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Abstract Mobility assistance robots (MARs) provide sup-
port to elderly or patients during walking. The design of
a safe and intuitive assistance behavior is one of the ma-
jor challenges in this context. We present an integrated ap-
proach for the context-specific, on-line adaptation of the as-
sistance level of a rollator-type mobility assistance robot
by gain-scheduling of low-level robot control parameters. A
human-inspired decision-making model, the Drift-Diffusion
Model, is introduced as the key principle to gain-schedule
parameters and with this to adapt the provided robot assis-
tance in order to achieve a human-like assistive behavior.
The mobility assistance robot is designed to provide a) cog-
nitive assistance to help the user following a desired path to-
wards a predefined destination as well as b) sensorial assis-
tance to avoid collisions with obstacles while allowing for an
intentional approach of them. Further, the robot observes the
user long-term performance and fatigue to adapt the over-
all level of c) physical assistance provided. For each type
of assistance a decision-making problem is formulated that
affects different low-level control parameters. The effec-
tiveness of the proposed approach is demonstrated in tech-
nical validation experiments. Moreover, the proposed ap-
proach is evaluated in a user study with 35 elderly persons.
Obtained results indicate that the proposed gain-scheduling
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technique incorporating ideas of human decision-making
models shows a general high potential for the application
in adaptive shared control of mobility assistance robots.
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1 Introduction

A sufficient motor performance that allows performing
physical daily activities is a critical requirement for main-
taining mobility and vitality, especially for elderly people
and patients. Changes due to aging or disease may result in
the limitation of human motor performance, sensing capa-
bilities and cognitive functions, and thus reduce the ability to
perform activities of daily living such as walking, transfer-
ring or performing personal hygiene. This again often leads
to less autonomy and a decreased quality of life and self-
esteem. Thus, the constantly increasing elderly population,
especially in industrialized countries, has led to a strong de-
mand for healthcare specialists and assistive devices. Mo-
bility assistance robots (MARs) can partly cover this de-
mand by providing physical, sensorial, and cognitive assis-
tance [31, 44, 55].

How to adapt the provided assistance depending on the
actual context is a major challenge in the controller design of
assistive robots. An assistive robot under direct user control
can have difficulties guaranteeing acceptable performance
and safety due to cognitive, sensorial and physical weak-
nesses of target users being elderly or disabled people. On
the other hand, a fully autonomous system that ignores the
user’s intention can result in user dissatisfaction and dan-
gerous situations in case of human and robot disagreement.
The latter can highly affect acceptability of such systems
by their end-users (elderlies and patients) [1, 3, 12, 14, 20].
Therefore, a shared control approach allowing human and
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robot to share the control over resulting actions is typically
employed.

Shared control has been studied for different applica-
tions of human-machine interaction: For example [2, 4, 28,
40, 53] investigated shared control for teleoperation, space
and aviation systems, [35–38] explored similar principles
for surgery applications, while [7] and [54] report on shared
control for powered wheelchairs.

In literature most adaptive shared control mechanisms
attempt to tune the level of assistance to improve metrics re-
lated to the task. Thus, an inherent difficulty lies in deciding
on suitable metrics and adaptation strategies such that the
overall robot assistance results in a natural behavior to the
user. In this context natural refers to an intuitive cooperative
control scheme that considers human and robot to collab-
orate as peers, meaning that the robot is allowed to make
own decisions to online adjust its level of assistance taking
current and past information on the user and environment
into account. We believe that an intuitive and natural behav-
ior can be achieved if the robot can decide on the provided
level of assistance in a similar way to humans. Thus, we
formulate the problem of the allocation of control authority
as a decision-making problem and employ human-inspired
decision-making models. We use the Drift-Diffusion (DD)
model, firstly proposed by [9], that describes the decision-
making mechanism in humans as a process in which deci-
sions are based on past decisions and the decision criteria are
continuously adjusted in order to maximize the reward ob-
tained throughout task execution. Following the principles
of the DD model, we propose a mathematical formulation
for an integrated control architecture to adapt the parameters
of the shared control system of a rollator-type MAR. The
proposed architecture allows to intuitively adapt the short-
term a) cognitive assistance helping the user to follow a de-
sired path towards a predefined destination, the robot b) sen-
sorial assistance to avoid collisions with obstacles and to
allow an intentional approach of them, and the more long-
term adaptation of the robot c) physical assistance based on
measured user performance and fatigue. We illustrate the ef-
fectiveness of the proposed architecture in experiments and
evaluate its performance by conducting a user study with
elderly. Obtained results indicate an acceptable user satis-
faction and show a general high potential of the proposed
adaptive shared control architecture for MARs.

This paper is organized as follows: Section 2 reviews
related work. Section 3 introduces the MAR and the imple-
mented admittance control approach. The integrated adap-
tive shared control architecture is presented in Section 4,
while Section 5 provides details on the implementation of
the adaptation policies for the sensorial, cognitive and phys-
ical assistance. Finally, Section 6 discusses the experimen-
tal setup and reports on technical validation experiments and

the performed user study with elderly users. Section 7 con-
cludes the work.

2 Related Work

This section reviews literature on adaptive shared control of
MARs as well as studies on decision making in humans and
related models.

2.1 Adaptive Shared Control for MARs

Variable admittance control is the most common control
scheme in MARs. An admittance model defines the sensitiv-
ity of the device to the applied human forces according to a
specified desired mass and damping that should be rendered
by the device. The behavior of the system can be modified
by adapting this admittance, or by manipulation of the force
applied by the user. In [32, 33, 57] the authors for exam-
ple improve maneuverability by applying a transformation
on the user force that allows to online modify the center of
rotation of the mobility assistant. In [24,26,27] authors pro-
pose to include also a braking force to the admittance law
and to achieve the robot desired behavior such as fall pre-
vention, gravity compensation on slopes or step avoidance
by proper activation of the brakes. Different environment-
adaptive approaches, mainly based on the inclusion of addi-
tional forces/torques to the admittance model for obstacle
avoidance and goal-seeking (generated based on environ-
ment information) can be found in [23–25, 34, 48, 49, 56].
These approaches can result in an active robot behavior
which can lead to dangerous situations, for example in case
the human releases the handles and the robot continuous to
move or the human plans to walk on a straight path, while
the system accidently turns to circumvent an obstacle.

Only few works consider the history of the human per-
formance during the interaction with the robot in the adapta-
tion law of the admittance controller. In [64] the author pro-
poses a cost function with forgetting factor evaluating the
user’s performance by combining multiple criteria like the
proximity to obstacles, the deviation from the planned tra-
jectory and human stability criteria. This allows to realize an
adaptive shared control with varying force gains, which pro-
vides more authority to the human or the robot assistant de-
pending on the accumulated human performance. Similarly,
in [62] the authors propose to shift authority from the human
user to the robotic system or vice versa depending on the
specific context and logical rules allowing e.g. for the imple-
mentation of a no assist mode, an assist mode (human and
robot share the execution of the task), a safety mode (robot
acts fully autonomous) or an override mode (robot is under
full control of the human). In [30, 61] again a logical rule-
based method is proposed that evaluates the interaction force
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to estimate the human intentional direction which is defined
as “the direction into which a person intends to move” and
then select the admittance parameters among some defined
values. Different admittance parameters are studied to pro-
vide the user a comfortable feeling while walking and to
avoid manoeuvres in unintended directions.

Apart from the use of variable admittance control, few
other approaches exist that address the problem of shared
control. A Bayesian network approach that combines sen-
sor information with user inputs (read by an interface with
three buttons for moving forward, turn left or right) and
that activates respective autonomous robot behavior is pro-
posed in [41]. An autonomous path planning and obstacle
avoidance approach is discussed in [15–17, 42] that lets the
user decide on the robot velocity leaving partial authority
of modifying the path with the user. The author employs
advanced methods for dynamic path planning (e.g. elastic
bands [51]) to allow for dynamic obstacle avoidance and
smooth path planning and modifications according to user
inputs. In [56] three robot guiding behaviours including ob-
stacle avoidance, wall following, and goal seeking are de-
signed for an omni-directional mobile robot by evaluating
laser sensor data and by fusing these three behaviors by
means of a Fuzzy Kohonen Clustering Network. In [29] the
authors use forces and moments a user applies to a walker’s
handle in addition to information on the local environment
and the walker’s state to derive the most likely human inten-
tion, respectively path to follow. Depending on the identified
intention, the angle of the robot front wheel is set by the mo-
bility assistant, leaving the user the freedom to decide on the
velocity to move on the identified path. Finally, a switching
controller to avoid human forward fall and human-robot col-
lision is proposed in [13].

Summarizing, although a series of adaptive shared con-
trol approaches for mobility assistance robots were studied
in literature as mentioned above, to the best of the authors
knowledge none of the aforementioned approaches used
human-inspired decision making models to define adapta-
tion policies for the provided level of assistance, which is
expected to result in a natural and safe human-robot interac-
tion. Thus, for the first time we study human decision mak-
ing models as mechanism to gain-schedule low-level control
parameters and with this to vary the level of assistance pro-
vided and evaluate the effectiveness of this approach for real
end-users.

2.2 Human Decision Making Models

In cognitive science, human decision making has been
widely studied in so called two-alternative forced-choice
(TAFC) tasks. TAFC tasks require a human to make a se-
quence of choices between two predefined alternatives. Af-
ter every choice, the subject is given a reward based on the

current choice and the previous N choices. The subject’s
goal is to maximize the accumulated reward over a sequence
of choices. TAFC tasks were used to study optimal decision
strategies, see [9,47], or sub-optimal strategies, see [21,22].
In human subject experiments, it was observed that for a
majority of human subjects working with particular reward
structures, decisions are centered around particular points,
termed matching points, where the reward return curves for
the two options cross.

Mathematical investigations focusing on potential un-
derlying mechanisms of human decision making have in-
volved among others Markov decision processes (MDP) and
drift-diffusion (DD) models. Authors in [58] consider TAFC
tasks and a DD model together as a Markov process and
show that, under certain assumptions, the DD model analyt-
ically exhibits matching behavior as observed in human sub-
jects. In [5], convergence to a matching point is proven for a
particular task called the matching-shoulders-type task and
using the DD model with a time decay extension. In [47]
and [59], a combination of a DD model and MDP is used
to address empirical and analytical effects of social context
(decisions and rewards of other people) on decision making.

Although several extensions to the concept of decision
making based on the DD model in TAFC tasks exist, see
for example [50, 63], its application to assistive robotics has
not received lots of attention. In this work we extend our
previous work [8] and explore the applicability of the DD
model to MARs supporting elderly and patients.

Fig. 1 Mobility assistance platform.
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3 MAR Low-Level Control

3.1 System Description

Our rollator-type MAR consists of rear and front wheels,
chassis, supportive handle bars and a range of sensors to
measure environment and human data, see Fig. 1. The pro-
totype has two actuated rear wheels and two front castors
and is equipped with two 6 DoF JR3 force-torque sensors
at the handles, a Hokuyu laser range finder at the front to
monitor the environment, one at the back to observe human
gait patterns and two Kinect to monitor the human posture.
The system is further equipped with an Inertia Measurement
System (IMU), XSens MTi-G-700 GPS/INS, in order to es-
timate the robot angular acceleration and two 2 DoF arms
to support sit-to-stand transfers. The rollator is of active and
non-holonomic type, meaning that the translational motion
of the robot along the heading direction as well as rota-
tional motion along its center of rotation are possible, while
motions in lateral direction are restricted. With reference to
Fig. 2, the non-holonomic constraint is given by

ẋr sin θr − ẏr cos θr = 0,

and therefore the kinematic model can be written as follows,

q̇ =

ẋrẏr
θ̇r

 =

cosθr 0sinθr 0

0 1

[v
ω

]
= Ju, (1)

where v and ω are two available control inputs for the
linear and angular velocities around the vertical axis and
q = [xr, yr, θr]

T the states of the robot.

Fig. 2 Human and MAR in the world frame.

3.2 Admittance Control

Two force/torque sensors mounted at the handles of the rol-
lator are used to drive the differential drive MAR. Force

components along and around the heading direction are used
for motion control1. An admittance control is implemented,
which allows to design the desired dynamic behavior of the
system with respect to the user’s applied force by select-
ing proper admittance parameters. The admittance controller
emulates a dynamic system and gives the user a feeling as
if he/she were interacting with the system specified by the
admittance model. A mass-damper system for the linear and
angular motion is considered

Mdu̇+Ddu = Fh, (2)

where Md and Dd are the desired inertia and damping
matrices, respectively, and Fh = [fhx

, fhy
, τh] the driving

forces applied by the user. Therefore, the desired reference
velocity for the robot is specified by the desired admittance
parameters and is based on the human input in terms of ap-
plied force. The robot reference velocity is then controlled
by a low-level controller.

4 Shared Control Architecture

We propose an integrated architecture that allows to adapt
the robot’s short-term cognitive and sensorial assistance as
well as the long-term physical assistance provided. The cog-
nitive assistance provides required support to the user in path
following situations guiding the user from an initial to a de-
sired destination. The sensorial assistance reduces the risk of
the robot colliding with obstacles and allows for the inten-
tional approach of obstacles. The physical assistance tunes
the robot contribution according to the long-term user per-
formance, which may be affected due to fatigue. The latter
is particularly important since considerable changes in per-
formance are observed due to user fatigue after continuous
activity, which may render performing daily activities at a
desired level of performance difficult, see [10, 52].

With reference to Fig. 3, we propose an integrated adap-
tive shared control framework for MARs. Three decision-
maker blocks for sensorial, cognitive and physical assistance
are responsible for online adapting the parameters of the ad-
mittance controller in order to achieve the desired system
behavior. The Decision on cognitive assistance block evalu-
ates the planned path towards the goal which is generated by
the path planner block, the human navigational intention in
form of force and torque applied to the robot handles as well
as the actual human performance. The Decision on senso-
rial assistance block uses human input and the information
provided by the Environment state block, which provides in-
formation on the position of obstacles around the robot. Fi-
nally, the Decision on physical assistance block processes

1 Please note that in a holonomic system also the force component
in sidewards direction is used for motion control.
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Fig. 3 MAR adaptive shared control architecture.

all inputs and adjusts the level of active support provided
accordingly.

The concept of the robot assistance is implemented by
manipulating the admittance control parameters. We decom-
pose and extend the admittance controller (2) as follows:

mxv̇ + dxv = fhx
, (3)

Iθω̇ + dθω = k1τh + k2τassis, (4)

k1 + k2 = 1, (5)

where the parametersmx, dθ and fhx are the mass, damping
and human force components along the heading direction of
the robot (in alignment with the unitary vector x of the robot
in Figure 2). The variables Iθ, dθ and τh are the inertia,
damping and human torque components. The parameters dx,
dθ and k2 are tuned to satisfy the aforementioned sensorial,
cognitive and physical assistance. Increasing the value of dx
decelerates the robot motion in heading direction and know-
ing that the robot is of non-holonomic nature this effect can
be used for the purpose of robot sensorial assistance. Ma-
nipulation of dθ influences the felt resistance when aiming
to change the robot orientation and thus, can help prevent-
ing deviations from the desired path towards the destination.
Finally, an increase of k2 increases the robot active contribu-
tion to the control of the orientation of the robot. This effect
is used for varying the physical assistance provided by the
robot. The adaptation of the dx and dθ parameters results in
a passive and thus, intrinsically safe support strategy. The
advantage of active support is used to tune the parameter k2,
whenever the passive support strategy alone cannot provide
the desired system behavior, e.g. when the user is exhausted
and can hardly guide the robot towards his/her desired des-
tination.

The decision making systems that decide on the specific
tuning of these parameters are discussed in the following
sections.

5 Decision Making for MARs

The individual decision making policies that decide on the
specific level of robot assistance provided are formulated
based on the DD model to achieve an intuitive online adap-
tation of the robot assistance. In the following sections, we
first introduce the DD model, and then detail its application
for designing an adaptive robot assistance for a MAR.

5.1 Decision Making Principle based on DD Model

In a two-alternative forced-choice (TAFC) task a human has
to take a decision between two alternative choices and is
asked to continuously choose between them. Each choice
is associated with a specific reward. The human not know-
ing about the underlying reward structures typically explores
the options and gradually optimizes the overall intake. Dif-
ferent reward structures have been proposed in literature
to study human decision-making behavior. In this paper,
we mainly focus on the matching shoulder reward struc-
ture. The matching shoulder structure consists of two re-
ward functions with inverse relationships as encountered for
example whenever two goals are conflicting and a decision
has to be taken for either improving the one or the other.
The specific form of the two crossing reward functions is a
design factor and allows to program different kind of behav-
iors allowing to favour one goal over another in some situ-
ations, while favouring the other in other situations. Thus,
in general the matching shoulder structure consists of two
intersecting curves that diminish with increasing/decreasing
performance. Consider pA and pB human performance mea-
sures associated with the choicesA andB and the associated
rewards rA and rB . Further, and only assumed in the con-
text of this manuscript, the general relationship of a reward
r and a performance measure p should be given by:

rz = kz(pz − poffset,z)nz + r0,z, (6)

where poffset,z , r0,z , kz , and nz are the user and task-
defined tunable variables for each specific reward structure
(z ∈ A, B).
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The Drift Diffusion (DD) model has proven to imple-
ment the optimal mechanism for TAFC decision making
tasks and accounts for an impressive amount of behavioral
and neuroscientific data. The DD model characteristic can
be formulated as soft-max model firstly introduced by [9] to
describe human decision making in TAFC tasks. The soft-
max model as a main component in human decision-making
processes was also shown by [45] and formulated using a
sigmoidal function

PA(t+ 1) =
1

1 + exp−µ(wA(t)−wB(t))
. (7)

According to this model, the probability of the human
preference for choice A at time t+ 1 is PA(t+ 1) which is
computed using (7), where wA(t) and wB(t) are the accu-
mulated evidences for choosing option A or B, respectively.
The parameter µ is used to manipulate the slope of the sig-
moid function, and therefore the level of certainty in making
a decision.

The values wA(t) and wB(t) are updated with the help
of a learning rule. Authors in [46] have proposed a discrete-
time linear update rule. Considering the decision set z ∈
[A,B] at each time t, then

wz(t+ T ) = (1− λ)wz(t) + λrz(t) (8)

where z is the decision just made, rz(t) the obtained reward
for z, λ ∈ [0 1] a forgetting factor and T the sample time
in the system. We consider the same initial value for the
weightings wz which implies no preference for each of the
two choices.

In the following sections we employ the DDM as a key
element for the gain-scheduling of low-level control param-
eters resulting in varying levels of physical, sensorial and
cognitive assistance. Doing so, the problem of fulfilling two
conflicting goals is formulated for each type of assistance
studied. Then, associated performance metrics are defined
and the corresponding matching shoulder reward structures
are introduced. Next, the level of the provided assistance is
decided upon by evaluating the DDM (7), which finally de-
termines which of the two conflicting goals should be pri-
oritized according to the accumulated evidence to improve
the overall intake. Finally, a linear homotopy is applied for
gain scheduling respective low-level control parameters c
between a pre-defined minimum and maximum value based
on the determined probabilities for deciding on either of the
two choices:

c(t) = PA(t+ 1)cmin + (1− PA(t+ 1))cmax. (9)

5.2 Decision on Cognitive Assistance

In this section, we formulate the problem of providing adap-
tive, passive cognitive assistance as a human decision mak-
ing problem. We employ the DD model for gain-scheduling

of the low-level control parameter dθ to online adjust the
level of the provided robot cognitive assistance.

5.2.1 Problem Formulation

An important functionality of the MAR is guiding the user
from an initial to a target destination, especially for users
who are cognitively impaired and have thus, difficulties in
locating themselves and finding their way. An ideal robot as-
sistance makes the user feel comfortable by giving him/her
enough control over the platform, while the user is safely
guided towards the desired destination. In particular, we aim
at improving human-robot agreement by providing the user
enough freedom in controlling the platform as long as the
deviation from the desired path stays within acceptable lim-
its and at shifting priority towards improving task perfor-
mance by reducing the human control authority in case the
task deviation is slowly approaching its allowed maximum,
but the user performs no proper reaction to prevent this.
This trade-off is formulated as decision-making problem.
The assistance is realized by a passive guidance that pre-
vents movements in directions perpendicular to the desired
path and giving the user freedom to control the robot when
moving along the reference path.

Consider a task of path following from an initial to a fi-
nal location where the desired path is known for the robot as-
sistant. The human forces (fh = [fhx

, fhy
]T ), represented

by the linear components (two first entries) of Fh in (2) are
used to control the linear robot motion along the robot ref-
erence frame. They can be split into two main components,
the human force along the reference path (f‖) and perpen-
dicular to it (f⊥). With reference to Fig. 2, the magnitudes
of these forces are given as follows,

f‖ =‖ fh ‖ cos(θe), f⊥ =‖ fh ‖ sin(θe), (10)

where θe = θref − θr and θref is the desired orientation
between the reference path and the global x-axis.

We believe that the proper control of the robot orienta-
tion error is satisfactory for the purpose of providing cogni-
tive assistance. To ensure a safe robot behavior, we propose
a passive assistance by adapting the damping parameter dθ
and thus, indirect manipulation of the robot angular veloc-
ity and orientation error while giving the user the freedom
to move freely along the path. This reduces the problem to
the adaptation of only one parameter, namely the damping
parameter dθ. The adaptation law for this parameter is for-
mulated as a decision making problem using the DD model.

5.2.2 Performance Measures

Task performance is measured using the rotational and trans-
lational tracking error formulated with respect to the desired
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path over an observation windows NC

pT,C =

∑NC

i=1 kC,eei + kC,θeθei
NC ·max(kC,ee+ kC,θeθe)

, (11)

where the subscript i refers to the value of the variable at the
sample i and e is the robot position error given by

e =
√

(xref − xr)2 + (yref − yr)2, (12)

and pT,C means the normalized task performance computed
over NC samples, and kC,e and kC,θe are two user-defined
factors distributing the weightings between orientation and
translation. The max value is initialized with the maximum
acceptable error with respect to the task and is updated if a
larger value is observed during the interaction process.

Disagreement is assumed to occur when the user and
robot assistant apply forces in opposite directions leading to
so called internal forces. These internal forces provide im-
portant information on haptic interaction, see e.g. [18]. Min-
imizing disagreement can enhance the quality of human-
robot interaction as the robot then behaves according to hu-
man expectations. Considering the task of providing cogni-
tive assistance described in the previous section, we define
the internal moment τint as follows

τint =



τh + lff⊥ sign(τh + lff⊥) 6= sign(τrobot)∧
|τh + lff⊥| ≤ |τrobot|,

−τrobot sign(τh + lff⊥) 6= sign(τrobot)∧
|τh + lff⊥| > |τrobot|,

0 otherwise,

(13)

where lf is a variable representing the Euclidean distance
between the robot position and the reference point on the
desired path which allows the manipulation of τh + lff⊥,
especially for cases when the human does not apply enough
torque to correct the robot deviation, but instead the devia-
tion is increasing due to applied forces. The value of τrobot
can be computed by any orientation controller, similar to the
one proposed for τassis in (26). The disagreement metric is
then computed over NC samples and is further normalized
to define the following agreement performance pA,C ,

pA,C = 1−
∑NC

i=1 |τint,i|
NC ·max(|τint|)

. (14)

The final performance set to be considered for each de-
cision is pC ∈ [pT,C , pA,C ].

5.2.3 Reward Structure and Decision Making

Following ideas of the DD model in TAFC tasks, a re-
ward function is associated with each performance measure.
For the considered decision making problem, we propose
a matching shoulder structure with two intersecting reward
functions as depicted in Fig. 4 and both functions expressed
using (6).
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rT,C (pT,C )
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Fig. 4 Reward structure for adapting the cognitive assistance. The blue
function is the reward rT,C associated to the task performance mea-
sure pT,C and the red function is the reward rA,C associated to the
agreement performance measure pA,C .

The proposed reward structure is designed to fit to the re-
quirements introduced in Section 5.2.1. The assistant faces
a trade-off between providing low assistance to improve
human-robot agreement and providing high assistance to
improve task performance. When the user is following the
desired path, high agreement (agreement measure at its max-
imum) and high task performance (task performance mea-
sure at its minimum) are typically observed and thus, the
maximum corresponding rewards are associated for both
choices. The maximum reward associated to human-robot
agreement is designed to be larger than the maximum re-
ward for improving task performance. This implies an as-
sistant’s preference for improving agreement over task per-
formance whenever the user’s deviation from the reference
path is acceptable. When both performances are decreasing,
the reward for task performance decreases with a slower rate
than the one for human-robot agreement. This allows a faster
change of the preference from improving agreement to task
performance. On the other hand, when both rewards are im-
proving from very low performance, even a small increase
of human-robot agreement results in a quick change of the
preference towards improving human-robot agreement be-
cause of the higher rate of change in the reward associated
to it (compare the change of slopes in both curves for exam-
ple in 0.6 <performance< 1).

The probability to assist the human to improve human-
robot agreement at time t + 1 is calculated using the DD
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model represented by (7) and considering PA = PA,C ,
wA = wA,C and wB = wT,C and µ = µC . The values
of wA,C and wT,C are updated according to (8) considering
z ∈ [AC , TC ].

Finally, the level of the provided cognitive assistance is
adapted with the help of a linear homotopy defined as fol-
lows

dθ(t) = PA,C(t+1)dθ,min+(1−PA,C(t+1))dθ,max (15)

where dθ,min and dθ,max are the minimum and maximum
considered values of the damping factor.

5.3 Decision on Sensorial Assistance

The formulation of the sensorial assistance problem and the
proposed adaptation policy for gain-scheduling of the low-
level control parameter dx based on the described decision
making approach is discussed in the following sections.

5.3.1 Problem Formulation

Although typically a collision-free path is planned for robot
assistants, reducing the risk of colliding with dynamic ob-
stacles unknown at the time of planning the path has to be
considered in the design of the robot control architecture.
Further, an intentional approach to objects (detected as ob-
stacle by the robot) can be desirable, e.g, when aiming to
approach a table to grasp an object. This requires the robot
to determine the user’s intention and to decide on a proper
support taking the specific context into account. Specifically,
we aim at improving task performance in terms of colli-
sion avoidance by reducing the human control authority as
well as allowing the intentional approach of objects by shift-
ing the control authority to the human if large human-robot
disagreement is detected. This is formulated as decision-
making problem.

Fig. 5 Concept of the distance definition between robot and obstacle
detected by the laser range finder.

Since the most critical collisions occur between obsta-
cles and the front part of the robot, we aim for collision
avoidance by adapting the robot heading velocity towards
obstacles. Considering the distance between robot and a de-
tected obstacle, virtual forces/moments can be generated
based on an artificial potential field, see [39]. We consider
the following artificial potential field (U(q)),

U(q) =

{
k
2

(
1

‖dobs(q)‖ −
1

dobs,max

)2
‖ dobs(q) ‖≤ dobs,max,

0 ‖ dobs(q) ‖ > dobs,max,

where dobs is defined as the shortest distance between the
nearest obstacle in front of the robot to a representative point
on the robot, see Fig. 6, dobs,max the radius of the area
in which the potential field becomes active and k a posi-
tive constant gain. Therefore, the value of U(q) is increased
whenever the robot is approaching an obstacle, and its value
is zero if ‖ dobs(q) ‖ is larger than dobs,max.

Artificial forces applied by the robot are defined as
F (q) = −∇(U(q)) where ∇U is the gradient vector of U .
Then F (q) is transformed to the robot frame to determine
virtual forces and moments Fobs = [fobs, τobs] applied by
the obstacle to the center of rotation of the MAR.

In a fully autonomous system, forces Fobs are typically
used to actively drive the MAR and avoid collision with ob-
stacles. However, in a shared control system where the robot
is (at least partially) under human control and knowing that
we aim for a passive support, direct usage of Fobs can result
into an active and unsafe behavior and thus, we aim for only
evaluating it and passively tuning the robot heading veloc-
ity v. Here this problem is simplified to the decision on the
adaptation of dx, which allows decelerating the robot when-
ever an obstacle is detected.

5.3.2 Performance Measures

Considering the task of collision avoidance, task perfor-
mance is defined according to the distance to the nearest
obstacle in front of the robot over an observation window
of NS samples

pT,S = 1−
∑NS

i=1 ‖ dobs,i ‖
NS · dobs,max

(16)

where dobs,i is the respective vector for sample i.
Similar to Section 5.2.2, internal forces are considered to

provide important information on the quality of interaction
during collision avoidance. Internal forces fint, which rep-
resent the level of disagreement between the force applied
by a human (fh) as well as the repulsive force generated by
the detected obstacle (fobs), are computed as follows

fint =


fh fh · fobs ≤ 0∧ ‖ fh ‖≤‖ fobs ‖,
−fobs fh · fobs ≤ 0∧ ‖ fh ‖> ‖ fobs ‖,
0 otherwise,

(17)
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whereby human-robot agreementAS is determined overNS
samples and is normalized as follows

pA,S = 1−
∑NS

i=1 ‖ fint,i ‖
NS ·max(‖ fint ‖)

(18)

where fint,i refers to sample i. Thus, the set of perfor-
mances to be considered for the sensorial assistance is pS
∈ [pT,S , pA,S ].
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Fig. 6 Reward structure for adapting the sensorial assistance. The blue
function is the reward rT,S associated to the task performance mea-
sure pT,S and the red function is the reward rA,S associated to the
agreement performance measure pA,S .

5.3.3 Reward Structure and Decision Making

Fig. 6 presents two reward functions which are defined cor-
responding to the two performance measures presented in
Section 5.3.2.

Again the DD model is adopted for decision making.
The probability to improve human-robot agreement PA,S is
calculated by (7) where wA = wA,S and wB = wT,S are
the evidences for choosing to improve human-robot agree-
ment or task performance (as defined in section 5.3.2). The
evidences are calculated using (8) and considering the set of
decisions z ∈ [TS , AS ] for each time t. Finally, the level of
the robot sensorial assistance is modified by means of the
following homotopy for the damping parameter dx

dx(t) = PA,S(t+1)dx,min+(1−PA,S(t+1))dx,max (19)

where dx,min and dx,max are the minimum and maximum
considered values of the damping factor.

We believe that the proposed reward structure satisfies
the objectives for providing sensorial assistance as intro-
duced in Section 5.3.1. When no obstacle is detected in front
of the robot, the task performance measure is at its mini-
mum (see (16)) and therefore a high reward is associated to
it. On the other hand, no obstacles implies no disagreement
between human and robot (based on the definition of the

performance measures), which results in a large value for
the measure of human-robot agreement and therefore a high
reward. The maximum value of the reward for human-robot
agreement has been decided to be slightly larger than the
maximum value of the reward for task performance, which
implies a preference to improve human-robot agreement
whenever no risk of collision is detected. In other words,
the value of PA,S is close to one due to the fact that the evi-
dence ∆wS = wA,S −wT,S is at its maximum according to
the rewards defined.

As soon as an obstacle is detected, the reward for im-
proving task performance decreases with a slower rate with
respect to the reward for human-robot agreement. This al-
lows a faster change from preferring human-robot agree-
ment to task performance, the value of ∆wS decreases,
which results in an increase of the level of assistance. Fi-
nally, if the human insists on continuing the motion forward
despite the provided resistance of the robot (which can im-
ply the user’s interest to approach the obstacle), the task per-
formance measure tends to its maximum value (correspond-
ing to the lowest reward), while the human-robot agreement
measure tends to its lowest value (also corresponding to a
low reward). In this case the overall preference turns back
again towards improving human-robot agreement since its
minimum reward is larger than the minimum reward for task
performance. This results in an increase of ∆wS allowing
the user to approach the obstacle. However, approaching the
obstacle has very low risk of collision since the robot veloc-
ity has been reduced significantly and the human remains
under partial robot assistance.

5.4 Decision on Physical Assistance

Individualization of the robot support is considered by
adapting the physical robot assistance by gain-scheduling
the parameter k2 as detailed in the following sections.

5.4.1 Problem Formulation

The demand for assistance of elderly and patients may in-
crease with continuing activity due to fatigue. An assistance
strategy that adapts to the current physiological state can
meet the aforementioned demand and thus, can result in a
higher user satisfaction during interaction with the robot.
This requires that the MAR not only evaluates the user per-
formance with respect to the desired task, but also estimates
the physiological state of the user in order to decide on the
level of the provided robot assistance. Specifically, we aim at
shifting the control authority to the robot if task performance
is low and human fatigue high and at gradually returning au-
thority to the user when task performance improves and hu-
man fatigue decreases. Again, this is formulated as decision-
making problem.
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We propose an active support by applying an assistive
torque to the admittance model. Considering (4) and (5), the
input torque can be manipulated by a proper selection of the
parameter k2.

5.4.2 Performance Measures

In general two different types of human fatigue are studied
in literature: mental and physical. Physical fatigue, which
we focus on in this paper, presents the maximum level of ex-
haustion at which the human cannot exert any more work.2

In literature, medical indicators of human fatigue are mostly
discussed based on heart rate or the total performed work.
Since the former requires an external monitoring system,
e.g. heart rate sensor, we mainly focus on the latter. Phys-
ical fatigue is directly related to the total power consumed
in the human muscles and therefore total work performed
as presented by [11]. The total work performed by a person
during walking is related to the user’s walking velocity and
the total weight of the user. Authors in [6] propose the fol-
lowing formula that relates consumed calories per kilogram
per hour lcal to the user’s velocity vh during walking

lcal(vh) = 14.326
vh

0.362 + 0.257vh
(0.136vh + 0.066v2h).

(20)

We use the aforementioned formula to formulate the
level of the human fatigue during walking. Considering a
person with total weight of M pushing a MAR with appar-
ent mass mx and moving with linear velocity of vh = v(t)

at time t, the normalized level of human fatigue is estimated
as

F (t+ 1) = F (t) +
lcal(v(t))(M +mx)∆t

lcal,fat
, (21)

where pF,O represent the level of human fatigue, ∆t the
sampling time of the system and lcal,fat the maximum pos-
sible consumed calories resulting in human fatigue. 3 We
define

pF,O = 1− F (22)

to be the performance measure correlating with the esti-
mated human fatigue.

The overall task performance is defined based on the
tracking error of the desired path as well as the distance to

2 Please note that the natural definition of mental and physical fa-
tigue are closely related and it is commonly known that physical fa-
tigue impairs mental fatigue. However, [43] has only recently shown
that mental fatigue can also imply physical fatigue. Therefore, we just
consider the effect of physical fatigue since this is the most probable
cause of fatigue in a mobility assistance scenario.

3 The work performed by a human to maneuver the platform has not
been considered in the computation of human fatigue for the sake of
simplicity.

the nearest obstacle in front of the robot which is computed
as follows

pT,O =

∑NO

i=1 |δi|
NOδmax

, (23)

δ = kO,θe · θe + kO,e · e+ kO,obs ·
1

‖ dobs ‖
, (24)

where δi is defined as a measure of total task performance
at sample i, δmax the maximum value of δ, pT,O the ob-
served task performance over the observation window with
length NO. We consider a larger value for NO than NS and
NC (defined in Sec. 5.2.2 and 5.3.2 respectively) for a bet-
ter estimation of the more long-term changes in human task
performance rather than specific reactions to a given situ-
ation. The values of kO,θe , kO,e and kO,obs are weighting
factors, which can be tuned according to the importance of
following the path or avoiding obstacles.
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Fig. 7 Reward structure for adapting the physical assistance. The blue
function is the reward rT,O associated to the overall task performance
measure pT,O and the red function is the reward rF,O associated
to the performance measure correlating with estimated human fatigue
pF,O .

5.4.3 Reward Structure and Decision Making

The reward structure for the two performance measures is
shown in Fig. 7.

The linear structure has been chosen as there is no spe-
cific preference on improving the overall task performance
or increasing the support because of human fatigue. This
structure allows to change the decision (gradually) when-
ever human fatigue or performance changes are detected.

The level of the physical assistance is finally tuned ac-
cording to the DD model. The estimated level of the robot
physical assistance PO is computed using (7) with wA =

wF,O and wB = wT,O. The evidences are computed using
(8) and assuming the decision set z ∈ [FO, TO] at each time
t. Thus, the level of the robot overall assistance is adapted by
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tuning the weighting factor k2 presented in (4) as follows,

k2(t) = PO(t+ 1)k2,min + (1− PO(t+ 1))k2,max (25)

where k2,min and k2,max are the minimum and maximum
considered values for k2. We propose a very smooth soft-
max function by considering a small value for the µ param-
eter in (7). This allows to gradually shift the preference be-
tween the human or assistant to control the robot steering
velocity.

Finally, to recover the orientation error a robot assistive
moment can be generated using the following control law

τassis = Kp1e+Kp2θe, (26)

where Kp1, Kp2 are user-specific defined gains.

6 Experimental Results

This section illustrates the effectiveness of the proposed ap-
proach, first by means of experiments aiming for a technical
validation with a healthy user interacting with the platform
and then by means of a user study involving 35 elderly per-
sons.

6.1 Technical Validation

In the following sections we technically validate the pro-
posed decision making algorithm realizing adaptive shared
control in MARs.

6.1.1 Experimental Setup

The robotic platform as shown in Fig. 1 was used for valida-
tion of the presented adaptive shared control approach. The
controller of the robot mobile base was implemented using
MATLAB/Simulink Real-Time Workshop. The robot veloc-
ity was controlled using a low-level high gain PD controller.
The control loop was set to run at T = 1ms sampling time.
The robot handles were not actuated and kept at a constant
height during the whole experiments.

A static map of the experimental room was build in
the Robot Operating System (ROS) using the OPENSLAM
Gmapping library package based on captured laser scanner,
IMU and robot’s odometry data. A path planner as part of
the move base package in ROS was implemented that pro-
vides a fast interpolated path planning function used to cre-
ate plans for the mobile base.

For determining the closest point, we used a planner that
assumes a circular robot and operates on a cost map, which
produces a global path from a starting robot pose to an end
pose in a grid. Then, an algorithm was used that searches
iteratively on the global path to find the closest points to

the current robot position. To solve ambiguity in case two or
more closest points are found, we implemented a look-ahead
checker, which processes past closest points and returns the
next closest point which is located ahead of the robot and has
the maximum orientation alignment with the current robot
pose.

Robot localization was performed using an Adaptive
Monte Carlo Localization (amcl) approach, which was im-
plemented in ROS as part of the nav stack package and
provides an estimate of the robot’s pose against a known
map. It continuously registers the robot pose on the map and
corrects possible odometry errors.

An obstacle map based on the front laser scanner was
constructed in order to provide information about the closest
obstacle in defined zones around the robot. We splitted the
area in front of the robot into 5 zones and computed the
distance of the nearest obstacle in each zone to the robot,
see Fig. 8 for a snapshot.

6.1.2 Test Scenarios

The presented approach was tested using two scenarios. In
the first scenario the integration of the cognitive, sensorial
and physical assistance was tested, while in the second sce-
nario we specifically investigated the performance of the re-
alized sensorial assistance and its ability to avoid obstacles
or allow their intentional approach.

Scenario I: The user was asked to define a desired desti-
nation on the map of the experimental area shown on the
screen mounted on the robot frame. According to the user’s
choice, a reference path was automatically generated to the
final destination. The user was asked to follow the path while
trying to deviate from the path at least once. At half way, an-
other human was asked to pass in front of the robot simulat-
ing a dynamic obstacle. The user was instructed to not pay
attention to this dynamic obstacle, pretending of not having
noticed it. Towards the end of the path the user was asked to
keep the robot orientation slightly off the reference path to
test the effect of the robot physical assistance.

The parameters used for realizing the cognitive assis-
tance were as follows: NC = 2500, kC,e = 5 and kC,θe =

10. We considered µC = 0.6 in order to increase certainty
in the decision making and to avoid chattering. For the sen-
sorial assistance functionality, we set dobs,max = 0.85m,
NS = 2500 and µS = 10. For the overall assistance we
exaggerated the value of lcal,fat = 1000 for the sake of pre-
sentation to be able to detect human fatigue after a short du-
ration of walking, although the real value of lcal,fat is much
higher and can be determined from literature. We mostly fo-
cused on the error of the robot orientation with respect to the
reference path in order to actively point the human towards
the destination. Therefore, we set kO,θe = 8, kO,e = 5 and
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Fig. 8 Snapshots taken during human-robot cooperation in scenario I. The map of the area is depicted in gray, while the dark gray areas show the
occupied static obstacles found during the map building. The yellow points indicate the location of observed obstacles during the experiment. The
blue point clouds are clusters around each obstacle in the vicinity of the robot (this is only for presentation purposes and has no application in the
presented approach). The area in front of the robot is divided into 5 zones as shown in thick red lines. The generated reference path is presented by
thin red, while the path the robot passed is shown with yellow line (can be seen near the reference path behind the robot). Each snapshot presents
the following information from left to right, 1: initial phase of walking where no obstacles are detected and the user is well following the path, 2:
a dynamic obstacle moves in front of the robot, 3: the user is deviating from the reference path, 4: increase of the user’s deviation is restricted by
the robot and therefore the user comes back to the path, 5: the user keeps an orientation error at the end of the experiment, and 6: the robot overall
assistance recovers the orientation error.

Table 1 Defined reward functions for robot assistance.

reward function

cognitive assistance
rT,C(pT,C) = pT,C

3 − 0.1

rA,C(pA,C) = −pA,C
3 + 0.8

sensorial assistance
rT,S(pT,S) = 0.95pT,S

3 + 0.05

rA,S(pA,S) = −(pA,S − 0.1)2 + 0.81

physical assistance
rT,O(pT,O) = 0.9pT,O + 0.1

rF,O(pF,O) = −0.45pF,O + 0.8

kO,obs = 1. Further, the values of NO = 104 and µO = 12

were selected. The value of the forgetting factor λ = 0.6 was
considered for all cases. To fulfill the requirements of the de-
sired robot assistance in all three cases, the reward functions
were defined as presented in Table 1. Moreover, the parame-
ters for the desired inertia of the admittance controller were
considered to be mx = 15 kg and Iθ = 5 kgm2.

Figure 8 shows some snapshots taken during the ex-
periment. The map of the experimental area, the robot and
defined obstacle zones, detected obstacles at the front and
around the robot as well as the desired and traveled path are
shown.

At the beginning of the experiment a dynamic obstacle
(another person) was passing in front of the robot (≈ 30 <

t < 32s). As depicted in Fig. 9, when the robot approaches
the obstacle the task performance measure increases. More-
over, since the user was asked to not react to the obstacle,
the agreement measure between the robot being interested
in avoiding the obstacle and the human not reacting prop-
erly decreases. Taking into account the defined reward struc-
ture, the human receives a quite low reward which results
in triggering the robot decision to increase the robot assis-
tance which was achieved by automatically increasing the

damping factor and therefore reducing the robot approach-
ing velocity to the obstacle. As soon as the dynamic ob-
stacle passed the robot and the risk of collision reduced
again, the robot decided to return the authority of control-
ling the motion of the robot to the user, which happened
quite smooth, but fast (with respect to the first decision of
increasing the assistance) in order to avoid the user pushing
against a blocked robot while there is no obstacle in front of
it.

When trying to deviate from the path (≈ 35 < t < 37 s)
as shown in Fig. 10 the task performance measure increases,
while the agreement measure decreases as the robot pre-
ferred to stay on the path, while the human was deviating
from it. Therefore the robot assistance hindering the user
from further deviating from the path is activated and the
value of the damping dθ is increased. This notifies the user
that the current direction of motion is not aligned with the
desired reference path. However, as soon as the user adapts
his input and aligns the robot with the desired path, the robot
assistance quickly returns the authority to control the plat-
form to the user.

For the last part of the path when the user was simu-
lating fatigue, we considered a value of lcal,fat = 104 in
order to visualize the effect of the realized algorithm even
after only 50 s of walking, see Fig. 11. With increasing du-
ration of the human walking, the estimation of the human
fatigue, and thus the corresponding performance measure,
increased, while the overall human task performance mea-
sure varies according to the distance of the human to obsta-
cles and the overall deviation from the path and orientation
error 4. By increasing the orientation error in the last phase

4 Please note that emphasizing mostly on the orientation error in
the overall task performance measure was assumed only for the sake
of presentation. However, one may associate different values for the
contribution of each of the terms to the overall task performance.
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of the experiment, the corresponding performance measure
was influenced and therefore a lower reward was associated.
This resulted in a change of the decision towards increasing
the level of active assistance by increasing the robot contri-
bution to the control of the robot’s orientation. Therefore the
value of k2 was increased to its maximum which we consid-
ered to be 0.6 for the sake of safety.
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Fig. 9 Results of the sensorial assistance during human-robot cooper-
ation in scenario I.
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Fig. 10 Results of the cognitive assistance during human-robot coop-
eration in scenario I.

Scenario II: In this scenario we focused on the evaluation of
the robot sensorial assistance and tested the functionality of
distinguishing between approaching obstacles either inten-
tionally or accidentally. To be able to focus on the sensorial
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Fig. 11 Results of the physical assistance during human-robot cooper-
ation in scenario I.

assistance functionality, the cognitive and overall assistance
were deactivated to prevent the results being influenced by
these other assistances. Figure 12 shows the snapshots taken
during the experiment.

Two static obstacles were positioned in front of the
robot, one after the other in heading direction. A third ob-
stacle (table) was further considered as an intentional goal.
The user was asked to approach the table and grasp an ob-
ject located on it assuming the two obstacles are initially not
detected due to e.g. bad sight. As shown in Fig. 13, when
approaching the first two obstacles (the first at ≈ 36 < t <

37.5 s and the second at ≈ 40 < t < 43 s), the robot
task performance measure is increased while the agreement
measure is decreased, which implies a risk of collision. The
robot correctly decides to prevent the collision with obsta-
cles as the value of the damping factor dx is increased and
only returns the authority to the human once he/she changed
the orientation of the robot and thus, the risk of collision de-
creased (damping factor dx was decreased fast). However, in
the third case where the human pushed the robot towards the
intentional obstacle (at ≈ 46 < t < 52 s), the robot initially
reduced the approaching velocity (value of the damping fac-
tor dx was increased), but then it returned the authority to the
human to allow for further safe approach to the intentional
obstacle (value of the damping factor dx was reduced to
30). This change in the authority allocation happened even
though task performance was low (task performance mea-
sure high) as the robot was in a very close distance to the
obstacle.
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Fig. 12 Snapshots taken during human-robot cooperation in scenario II. The map of the area is depicted in gray, while the dark gray areas show
the occupied static obstacles found during the map building. The yellow points indicate the location of observed obstacles during the experiment.
The blue point clouds are clusters around each obstacle in the vicinity of the robot (this is only for presentation purposes and has no application
in the presented approach). The area in front of the robot is divided into 5 zones as shown in thick red lines. The path that the robot passed is
shown with yellow line behind the robot. Each snapshot presents the following information from left to right, 1: initial phase of walking where
an obstacle is detected in front of the robot, 2: close distance between the robot and obstacle which increases the risk of collision resulting in the
robot reaction to avoid collision, 3: the second obstacle is detected and the robot reacts to avoid collision, 4: the user is guiding the robot towards
a new obstacle he wants to approach intentionally, 5: the robot allows for a very close approach of the intentional obstacle, and 6: the user leaves
the intentional obstacle.
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Fig. 13 Results of the sensorial assistance during human-robot coop-
eration in scenario II.

6.2 User Study

An intensive evaluation with 35 elderly subjects was per-
formed to assess the effectiveness of the proposed adaptive
shared control approach. Thirty one women and four men
participated in the evaluation which took place for six weeks
at the rehabilitation centre of the Agaplesion Bethanien Hos-
pital/Geriatric Centre at the University of Heidelberg. The
average age of subjects was 84.3 ±5.4, ranging from 71 to
94 years. The study sample comprised frail older persons as
expressed by impaired motor status (Performance Oriented
Mobility Assessment, [60]: 20.3 ±5.4; gait speed, 5-chair
stand test [19]: 0.48 ±0.16 m/s, 19.2 ±7.5 s) and high risk
of falling (63 % of subjects reported one or more falls in the
last year). All subjects currently used conventional walkers
in their daily routine. The experiments were performed un-
der ethical approval by the ethics committee of the Medical

Department of the University of Heidelberg, Alte Glock-
engießerei 11/1, 69115 Heidelberg, Germany. Written in-
formed consent was obtained from all subjects participating
in the study.

6.2.1 Test Conditions

The adaptive shared control approach for sensorial assis-
tance has been implemented on the robotic platform and was
compared with an existing approach in literature. We con-
sidered three different conditions:

– C1: Walking assistance without obstacle avoidance
functionality implementing a constant virtual inertia and
damping.

– C2: Walking assistance with obstacle avoidance based
on the approach presented by [24].

– C3: Walking assistance with obstacle avoidance based
on the decision-making algorithm presented in this
manuscript.

The main reason for focusing on the evaluation of the
sensorial assistance in the user study is that beside the base-
line C1 there is hardly any directly comparable algorithm
available for the other two modes.

For a fair comparison, base values of mx = 15 kg and
Iθ = 5 kgm2, and of dx = 10 Ns/m and dθ = 10 Nms/rad
were considered for each condition. These values were se-
lected after discussion with rehabilitation experts. Although
the above mentioned values were considered constant for
condition C1, the value of dx and dθ were adapted up to
their maximum of dx,max = 110 Ns/m and dθ,max =

80 Nms/rad in C2 and C3. The maximum values were se-
lected following discussions with rehabilitation experts as
well as tests to achieve a good maneuverability of the device
with respect to a standard non-motorized walker. We con-
sidered 70 cm distance between the robot and obstacles as
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the activation distance, i.e. the base values were considered
in C2 and C3 only for distances larger than 70 cm, while the
adaptation laws were applied for distances less than 70 cm.

6.2.2 Experimental Setup

A special test environment was prepared within the
Bethanien rehabilitation center to test the proposed adaptive
shared control approach. Figure 14 shows the map of the test
environment and a representative example of a test path. The
test environment covered an area of about 10× 9 m with an
approximate length of 40 meters of test path starting from
an initial position, passing through the narrow corridor by
avoiding obstacles and coming back to the same initial po-
sition. The height of obstacles varied in different sections of
the area. The considered round trip allowed us to record the
same number of left and right turns. Over the whole trial the
user was faced to 17 obstacles, and a minimum amount of
16 turns either to avoid collisions with obstacles or to per-
form turns along the path. No reference path was marked on
the ground during tests.

2 m

Fig. 14 Map of the evaluation course. The main walking area has a size
of about 10 x 9m. The corridor included three sections with obstacles
and one turning area in which participants had to drive round a pillar
(area (4)) before driving back to the very beginning of the course. The
height of obstacles varied in the different sections as follows: 90 cm
(1), 50 cm (2)+(3).

6.2.3 Evaluation Method

Before participants completed the test trials, each of them
was asked to drive freely through the course. For this
first run, no instructions concerning obstacle avoidance and
walking speed were given by the test supervisor, and no sen-
sorial assistance was provided by the robot platform. This
trial was intended to familiarize the participants with the de-
vice and course.

Each participant then completed the obstacle course un-
der three different conditions mentioned in Section 6.2.1.

The order of the conditions tested with each participant
was randomized to exclude learning effects. The participants
were not told which condition was used during the three dif-
ferent trials. Before starting each trial, the participants were
instructed to complete the course as fast as possible. After
each trial, a sufficient recovery phase was provided to the
participants in order to prevent fatigue.

6.2.4 Evaluation Results

Two performance metrics were considered in order to verify
the effectiveness of the proposed sensorial assistance: num-
ber of collisions (with the front of the robotic platform) and
task completion time.

Differences in the number of collisions and task com-
pletion time between the three conditions were statistically
analysed by a one-way analyses of variance (ANOVA) and
obtained results are shown in Figs. 15, 16 and 17. No sig-
nificant differences between conditions C1, C2 and C3 were
identified in terms of task completion time. However, sig-
nificant differences were found for the number of collisions
and approaching velocity to obstacles. Post-hoc tests (Bon-
ferroni corrected) showed a reduced number of collisions
and reduced approaching velocity for C3 (sensorial assis-
tance based on decision making algorithm) compared to
condition C1 (p < .05), but no significant differences be-
tween other conditions (C2 vs. C1 / C3: p = .07/.99). The
lowest approaching velocity to obstacles was found for C3.

Fig. 15 Completion time in the user study under three conditions (C1,
C2, and C3).

6.3 Discussion

The technical performance of the proposed approach was
tested in two scenarios and resulted in the desired robot
behavior as the robot cognitive, sensorial and physical as-
sistance were activated as needed. The effectiveness of the
proposed approach was demonstrated in the performed user
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Fig. 16 Recorded number of collisions in the user study under three
conditions (C1, C2, and C3).

Fig. 17 Recorded average approaching velocity to obstacles in the user
study under three conditions (C1, C2, and C3).

study with end-users. The lowest number of collisions,
alongside with the lowest approaching velocity to obstacles
was found when the user was passing the obstacle course
using our newly proposed algorithm. However, similar task
completion times for all conditions indicated that the pro-
posed sensorial assistance approach does not interfere with
the normal activity of the patients and furthermore guaran-
tees a safe intentional approach to obstacles if needed.

One of the main practical challenges in the presented
work was tuning basic and maximum values of adjustable
parameters. We finally agreed on the chosen values based
on discussions with experts. Further, the selection of suit-
able performance metrics and reward structures strongly af-
fects the performance of the algorithm and a series of al-
ternative performance metrics and related reward structures
could have been chosen instead. We don’t argue that our se-
lection is the best, but that it fulfills the desired purpose of
improving sensorial, cognitive and physical assistance.

7 Conclusion

An integrated approach for the context-specific, on-line
adaptation of the assistance provided by a rollator-type

MAR is presented. The shared control architecture distin-
guishes between short-term adaptations providing a) cogni-
tive assistance to support the user to follow a desired path
towards a predefined destination and b) sensorial assistance
to avoid collisions with obstacles and to allow for an inten-
tional approach of them. Further, it considers a long-term
adaptation of c) the physical assistance based on long-term
user performance and observed fatigue. To achieve an intu-
itive and human-like adaptation policy of the provided as-
sistance, a decision making model explored in cognitive sci-
ence, the Drift-Diffusion model, was employed.

We illustrated the effectiveness of the proposed archi-
tecture by means of experiments technically validating each
of the three aforementioned functionalities of the architec-
ture. Moreover, the performance of the algorithm with real
end-users was demonstrated by conducting a user study
with 35 elderly focusing specifically on the sensorial as-
sistance functionality. Obtained results indicate that the re-
quired functionalities can be realized with the proposed de-
cision making algorithm showing a general high potential of
the proposed adaptive shared control architecture for MAR.
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