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Context: Exposure to maternal adiposity during pregnancy is associated with higher 
offspring birthweight and greater adiposity through childhood and adult life. As birthweight 
reflects the summation of lean and fat mass, the extent to which fat mass at birth tracks into 
later life is unknown. 
Objective: Determine whether fat mass at birth is associated with child and adolescent 
adiposity. 
Design, Setting and Participants: UK birth cohort with markers of neonatal fat mass; cord 
blood leptin, adiponectin, and birthweight and adiposity outcomes at age 9 (N=2775) and 
17years (N=2138). 
Main Outcomes: Offspring BMI, waist circumference, DXA-determined fat mass and 
obesity at age 9 and 17years. 
Results: Higher cord blood leptin was associated with higher z-scores of fat mass (difference 
in mean per 10pg/ml: 0.03SD,95%CI 0.00-0.06), waist circumference (0.04SD,95%CI 0.00-
0.07), and BMI (0.04SD,95%CI 0.00-0.08), at age 9. However, by age 17 the adjusted results 
were attenuated to the null. Cord blood adiponectin was not associated with measures of 
adiposity at age 9. At age 17, cord blood adiponectin was positively associated with fat mass 
(0.02SD per 10μg/ml,95%CI 0.02-0.03) and waist circumference (0.04SD per 
10μg/ml,95%CI 0.03-0.05). Birthweight was positively associated with waist circumference 
(0.03SD per 100g,95%CI 0.02-0.04) and BMI (0.02SD per 100g,95%CI 0.00-0.03), but not 
fat mass or odds of obesity. Cord blood leptin and adiponectin were not associated with 
obesity at either age. 
Conclusions: Increased cord blood leptin and adiponectin, known surrogates of fetal fat 
mass, were weakly associated with increased fat mass in late childhood and adolescence 
respectively. 

PRECIS: We found that cord blood leptin and adiponectin, known surrogates of fetal fat mass, were 
weakly positively associated with some measures of fat mass in late childhood and adolescence.  

Introduction 

Exposure to maternal adiposity during pregnancy is associated with higher offspring birth 
weight and greater adiposity through childhood and adult life (1). Developmental 
overnutrition has been proposed as a mechanism, by which excessive transplacental passage 
of nutrients facilitates the development of larger babies with greater fat mass. Evidence from 
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within sibling studies, comparisons of maternal and paternal exposures and the use of genetic 
variants as proxies for the maternal exposures support maternal adiposity and developmental 
overnutrition causing greater adiposity in offspring at birth (2-4). However, whether this 
causal effect extends to long-term offspring adiposity is unclear. A longer-term effect may 
occur as a result of tracking of birth fatness across the life course. However, because birth 
weight is unable to distinguish relative contributions of lean versus fat mass (5,6), few studies 
to date have been able to determine the extent to which greater fat mass at birth tracks into 
later life. 

Umbilical cord blood leptin is widely recognized as an accurate biomarker for neonatal 
fat mass (7). Maternal exposures, including maternal adiposity which may cause 
developmental overnutrition, have been associated with increased cord leptin and neonatal 
adiposity at birth (8,9). In animal models, fetal leptin has also been proposed to contribute the 
long-term programming of hypothalamic feeding circuits, thereby providing a means by 
which leptin can influence long-term adiposity independent of tracking of adiposity from 
birth(10). Use of cord blood leptin in determining whether neonatal fat mass tracks across 
childhood has however been limited (11-14). This primarily reflects the scarcity of large 
prospective birth cohorts with cord blood samples and detailed measures of offspring 
adiposity as well as potential confounders. Studies that have made some assessment of this to 
date have had relatively small sample sizes (N=56-588) (11-14), and we are not aware of any 
study having followed children beyond age 7 years. These studies have reported non-
consistent results with higher cord leptin associated with both a lower (11) and higher (12) 
BMI at age 3 years, and a higher BMI at age 7 years (14). 

Neonatal levels of adiponectin, which has insulin sensitizing effects in adults, are 
approximately 4-7 times higher than maternal levels. Furthermore, while maternal circulating 
concentrations of adiponectin are inversely associated with BMI, higher levels of cord blood 
adiponectin are associated with higher birth weight (11,15). That higher cord blood 
adiponectin concentrations might reflect increased fat mass in neonates is suggested by 
mouse studies where over-expression of fetal adiponectin was positively related to the size of 
fat depots in early life, while adiponectin knockout fetuses display lower body weight and 
lower fat content(16). Given this effect of adiponectin on body composition, specifically, its 
fat deposition enhancing effect in mice, and the known relationships of leptin in humans to 
fat mass, we hypothesized that both cord blood leptin and adiponectin would be positively 
associated with offspring adiposity in pre-pubertal children and adolescents.  

The aim of this study was to determine whether cord blood leptin and adiponectin were 
positively associated with later obesity, BMI, waist circumference and fat mass and whether 
this is independent of maternal BMI. For comparison, we also examined associations of 
birthweight with these outcomes. 

Research Design and Methods 

Study Population 
The Avon Longitudinal Study of Parents and Children (ALSPAC) is a prospective birth 
cohort study investigating the health and development of children (17,18). The study website 
contains details of all the data that is available through a fully searchable data dictionary; 
http://www.bris.ac.uk/alspac/researchers/data-access/data-dictionary/. Ethical approval was 
obtained from the ALSPAC Law and Ethics Committee and the National Health Service local 
ethics committees. A total of 14,541 women were initially enrolled, with 5011 mother-
offspring pairs having a suitable cord blood sample. A detailed outline of the exclusion 
criteria for the analysis reported here and numbers with missing data is shown in Figure 1. 
We included participants if they had 1) attended and completed assessments at either the 9 or 
the 11-year clinic assessment, or 2) attended the 15 or 17-year clinic assessment. The eligible 
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cohort for the current analysis was 2775 mother-offspring pairs at age 9-11 years and 2138 
mother-offspring pairs at age 15-17 years.   

Cord blood Assays  
Cord blood samples were collected at the time of delivery, initially stored at 4°C for 0 to 8 
days before plasma was separated and then stored at -20°C before being transferred to long-
term storage at -80°C. Cord blood leptin and adiponectin were measured using commercially 
available ELISA kits (Quantikine human leptin immunoassay (Cat No PDLP00), Quantikine 
Human Total Adiponectin/Acrp30 (Cat No PDRP300) both R&D Systems). Analysis of the 
cord blood was completed within a maximum of three freeze-thaw cycles and remained at -
80°C in between thaws. The inter-assay coefficients of variability were 9.5% for leptin and 
3.2% for adiponectin.  

Obstetric/Perinatal Data 
Six trained research midwives retrospectively extracted data from obstetric medical records 
and error rates were consistently <1%. These data included weight at every antenatal clinic 
visit (used to determine gestational weight gain), complications during pregnancy 
(hypertensive or diabetic disorders) and mode of delivery. Gestational age, offspring’s sex 
and birthweight were obtained from hospital records at the time of birth. Maternal age, pre-
pregnancy height, and weight, smoking status (defined as never smoked, smoked before but 
not during pregnancy and smoked during pregnancy), parity, occupational social class and 
highest educational attainment were obtained from questionnaires completed by the mothers 
in early and advanced stages of pregnancy. Occupation was used to allocate social class 
groups using the 1991 British Office of Population and Census Statistics classification.  

Offspring Childhood and Adolescent Adiposity Measurements  
Identical protocols were used at all follow-up clinics. At each clinic assessment participants’ 
age in months was recorded and their weight and height measured in light clothing and 
without shoes. Weight was measured to the nearest 0.1kg using Tanita scales. Height was 
measured to the nearest 0.1cm using a Harpenden stadiometer. DXA scans were used to 
measure total fat mass. Waist circumference was measured to the nearest 1mm at the 
midpoint between the lower ribs and the pelvic bone with a flexible tape and with the child 
breathing normally. Offspring obesity was classified using BMI and criteria defined by the 
International Obesity Task Force (19). 

Statistical Analysis 
The relation between exposures (birthweight and cord blood adipokines) and outcomes (BMI, 
waist circumference, and fat mass at ages 9-11 years and 15-17 years) was examined by 
Spearman correlation. Linear (offspring BMI, waist circumference, and fat mass) and logistic 
(offspring obesity) regression models were used to examine the associations between 
birthweight and cord blood measures and offspring BMI, waist circumference, fat mass and 
obesity at age 9 and 17 years. Offspring waist circumference and fat mass were log 
transformed to produce approximately normal distributions of regression model residuals. 
Within cohort logged fat mass and waist circumference z-scores (participant value minus 
mean for the sex and age category ÷ standard deviation for the sex and age category) were 
created using one year age categories. BMI z-scores were created using the UK 1990 British 
growth reference (20). Birthweight was adjusted for sex, gestational age and number of 
offspring (singletons or twins) using nonlinear regression fitting a Gompertz curve.  

Three incremental analyses were performed to adjust for potential confounders 
(Supplemental Figure 1). The basic model (model 1) adjusted for offspring sex and age at 
outcome measurement alone (and offspring height when fat mass is the outcome). In model 2 
we additionally adjusted for maternal confounders (age, smoking, parity, occupational social 
class, education, and pre-pregnancy BMI). In the fully adjusted model (model 3) we 
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additionally adjusted for pregnancy characteristics (gestational age at birth, mode of delivery, 
gestational weight gain, hypertensive and diabetic disorders of pregnancy). In these analyses 
since we have scaled the exposures (birthweight, cord blood leptin, and adiponectin) and 
outcomes (BMI, waist, and fat mass) on their standard deviations the resultant differences in 
means from the multivariable linear regression models are equivalent to partial (adjusted) 
correlation coefficients and can be interpreted in this way. 

There were small amounts of missing data on some co-variables included in the 
multivariable models (Figure 1). Twenty imputation data sets were generated by chained 
equations (21), with all cord exposures, birthweight, the covariates specified for model 3 and 
the measurements from the 11-year clinic and 15-year clinic informing imputation of missing 
values in the 9-year clinic and 17-year clinic respectively. For convenience hereafter referred 
to as 9 and 17-year. The distributions of observed and imputed variables were similar 
(Supplemental Table 1). In the main paper, we present results from the imputed datasets and 
for present comparison results from those with complete confounders (N = 1041 to 1776) in 
Supplementary material (Supplemental Tables 5-8) 

All statistical analyses were performed using Stata (version 13.0) software (Stata Inc., 
College Station, TX.).  

Results 

Table 1 summarizes the maternal and offspring characteristics for those participants with cord 
blood measures, who completed at least one clinic assessment, with Supplemental Table 1 
demonstrating the similarity of the observed and imputed data. Supplemental Table 2 shows 
the Spearman’s correlation between exposures (birthweight and cord blood adipokines) and 
outcomes (markers of anthropometry at age 9 and 17).  Birthweight was positively correlated 
with cord blood leptin (n=4751, r=0.33) and, to a lesser degree, with cord blood adiponectin 
(n=4707, r=0.14). Cord leptin and adiponectin were positively correlated (n=4962, r=0.11). 
Birthweight and leptin also positively correlated with fat mass, BMI and waist circumference 
at age 9 and 17. There was a weak inverse association between cord adiponectin and waist 
circumference and BMI at age 9. Among those participants with assessments at both clinics 
(at age 9 and 17), measurements at each clinic were highly correlated (0.74 for BMI, 0.74 for 
fat mass and 0.66 for waist circumference).  

Table 2 shows the multivariable associations between cord blood leptin, adiponectin and 
birthweight and z-scores of offspring fat mass, waist circumference, BMI and obesity at age 9 
years. Cord blood leptin was positively associated with fat mass, waist circumference, and 
BMI at age 9 (model 1). The effect size was largely attenuated with adjustment for maternal 
and pregnancy characteristics (Table 2), with the individual univariate association of maternal 
and pregnancy characteristics on cord leptin, cord adiponectin and birthweight shown in 
Supplemental Table 3. A similar but weaker pattern was observed for measures at age 17 
where cord leptin was associated with z-scores of fat mass, waist circumference, and BMI 
and with the risk of obesity (Table 3). These associations were similarly attenuated to the null 
after adjustment for potential confounders.  

Cord blood adiponectin was not associated with any measures of adiposity at age 9 (Table 
2). At age 17, cord blood adiponectin was positively associated with fat mass and waist 
circumference, with the effect size strengthened after adjustment for maternal and pregnancy 
characteristics (Table 3).  

Birthweight was positively associated with fat mass, waist circumference and BMI at age 
9 years and 17 years and showed a weak relationship with obesity in both age groups (Tables 
2 and 3). After adjustment for maternal and pregnancy characteristics increasing birthweight 
remained associated with greater waist circumference and BMI, with the association with fat 
mass and obesity attenuated to the null.  
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Results did not differ substantially when absolute measures of adiposity at age 9 
(Supplemental Table 4) or age 17 were considered (Supplemental Table 5). Results were 
similar for non-imputed analyses but with wider confidence intervals (Supplemental Tables 
6-9). 

Discussion 

In this prospective birth cohort study, cord leptin, a marker of neonatal fat mass, exhibited 
relatively weak relationships with later measures of adiposity. These were largely attenuated 
by adjustment for maternal factors, particularly in later childhood. By contrast, adiponectin 
exhibited no relationship with measures of fat mass at age 9 and showed a weak relationship 
with fat mass and waist circumference at ages 15. Neither cord leptin nor adiponectin was 
associated with the risk of being classed as obese in late childhood or adolescence. Taken 
together this would suggest that neonatal fat mass per se has a limited contribution in 
determining fat mass in adolescence.  

To date birthweight, as a proxy for intrauterine growth, and its’ relation to adult BMI has 
been extensively studied. Similar to our findings, studies principally demonstrate a positive 
association between birthweight and childhood and adult fat mass, BMI and waist 
circumference (22). To try to examine whether birthweight is simply acting as a surrogate for 
neonatal fat mass, we previously utilized ponderal index (birth weight/length3), a measure of 
fatness and demonstrated positive associations with lean body mass, total body fat and the 
fat-to-lean mass ratio at age 9-years (23). Although this suggests that neonatal fat mass is 
related to later adiposity, ponderal index is a relatively poor measure of neonatal total body 
fat (24). 

To extend and improve on this work, the current study utilized cord blood leptin, a strong 
correlate of neonatal fat mass as assessed by skinfolds or total body electrical conductivity 
(25) and adiponectin, which in mouse studies is suggested to be a further positive correlate of 
fat mass (16). That cord blood leptin was positively associated with several adiposity 
measures and specifically fat mass z-score at age 9-years, suggests that there is either 
accretion of adipose tissue during intrauterine life that is maintained throughout childhood, 
the propensity to develop fat mass may be maintained, or there is a direct effect on the 
programming of hypothalamic feeding circuits. However, given our observed effect size, the 
contribution of neonatal fat to later fat mass is likely to be small. For example, a 10pg/ml 
increase in cord leptin would be associated with a BMI increase from 22 to 22.1kg/m2 at age 
9-years. 

In accordance with some (26-28) but not all (29,30) previous studies we observed that 
adiponectin was weakly positively correlated with birthweight and cord leptin.  We found 
some evidence for weak associations of cord blood adiponectin with adiposity at the older 
age (15-17) but none that this was mediated by increased (and persistent) fat mass through 
childhood. Why adiponectin is not related to adiposity outcomes in earlier childhood, as 
leptin is, is not clear. Perhaps these associations emerge after puberty which has a major 
impact on body composition and adipocyte number(31). It is also possible that given the 
multiple tests performed; some associations are due to chance, and we would caution against 
assuming these associations are real without further replication.  

As previously shown in this cohort (32), we observed consistent positive associations of 
birth weight with later BMI and waist in both early childhood and adolescence, though null 
associations (coefficients equal to zero) were found for fat mass at both ages.   

Our study has several strengths including its size, duration of follow-up, and the 
availability of data on a range of maternal, pregnancy and social factors pregnancy 
characteristics to facilitate a robust analysis. This is also one of the very few studies with 
DXA measurements of body composition at different time points, thereby overcoming the 
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potential increase in overall mass attributed to the expected increase in bone density that 
results from increased adiposity. We do however acknowledge some limitations. The number 
of children who were overweight or obese was smaller than many contemporary populations. 
That birthweight and cord measures were not associated with the risk of being obese may 
reflect this. Another limitation of the study is the loss to follow-up. Our results may be biased 
if associations were substantially different among excluded participants due to conditioning 
on the variables in the model. We acknowledge that engaged participants may exhibit 
different characteristics at birth beyond gestational age and birthweight which are 
representative of the whole cohort, and also for the two outcomes. Replication of our analyses 
in additional birth cohorts with different metabolic risk profiles would strengthen our 
findings. Cord blood sample degradation may have contributed to variability, but leptin and 
adiponectin do appear to be stable with long-term storage (33-38). This is in stark contrast to 
c-peptide the preferred index of fetal glucose exposure, which we were unable to measure 
accurately due to degradation with long-term storage, a phenomenon previously reported by 
others (39).   

In conclusion, we found that cord blood leptin and adiponectin, known surrogates of fetal 
fat mass, were weakly positively associated with some measures of fat mass in late childhood 
and adolescence. That these associations were robust to a wide range of confounders that may 
reflect intrauterine, maternal and shared environmental exposures suggests that neonatal fat 
mass may track into later life. However, we acknowledge replication of our findings in 
cohorts with a different risk profile is critical, and that the magnitude of the observed 
associations is small, potentially limiting the impact that neonatal life adiposity has on later 
outcomes.   
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Figure 1: ALSPAC participant flow chart. 

 

Table 1: Maternal and Offspring Characteristics 

Attended at least one clinic assessment (n=2955) Maternal Characteristics 
N obs (%) Median (IQR) 

Age 2914 29 (26, 32) 
Smoking  
  Never  2103 (73.8) 
  Before, not during pregnancy  212 (7.4) 
  During pregnancy 533 (18.7) 

 

BMI 2587 22.2 (20.5, 24.4) 
Parity  
  0 1274 (45.5) 
  1 1011 (36.1) 
  2 383 (13.7) 
  3 101 (3.6) 
  4+ 30 (1.1) 

 

Education    
  Left school at 16 1713 (61.3) 
  A level  689 (24.8) 
  Degree 391 (14.0) 

 

Social Class  
  I (least disadvantaged) 140 (5.9) 
  II 807 (33.7) 
  IIIa  1038 (43.5) 
  IIIb  162 (6.8) 
  IV 203 (8.5) 
  V (most disadvantaged) 40 (1.7) 

 

Pregnancy Characteristics   
Gestational age at birth (weeks) 2914 40 (39, 41) 
Model of delivery  
  Spontaneous 2253 (77.9) 
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  Breech 36 (1.3) 
  Caesarean 249 (8.6) 
  Forceps 167 (5.8) 
  Vacuum 154 (5.3) 
  Other 32 (1.1) 
Gestational weight gain (kg) 2668 12.5 (9.5, 15.2) 
Hypertension and pre-eclampsia  
  No hypertensive disorders 2449 (84.5) 
  Hypertension, no pre-eclampsia 420 (13.9) 
  Hypertension and pre-eclampsia 49 (1.7) 

 

Diabetes  
  No glycosuria or diabetes 2651 (95.8) 
  Existing diabetes 10 (0.4) 
  Gestational diabetes 16 (0.6) 
  Glycosuria 91 (3.3) 

 

Offspring Characteristics   
Sex  
  Male 1414 (47.9) 
  Female 1541 (52.2) 

 

Birthweight (kg)  2891 3.5 (3.1, 3.8) 
Cord leptin (pg/ml)  2952 6.4 (3.6, 12.1) 
Cord adiponectin (µg/ml) 2927 75.7 (53.6, 98.4) 

Age 9: 2561 140 (136, 144) 
Age 11: 2363 151 (146, 156) 
Age 15: 1816 169 (163, 175) 

Height (cm) 

Age 17: 1648 170(164, 178) 
Age 9: 2460 7.3 (4.9, 11.2) 
Age 11: 2327 10.0 (6.8, 15.7) 
Age 15: 1716 13.7 (8.6, 20.6) 

Fat mass (kg) 

Age 17: 1594 16.7 (11.0, 23.5) 
Age 9: 2574 61.1 (57.4, 66.6) 
Age 11: 2362 66.0 (61.8, 73.5) 

Waist circumference (cm) 

Age 15: 1475 75.4 (71.0, 81.5) 
Age 9: 2560 17.0 (15.7, 19.1) 
Age 11: 2359 18.4(16.6, 21.0) 
Age 15: 1811 20.7 (19.0, 23.1) 

BMI (kg/m2)  

Age 17: 1647 22.0 (20.2, 24.7) 
Age 9: 102 (4.0) 
Age 11:116 (4.9) 
Age 15: 78 (4.3) 

Obese  

Age 17:105 (6.4) 

 

Age 9: 2583 9.8 (9.6, 10.0) 
Age 11: 2378 11.8 (11.6, 11.8) 
Age 15: 1838 15.4 (15.3, 15.6) 

Age at clinic attendance (years) 

Age 17: 1695 17.8 (17.6, 17.9) 

Median (Interquartile range) 
Figures are numbers (%) unless stated otherwise 
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Table 2: Associations of birthweight and cord blood analyte with fat mass, waist circumference and BMI z-scores, and obesity outcome at age 9 
years. N= 2775 

  Outcome Fat mass z-score * Waist circumference z-score BMI z-score Obesity  
Exposure  Coefficient 95% CI P Coefficient 95% CI P  Coefficient 95% CI P  OR 95% CI P 

Model 1 0.07 0.04, 0.10 <0.001 0.08 0.05, 0.12 <0.001 0.11 0.07, 0.15 <0.001 1.15 1.00, 1.31 0.046 

Model 2 0.04 0.00, 0.07 0.023 0.05 0.01, 0.08 0.008 0.06 0.02, 0.10 0.003 1.00 0.85, 1.17 0.993 

Leptin (per 
10pg/ml)  

Model 3 0.03 0.00, 0.06 0.086 0.04 0.00, 0.07 0.045 0.04 0.00, 0.08 0.029 0.95 0.81, 1.12 0.548 

Model 1 0.00 -0.01, 0.01 0.828 -0.01 -0.02, 0.00 0.072 0.00 -0.02, 0.01 0.602 0.99 0.94, 1.05 0.845 

Model 2 0.00 -0.01, 0.01 0.916 -0.01 -0.02, 0.00 0.118 0.00 -0.01, 0.01 0.858 1.00 0.94, 1.05 0.874 

Adiponectin (per 
10µg/ml)  

Model 3 0.00 -0.01, 0.01 0.875 -0.01 -0.02, 0.00 0.100 0.00 -0.01, 0.01 0.767 0.99 0.94, 1.05 0.834 

Model 1 0.01 0.00, 0.02 0.006 0.03 0.03, 0.04 <0.001 0.04 0.03, 0.05 <0.001 1.06 1.02, 1.10 0.006 

Model 2 0.00 0.00, 0.01 0.192 0.03 0.02, 0.04 <0.001 0.04 0.03, 0.04 <0.001 1.03 0.99, 1.07 0.193 

Birthweight‡ 
(per 100g) 

Model 3 0.00 -0.01, 0.01 0.741 0.02 0.02, 0.03 <0.001 0.03 0.02, 0.04 <0.001 1.01 0.96, 1.05 0.852 

Model 1: Adjusted for offspring sex and age at measurement. 
Model 2: Adjusted for offspring sex, age at measurement and maternal confounders (age, smoking, parity, occupational social class, education and pre-pregnancy BMI). 
Model 3: Adjusted for offspring sex, age at measurement and maternal confounders plus pregnancy confounders (gestational age at birth, mode of delivery, gestational 
weight gain, hypertensive disorders and diabetic disorders of pregnancy). 
* Fat mass adjusted for height 
‡ Birthweight adjusted for sex, gestational age and singleton/twin pregnancy 

Table 3: Associations of birthweight and cord blood analyte with fat mass, waist circumference (at age 15 years), BMI z-scores and obesity 
outcomes at age 17 years. N= 2138  

 Outcome Fat mass z-score * Waist circumference z-score BMI z-score Obesity  
Exposure  Coefficient 95% CI P Coefficient 95% CI P  Coefficient 95% CI P  OR 95% CI P 

Model 1 0.07 0.03, 0.11 <0.001 0.06 0.02, 0.10 0.003 0.09 0.04, 0.14 <0.001 1.13 0.99, 1.28 0.060 

Model 2 0.02 -0.02, 0.06 0.263 0.01 -0.03, 0.05 0.545 0.03 -0.02, 0.07 0.272 0.96 0.83. 1.12 0.629 

Leptin (per 
10pg/ml)  

Model 3 0.02 -0.02, 0.05 0.444 0.01 -0.03, 0.05 0.598 0.02 -0.03, 0.06 0.481 0.95 0.81, 1.11 0.497 

Model 1 0.01 0.00, 0.03 0.034 0.01 0.00, 0.03 0.033 0.01 -0.01, 0.02 0.245 1.03 0.98, 1.08 0.238 

Model 2 0.02 0.00, 0.03 0.006 0.02 0.00, 0.03 0.008 0.01 0.00, 0.03 0.076 1.04 0.99, 1.10 0.660 

Adiponectin (per 
10µg/ml)  

Model 3 0.02 0.00, 0.03 0.007 0.02 0.00, 0.03 0.008 0.01 0.00, 0.03 0.080 1.05 0.99, 1.10 0.613 
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1  
 

2

Model 1 0.02 0.02, 0.03 <0.001 0.04 0.03, 0.05 <0.001 0.04 0.03, 0.05 <0.001 1.05 1.02, 1.09 0.004 

Model 2 0.01 0.00, 0.02 0.010 0.03 0.02, 0.04 <0.001 0.02 0.01, 0.03 <0.001 1.02 0.98, 1.06 0.241 

Birthweight‡ (per 
100g) 

Model 3 0.01 0.00, 0.02 0.098 0.03 0.02, 0.04 <0.001 0.02 0.01, 0.03 <0.001 1.01 0.97, 1.05 0.516 

Model 1: Adjusted for offspring sex and age at measurement. 
Model 2: Adjusted for offspring sex, age at measurement and maternal confounders (age, smoking, parity, occupational social class, education and pre-pregnancy BMI). 
Model 3: Adjusted for offspring sex, age at measurement and maternal confounders plus pregnancy confounders (gestational age at birth, mode of delivery, gestational 
weight gain, hypertensive disorders and diabetic disorders of pregnancy). 
* Fat mass adjusted for height 
‡ Birthweight adjusted for sex, gestational age and singleton/twin pregnancy 
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