5 0.8

Y z z

U z z z




 
  (35) 

And then observe plant (35). From plant (35), deg 2A 
and deg 1B  are easily found out. The sampled data 

system has a zero in 0.4  and poles in1.1787 and 0.6787 . 

From formula (17) and plant (35),
0

1b  ,
1

0.4b  ,

1
0.5a   and

2
0.8a   is determined. 

From formula (18) and desired characteristic equation 

(34),
0

0.1761
m

b  ,
1

1.3205
m

a   and
2

0.4966
m

a  is 

determined. 

As shown in formula (19), (20) and (21), R , T and S can 

be figured out: 

1

0

0.4
b

R z z
b

     

1 1 2 2

0 0

0.8205 1.2966
m m

a a a a
S z z

b b

 
     

  0

0

0.1761
m

b
T z z

b
   (36) 

Therefore the whole controller can be determined by 

placing T R  and S R  as shown in Fig. 3. 

 

 
Fig. 3: System response of Plant 1 

 

 

Solution to Plant 2 

The plant (33) is a continuous-time process. This can be 

regarded as a normalized model for a motor. The pulse 

transfer operator the sampling period 0.5h s is 

  
2

0.5

0.8

z
G z

z z




 
  (37) 

From plant (37), deg 2A  and deg 1B  are found out. 

The sampled data system has a zero in 0.5 and poles in

0.5 1.4832 j and 0.5 1.4832 j . 

From formula (17) and plant (37),
0

1b  ,
1

0.4b  , 

1
1a   and

2
0.8a  is determined. 

From formula (18) and desired characteristic equation 

(34), 
0

0.1761
m

b  , 
1

1.3205
m

a   and
2

0.4966
m

a  is 

determined. 

 As the same step in solution to Plant 1 by classical pole 

placement control, R ,T and S should be figured out from 

formula (19), (20) and (21) again: 

1

0

0.5
b

R z z
b

     

1 1 2 2

0 0

0.3205 0.3034
m m

a a a a
S z z

b b

 
     

 0

0

0.1761
m

b
T z z

b
    (38) 

Therefore the whole controller can be determined by 

placing T R  and S R  as shown in Fig. 4. 

 
Fig. 4: System response of Plant 2 

3.3 U-model based pole placement control 

Solution to Plant 1 

To achieve zero steady state error, specify T by making 

the close-loop characteristic equation as 

  1 0.1761
c

T A    (39) 

For the polynomials R and S , specify 

 
2

1 2
R z r z r     

 
0 1

S s q s    (40) 

Substituting the specifications of equation (34) and (40) 

into the Diophantine equation of (30), the coefficients in 

polynomials R and S can be expressed by 



 
2 1

0.4966r s    

 
1 0

1.3205r s     (41) 

To guarantee the computation convergence of the 

sequence  U t , i.e. to keep the difference equation with 

stable dynamics, let
1

0.9r   and
2

0.009r  . This 

assignment corresponds to the characteristic equation of 

 U t as   0.89 0.01 0q q   . Then the coefficients in 

polynomial S can be determined from the Diophantine 

equation of (41) as 

 
0

0.4205s     

 
1

0.4876s    (42) 

Substituting the coefficients of the polynomials R and S

into the controller of (5) gives rise to 

 

     

   

 

1 0.9 0.009 1

0.1761 1 0.4205

0.4876 1

d d
t y t y t

w t y t

y t

y    

  

 

  (43) 

Therefore the controller output  u t can be determined 

by solving the root in terms of equation  

 

   

     

     

1

0

0

1 1

1

1 1

k k

M j

j
j

M j

j
j

u t u t

t u t U t

d t u t du t











  

 


  
 





 (44) 

𝑢𝑘+1 𝑡 − 1 
= 𝑢𝑘 𝑡 − 1 

−
∑ 𝜆̂𝑗 𝑡 𝑢

𝑗 𝑡 − 1 − 𝑈 𝑡 𝑀
𝑗=0

𝑑[∑ 𝜆̂𝑗 𝑡 𝑢
𝑗 𝑡 − 1 𝑀

𝑗=0 ] 𝑑𝑢 𝑡 − 1 ⁄
|

𝑢𝑗 𝑡−1 =𝑢𝑘
𝑗
 𝑡−1 

 

(44) 

The corresponding control-oriented model of is obtained 

from formula (25): 

        
0 1

1y t t t u t      (45) 

where 

        
0

0.5 1 0.8 2 0.4 2t y t y t u t        

  
1

1t    (46) 

Substituting  y t in equation (46) into (43), the output 

response of the designed U-model with assigned poles and 

steady state property is shown in Fig. 5, and the pole 

placement controller output is shown in Fig. 6 (Zhu and 

Guo, 2002). 

 

Solution to Plant 2 

Since the desired close-loop characteristic equation is the 

same one as solution to Plant 1 by U-model, there is no 

need to calculate the controller as equations (39) to (43). 

Utilize the same controller parameter and just figure out 

corresponding plant from U-model formula (25): 

        
0 1

1y t t t u t      (47) 

where 

        
0

1 0.8 2 0.5 2t y t y t u t         

  
1

1t    (48) 

The output response of the designed U-model with 

assigned poles and steady state property is shown in Fig. 7, 

and the pole placement controller output is shown in Fig. 8.  

 

 
Fig. 5: System response of Plant 1 

 

 
Fig. 6: Control output of Plant 1 

 

 

 
Fig. 7: System response of Plant 2 



 
Fig. 8: Control output of Plant 2  

 

3.4 Discussions 

As shown above, the U-model derived from pole 

placement with modularisation, obtaining a root as the 

controller output from a polynomial equation. The 

simulation results of both classical pole placement and U-

model’s demonstrate the same control performance 

achieved; however, the procedure of designing control 

system by U-model is much concise and generally 

applicable (once off design for all plant models) compared 

to classical pole placement (ad hoc design with each plant 

model). To explain the difference, further analysis is given 

below. 

In U-model design, after specifying the desired close-

loop characteristic polynomial
c

A , polynomials R and S can 

be resolved through Diophantine equation (which is shown 

in equation (30): 
c

R S A  ). As a classical approach in 

pole placement (Åström and Wittenmark, 1995), the 

corresponding relationship is given by expression (8): 

c
AR BS A  where A and B are the numerator polynomial 

and the denominator polynomial of a plant model, 

respectively, which indicate the classical design depending 

on the plant model. Without determining poles every 

procedure while plant is changed, the U-model set up a law 

of R , T and S .  

Unlike pole placement method need to calculate R , T
and S every time when plant changing, U-model simplifies 

the routine to complete the design of control system. After 

the desired plant output  
d

y t is designed, as solution to 

Plant 2 applies the same desired plant output in solution to 

Plant 1, the controller output  1u t  can be directly 

determined by resolving one of the roots of the U-model. 

That means, when desired close-loop characteristic 

equation is set up, no matter how the plant model changed, 

the procedure from equations (39) to (43) is constancy. 

This is one of theorems for U-model (Zhu and Guo, 

2002): The u-model based pole placement design 

procedure does not depend on the plant model. Only the 

solution of the designed controller output involves in the 

plant model. 

4 Conclusions 

Even the proposition of U-model concept is to establish 

a framework which provides a generic prototype for using 

linear approaches to design control systems with smooth 

non-linear plants, U-model design still performs better in 

linear control system design. For linear control system 

design, the fundamental difference between classical 

approach and U-model approach lays in the design 

procedure. Classical approach is to design control system 

with plant model and controller together to find controller 

output, whereas U-model approach is design a general 

controller and then use plant models to find the controller 

output. Even the same control effect are obtained, U-model 

is superior in generality, concise, and teaching-learning. 

This study is the first paper to make such comparison with 

pole placement controller design, which should be also 

applicable to the other types of linear controllers. 

For the future work, U-model methodology will be 

expanded to control non-minimum phase linear plants, 

stabilise unstable linear systems, and then compare with 

those type classical linear design approaches. 
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