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Abstract

A significant goal of robotics is to develop autonomous machines, capable of
independent and collective operation free from human assistance. To operate with
complete autonomy robots must be capable of independent movement and total
energy self-sufficiency. We present the design of a soft robotic mouth and ar-
tificial stomach for aquatic robots that will allow them to feed on biomatter in
their surrounding environment. The robot is powered by electrical energy gener-
ated through bacterial respiration within a microbial fuel cell (MFC) stomach, and
harvested using state-of-the-art voltage step-up electronics. Through innovative
exploitation of compliant, biomimetic actuation, the soft robotic feeding mecha-
nism enables the connection of multiple MFC stomachs in series configuration in
an aquatic environment, previously a significant challenge. We investigate how a
similar soft robotic feeding mechanism could be driven by electroactive polymer
artificial muscles from the same bioenergy supply. This work demonstrates the po-
tential for energetically autonomous soft robotic artificial organisms and sets the
stage for radically different future robots.

1 Introduction
There has long been a drive within robotics research to emulate the sophistication
and efficiency of biological organisms. This approach has led to the emergence of
biomimetic, soft robotic actuators that demonstrate superior performance when com-
pared to their rigid counterparts. Properties of these actuators typically include me-
chanical redundancy, impact toughness, and multi-degree of freedom actuation, thereby
allowing the robot to adapt to its surroundings ([1], [2]). Concurrently, the development
of robots that operate with complete autonomy, including energy sustenance [3] has
been a major goal in robotics research. Truly autonomous robots have the potential to
operate in inhospitable, polluted or hard to reach environments. The energy autonomy
capabilities of current robots are far inferior to those of even the most basic biological
organisms.
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(a) A chain of connected salps. Large chains, ex-
ceeding 500mm in length can comprise around
200 individuals [4]. ‘Salpenkette auf Gozo bei
Malta‘, Hartmut Olstowski, 2010 , Licensed un-
der CC BY-SA 3.0 via Wikimedia Commons.

anus

mouth

(b) A solitary salp, typical body length >10mm,
<100mm ([5]).‘Thetys vagina Salp, Solitary
Phase‘, Lovell and Libby Langstroth, 2005, Li-
censed under CC BY-NO-SA 3.0 via California
Academy of Sciences. Original image edited by
addition of annotations.

Figure 1: Photographs of salps in their two life phases.

Most robots depend on well established sources of power that limit the range of
operation of the robot either by tethered operation, for example pneumatic or hydraulic
actuation driven by pumps too large to carry on-board [6], or the requirement to return
intermittently to a base-station in the case of robots with re-chargeable batteries [7].
Recent soft robotics research has shown actuation mechanisms driven by environmen-
tal stimuli, for example chemical gradients [8] or phototaxis [9]. However, these robots
do not store energy for use in lean times, nor do they optimise the way in which this
energy is used. The foraging behaviour of natural organisms presents a more promising
solution for powering energy autonomous robots. Robots that emulate this behaviour
to provide long term energy autonomy in remote environments using scavenged envi-
ronmental energy include those which use photovoltaic cells ([10],[11]), kinetic energy
from the wind or tide ([12],[13]), underwater thermal gradients [14] and fermentation
[15] and combustion [16] of biomatter.
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Figure 2: Diagram showing principle of operation of an MFC. Organic matter is oxi-
dised at the anode electrode. Standard reduction and oxidation (redox) potentials gen-
erated by oxidation of organic carbohydrates at the anode and reduction of cations at
the cathode result in a potential difference across the MFC and the flow of current when
the electrodes are connected by a resistive load.

Microbial fuel cells (MFCs), which are used to power robots such as Gastrobot [17]
and the EcoBot robot series [18] exploit the metabolism of microbes to break down
organic biomass and convert it into electricity. The configuration of an MFC comprises
two electrodes which are separated electrically, but allow the intermediate transport
of ions (Figure 2). Previous work has demonstrated the use of naturally occurring
substrates such as seawater [19], marine and freshwater sediment [20] and waste water
[21] as an energy source for MFCs, showing their suitability for powering robots in
many different aquatic environments.

Until now the operation of these robots has been limited to within a controlled en-
vironment by the use of wheeled locomotion and complex mechanisms to feed from
specifically designed dispensers [18]. Additionally, the conductivity of the fluid sub-
strates fed to MFCs can result in the unwanted connection of electrodes in contact with
the fluid, limiting their use to power aquatic robots. In contrast to the rigid mecha-
nisms previously used, we demonstrate that by using a soft structure, a simple, low
cost mechanism is achieved that allows the connections of multiple MFCs in series in
fluid environments.

The objective of this study is therefore to design and test a robot that exploits the en-
ergy autonomy that can be afforded to soft robots by use of a bio-inspired MFC energy
source and, simultaneously, investigates whether the use of compliant, bio-inspired ac-
tuation in place of conventional rigid actuators can be used to improve the suitability
of MFC-powered robots for harvesting energy from real-world environments. Previous
work has shown the benefits of soft robotics to feeding MFCs in the design of compo-
nents for fluid transport in an artificial digestive systems [22][30]. Expanding on this,
we now consider the design of a bio-inspired mouth for MFC-powered robots, inspired
by the salp (Figure 1) and produced from a soft flexible polymer membrane. This novel
design is expected to inform future work incorporating an MFC stomach into a com-
pletely soft, energy autonomous robot. Past work has considered the use of a sub-mL
MFC to drive soft robotic actuation of an ionic polymer metal composite (IPMC) ar-
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tificial muscle actuator in the design of a soft robotic tadpole [23]. Artificial muscles
such as IPMC and shape memory alloy (SMA) are a complementary technology for
use with an MFC power source due to low drive voltages (1-3V) and high biocompat-
ibility [24]. IPMCs create a bending actuation due to the migration of mobile cations
and water molecules. Shape memory alloys (SMA) exhibit thermal transition from
the austenitic phase, where the material has a highly elastic structure and assumes its
permanent shape, to the martensitic phase where it can be deformed into a temporary
shape by application of external stress [25]. As preliminary study we evaluate the me-
chanical output of these soft thermally and ionically active actuators, driven from the
energy harvested from the MFC artificial stomach. This research contrasts with previ-
ous work on MFC-powered robots by showing the potential for total energy autonomy
using a single MFC.

1.1 Energy Cycle of the Foraging Behaviour
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Figure 3: Graph showing the two-phase (charge and discharge) anticipated behavioural
cycle of a foraging robot. The robot charges (charge phase is shown in white) until
the energy reaches threshold Ehi. Then it discharges (the discharge phase is shown
in grey, with light grey representing the critical operations for energy sustenance and
dark grey representing use of the net energy of the system for useful work). When
its energy level falls to a low state, Elo, all energy discharge is halted, allowing charge
accumulation to begin again as the organic material is digested. Any surplus energy can
be used for goal-directed operations such as sensing and communication, controlled by
intermediate thresholds, for example Eaction.

The simple behaviour cycle for a soft foraging robot with an MFC stomach is shown
in Figure 3. The anticipated operation of the robot during the discharge is to open its
mouth, move, and then close its mouth, having ingested a fresh batch of feedstock from
which it harvests energy during the charge cycle.

We firstly describe the design of the device used in the study (Section 2). Three
areas are evaluated; the power production of the MFC, the energy harvested from the
MFC and the use of this energy to drive conventional motors and electroactive soft
actuators. The experimental method for these investigations is set out in Section 3,
followed by a discussion of the results in Section 4. Finally we present the conclusions
of the study (Section 5).
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2 Foraging Robot Design
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(a) MFC with the cathode electrically isolated from the
fluid surrounding the MFC by an air chamber. The an-
ode is electrically connected to the surrounding fluid.
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(b) MFC with a mouth mechanism at each end of the
anode chamber and with the cathode electrically iso-
lated from the fluid surrounding the MFC by an air
chamber. When the mouth is open, as shown, the an-
ode is electrically connected to the fluid surrounding
the MFC.
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(c) MFC with a mouth mechanism at each end of the
anode chamber and with the cathode electrically iso-
lated from the fluid surrounding the MFC by an air
chamber. When the mouth is closed, as shown, the an-
ode is electrically isolated from the fluid surrounding
the MFC.

Figure 4: Schematic showing 2D cross-section of an MFC in which anolyte is replen-
ished by inflow and outflow of fluid through orifices at each of the anode chamber. The
surrounding fluid in which the MFC is submerged is shown as a shaded area around
the MFC. The figure is not to scale.

The proposed foraging robot is inspired by the salp which exist either in solitude or as
a connected chain of many organisms (Figure 1). A simple replication of this organism
would be an MFC at the surface of the water, with the anode submerged and the cath-
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ode exposed to the overlying air (Figure 4(a)). However, this prevents the connection
of multiple MFCs electronically in series, a widely used strategy for voltage multi-
plication, due to the unwanted electrical connection by the surrounding fluid. By im-
plementing a mouth-like open-and-close mechanism (Figure 4(b)) the individual MFC
anodes are isolated when the opening is closed (Figure 4(c)), allowing operation of the
MFC-powered robots either as individual units or in series electrical configuration.

2.1 Design of the Mouth

mouth closed, isolating MFC anode 
chamber from surrounding fluid

70mm

60mm

(a) Robot with mouth closed, isolating the anode from the surrounding
fluid.

mouth open, allowing inflow 
 and outflow of fluid to MFC

MFC cathode
chamber

192mm

MFC anode
chamber

(b) Robot with mouth open, allowing fluid inflow and outflow to the
anode chamber.

Figure 5: CAD drawing showing key components of the design for a robot with MFC
stomach fed by a soft, bio-inspired mouth mechanism, which is shaded in grey. The
approximate water level is indicted by the dotted lines in each figure. The cathode
chamber isolates the cathode electrode from the surrounding fluid and exposes it to the
overlying air.
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The robotic MFC floated at the water surface. The mouth mechanism was inspired
by the suction feeding of vertebrate fish, which involves expansion of the intra-oral
cavity in order to transport food-rich fluid into their mouths [26]. Origami folding of
a single soft acetate membrane (thickness = 240 µm approx.) (Figure 5) was used to
open the mouth, drawing in the surrounding fluid with suspended particulate matter
(Figure 5(b)), and close the mouth, raising the lips of the mouth above the water level
(Figure 5(a)). Using this low cost (<£0.5), simple, lightweight, mechanism, the MFC
can be fed directly from its fluid surroundings. In contrast to the use of rigid compo-
nents, use of a soft membrane allowed electrical isolation of the anode chamber from
the surrounding fluid when the mouth is closed, without the need for joints or seals.
This isolation permits voltage multiplication by series connection of individuals in a
configuration, resembling a chain of connected salps.

For repeatability in testing the novel mechanism, the corner folds of the soft mem-
brane were gear coupled to a single central motor drive using rigid plastic components.
The MFC cathode chambers were produced from acrylic to replicate the design of an
analytical style MFC, enabling direct comparison of the performance of the novel feed-
ing mechanism with this well-established design. For example, recent work has shown
5J per batch of food administered can be generated using this type of analytical-style
MFC [27].

anode side cathode side

stainless steel mesh

stainless steel wire 
10mm

(a) Photograph of MFC in open
circuit mode, meaning there
is no electrical connection be-
tween anode and cathode elec-
trodes.

10mm

60mm

anode chamber 
external dimensions: 60 x 50 x 10 mm
capacity: 25ml

anode electrode 
carbon fibre veil
surface area: 270cm (single side) 
projected area: 7cm 

2

2

load
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feed hole
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cathode chamber 
external dimensions: 60 x 50 x 10 mm
capacity: 25ml

--
-

cation exchnage membrane
projected area: 20cm
thickness: 450µm

2
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(b) Schematic detailing the components of the MFCs used in this
study. A conductive latex cathode was used to maintain a continu-
ous redox reaction without the need to hydrate the cathode electrode.
A polyurethane-based rubber coating (Plasti-Dip, Petersfield UK) was
mixed with white spirit and micronised graphite powder in the mass
ratio 2:3:1, using a method derived from [28] and painted onto the air
side of the membrane. The MFC is configured with an electrical load
connecting the anode and cathode electrodes.

Figure 6: An analytical style MFC used as the control experiment in this study and,
therefore, on which the design of the MFC with mouth was based.

2.2 The Energy Balance
To achieve the energy autonomy, it was critical that the feeding mechanism could be
actuated without energy consumption in excess the energy budget defined by the MFC
stomach stomach used to power it.

Emfc >Wbody (1)
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where Emfc is the energy generated by the MFC and Wbody is the mechanical work
done by the body, including supply of energy to the MFC. Additionally, the electrical
energy harvested, Eharvested, and the electrical energy consumed, Ebody , depend on
the efficiency of the energy harvesting hardware and motors, respectively. Therefore
we can re-define Equation (1) as

Eharvested > Ebody (2)

The work, Wbody (Table 1), to drive the mouth mechanism, was evaluated experimen-
tally by using a DC motor (AMAX12, Maxon) to drive the central input gear. The work
done was found by integrating the power Pmech over the opening and closing strokes
respectively using the product of the motor torque τ and motor angular velocity ω.

Wbody =

∫ tf

ti

Pmechdt = ω

∫ tf

ti

τdt (3)

A potentiostat (Hokuto Denko) was used to set a voltage and measure the current drawn
by the motor at that voltage. The torque was derived from the current drawn by the
motor.

Based on previous work using analytical style MFCs (Figure 6), Emfc can be esti-
mated as 5J [27]. Wbody can be estimated as Wopen + Wclose (Table 1). This suggests
that Equation (1) may be satisfied, showing the potential of the robot for energy au-
tonomous operation. However, the energy consumed in actuating the motors, Ebody ,
due to the efficiency the DC motor used, means that Equation (2) cannot be satisfied.
Therefore, the next stage is to firstly, evaluate the energy output by an MFC with the
novel design for a soft bio-inspired mouth, in comparison to a conventional analytical
style MFC.

Henceforth, we term the MFC with the mouth the ‘artificial stomach’ to distinguish
it from the conventional analytical style MFC, termed the ‘control MFC’. Based on
this performance verification, suitable actuators and energy harvesting hardware must
be sourced to produce a design for an energy autonomous robot, powered by the MFC
stomach, by satisfying Equation (2).

Table 1: The electrical energy consumed, Ebody = Eopen + Eclose, to supply the
mechanical work Wbody = Wopen + Wclose, to actuate the mouth, and the resulting
first law thermodynamic efficiency η.

Wbody (J) Ebody , (J) η (%)
Open 0.04 1.4 2.86
Close 0.16 4.19 3.82

3 Experimental Method

3.1 Power Production From MFCs
Two identical analytical style MFCs were set up (Table 2). One was converted to
the artificial stomach with the soft mouth and the other was used as the control. A
servo motor (Carson) was initially used to drive the feeding actuation. An Uno micro-
controller board (Arduino) was used to control actuations of the robotic MFC, using

8



manual input switches. The energy required by this system to actuate the mouth and
transport the robot was 345.37J.

mouth
motor
(mouth)

MFC 
submerged

pulley

floats

motor (transport)
with potentiometer
for position feedback

microcontroller

Figure 7: Photograph of the artificial organism in a container of fluid

The foraging robot which was partially submerged in a container of 10L of fluid
(Figure 7) of the same composition as the anolyte (Table 2).

The composition of the fluid was chosen to replicate that used in previous work
[27] demonstrating power production from MFCs of this type.

The MFCs were batch fed, which involved intermittently replenishing the anode
chamber contents using the mouth in the case of the artificial stomach and a syringe
for the control. The trigger for administration of a new batch feed was a decrease in
MFC power output to <1 µW. The operations used to feed the artificial stomach over
25 batches of feeding (days 45-401) are shown in Figure 8.
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Table 2: Experimental method using two identical analytical style MFCs. A single
batch feed involved removing 25ml anolyte using a syringe and replacing it with 25ml
of 5mM acetate solution, mixed with 0.2% tryptone, 0.1% yeast extract.

Day Operation
0 Two analytical style MFCs inoculated: sewage sludge (Wessex Water,

Saltford UK) mixed with 2.5% nutrient broth. 10kΩ load.
Data logger: LXI data acquisition/switch unit (Agilent Technologies).

0 - 12 Every 2nd day: 5ml anolyte removed, replaced with 5ml stock solution
(25mM acetate solution, mixed with 1% tryptone, 0.5% yeast extract).

12 Batch 1, 10kΩ load applied

20 Batch 2, 1kΩ load applied (optimum load for MFCs of this type, [27]
to imitate fixed load of EH4295 Micropower Step Up Low Voltage Booster)

33 Batch 3, 1kΩ load applied

45 One of the two analytical style MFCs dismantled. Anode, cathode
and cation exchange membrane converted to MFC with mouth.

motor rotates
to open mouth

(a) Mouth opens (17s) then remains open for further 3
minutes.

tensioned string

motor rotates to 
drive linear travel

(b) Artificial stomach with mouth transported 20cm
linearly at a velocity of 2.5ms−1 across container of
fluid, with mouth open, by rotation of second servo mo-
tor fixed to periphery of container. Rotary potentiome-
ter coupled to second servo motor for position feedback
to microcontroller. The mouth then remains open for a
further 1 minute. Direction of travel alternated with
each feed.

motor rotates 
to close mouth

(c) Mouth closes (17s)

Figure 8: Operations used to feed the artificial stomach. The surrounding fluid in the
container was replenished prior to each feed.
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The artificial stomach was also fed without transporting it across the container using
the rotation of a motor as shown in Figure 8(b) over 2 batches (19 and 20) to evaluate
the necessity to travel across the container as a feeding operation.

3.2 Harvesting Energy from MFCs
Energy harvesting circuitry was sourced to store the low output voltage of the MFC-
stomach at a boosted voltage for use in feeding an energy autonomous, soft robot. DC
motors were sourced to drive the actuation of the soft robot with sufficient efficiency
that Ebody <Eharvested, satisfying Equation (2) and showing the potential of the robot
for energetic autonomy.

While a number of examples of energy harvesting from MFCs using ultra-low volt-
age input circuits are demonstrated in the literature ([29], [30], [31]), the range of en-
ergy harvesting hardware available to MFC technology remains severely limited [32].
As it stands, the current state of the art in commercially available low power voltage
step-up technology is represented by the EH4295 inductor-based voltage booster (Ad-
vanced Linear Devices Inc). The device outputs AC voltage with a gain between 7 and
10 and has a lower input voltage threshold of 60mV. It has a nominal impedance of 950
Ω. This voltage booster was used to increase the low voltage output of the MFC and
an energy harvesting board (EH300, Advanced Linear Devices Inc) was used to rectify
the AC output of the voltage booster to a DC voltage, enabling the charge of a storage
capacitor (Section 3.2).

MFC
voltage 
booster

(EH4295)

capacitor
(0.33F)

energy 
harvester

(E300)

VMFC VAC VDC

Figure 9: Block diagram of hardware

3.3 Powering Actuators Using Harvested Energy
3.3.1 Powering DC motors

To demonstrate the potential of the robot for energy autonomous operation, high effi-
ciency DC motors and gearheads (RE 10 & GP 10 K (Maxon), 16C18, & M915L61(Portescap))
were selected to actuate a replicate of the foraging robot, identical to the design shown
in Figure 5, which contained no microbes. The motors were powered by the discharge
of 3 x 1F super- capacitors (PowerStor, B series) charged in series to 4.0V (2.64J); the
mean recorded energy harvested from the MFC stomach, at this time. Manual switch-
ing was used to control the supply of charge to the motors.

3.3.2 Powering IPMC Artificial Muscle

The motors were powered by the discharge of 3 x 1F super- capacitors charged in
series to 5.5V (5J), representing the typical energy output of a batch fed, analytical
style MFC [27]. The amplification, for example by boost conversion, and associated
energy loss due to efficiency, required to achieve this voltage using typical MFC output,
was neglected in these experiments. The capacitor was discharged to an IPMC actuator
via a MOSFET H bridge circuit (Figure 10) which cycled the charge between opposing

11



polarities at a frequency of 1Hz. A micro-controller (PIC12LF1822, Microchip) was
used to control the switching and was powered in parallel with the IPMC from the
discharge of the capacitor. The IPMC strip of length 2.5cm and width 1cm, made
from Nafion 117(DuPont), was electroless plated with gold electrodes using the the
impregnation reduction fabrication method described in [33]. The Nafion 117 layer
had a thickness of 180 microns and the electrode thickness was estimated as 10 microns
based on previous work in [34]. The IPMC was fixed with a copper connection at one
end. Cantilever actuation of a point at L=1.49cm (Figure 10(a)) from the fixed end was
measured using a laser displacement sensor (Keyence LK-G150).

Vs
s

Q
4

Q
5

M

m
2

L
Q4

M

m2

Vss

Q
4

Q
5

M

m
2

6
5

2

4
3

VssQ2

m1

(a) Experimental setup for evaluation of IPMC actu-
ator, viewed from above. L = length of fixed end to
point measured by laser displacement sensor. m1 and
m2 are connected to the driving electrical circuit shown
in Figure 10(b)
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(b) Schematic of electrical circuit driving IPMC actuation. The h-bridge comprised
of 4 N-channel, enhancement mode MOSFETs (N1-4), switched by digital output of
microcontroller (d1-4)

Figure 10: Experimental set-up for IPMC actuation.

3.3.3 Powering SMA Artificial Muscle

A mass of 3g was suspended vertically by a helical shape memory wire actuator (BioMetal
helix, Toki Corp.) of wire diameter (0.15mm) and spring diameter (0.62 mm) and an
equilibrium length of 21.6mm. The 3 x 1F super- capacitors charged in series to 5.5V
(5J) were discharged directly to the SMA actuator (Figure 16).
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Figure 11: Schematic of SMA actuation driven from direct discharge of supply capac-
itor C1.

4 Results and Discussion

4.1 Power Production from MFCs
Prior to converting one of the two analytical style MFCs to the artificial stomach design,
similar performance (peak power = 18.0µW and 21.45µW respectively, under 1kΩ,
mean of batches 2-3) was shown by the MFCs.)

Following conversion, continued similarity was shown between the performance of
the artificial stomach and the control MFC (10.40 J energy per batch, peak power =
22.86 µ W, and 10.57J energy per batch, peak power of 24.50 µW, respectively, aver-
aged over 6 batches). This demonstrated that the novel mode of feeding was effective
and that MFC performance improved temporally. However, difference between the cy-
cles of the two MFC types can be seen clearly in Figure 12. This may indicate that the
difference in feeding mode can impact the peak power output from the MFC.
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Figure 12: Output from control MFC and foraging robot under 1k Ω load, two batches
shown as an example: batches 6 and 7 (begin day 119 and day 132 respectively)
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4.2 Harvesting Energy from MFCs
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Figure 13: Voltage output from the artificial stomach to the input of the boost converter
(load 950 Ω), and the voltage of storage capacitor, charged by the rectified output of the
boost converter. Two batches are shown as an example: batches 17 and 18 (beginning
day 227 and 243 respectively)

The voltage output of the MFC, when connected to the boost converter and stepped
up to the DC-regulated output voltage of the boost converter, charged the 0.33F ca-
pacitor connected to the output of the boost converter, as shown in Figure 13. The
capacitor was charged to approximately 2.86 J of stored energy per batch (average of
three batches) showing an average energy conversion efficiency of 30%. No significant
difference in power output was observed when the artificial stomach was not trans-
ported across the container of fluid in between opening and closing the mouth (2.87 J
of stored energy per batch, average energy conversion efficiency of 29% (average of
two batches). This negative result is interesting as it shows that the only actuation re-
quired to replenish the contents of the MFC stomach is to open and close the mouth.
Therefore, the energy production required of the MFC to achieve energy autonomy is
less than initially expected as it does not need to power transport in addition to the
mouth.

4.3 Powering Actuators Using Harvested Energy
4.3.1 Powering DC motors

The energy consumed, Ebody , to actuate the mouth and transport the robot was 1.81J,
which satisfied the Equation (2) where the input energy, Eharvested, was 2.64J.
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Figure 14: Direct discharge of 0.33 F capacitor charged to 4.0V to two DC motors
to drive feeding and travel actuation respectively via an externally powered switching
circuit. The voltage of the capacitor (top), and motors that drive the mouth (middle)
and the transportation (bottom) are shown.

4.3.2 Powering IPMC Artificial Muscle

The peak to peak amplitude of displacement decreased from 1.74mm to 0.10mm over
104 actuations in 52 seconds (Figure 15(a)), before the capacitor was discharged to
below the minimum operating voltage of the micro-controller (1.2V).
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(a) Results from start of experiment to time = 52s
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(b) Results from start of experiment to time = 10s

Figure 15: The supply voltage from the capacitor, the voltage across of the IPMC
actuator and the cantilever displacement, during discharge of 0.33F capacitor, charged
to 5.5V into IPMC artificial muscle, via a simultaneously power switching circuit, with
a switching frequency of 1 Hz.

The bending moment, M , generated by the first actuation of the IPMC, was found
by M = 2yIE

L2 as 701 µNm , where y is the deflection of a point at length, L, from
the fixed end of the IPMC and I and E are, respectively, the equivalent moment of
inertia and Young’s modulus of the IPMC. The energy consumed from the capacitor
per stroke, Eelec = 1

2CV
2
n−1 − 1

2CV
2
n , where Vn−1 and Vn are the voltage of the

capacitor of size C prior to and following actuation, decreased from 182mJ to 2mJ
over 104 strokes. This showed that energetic IPMC oscillation can be driven from the
typical energy output of an MFC. This may have application in future development of
an MFC-powered soft robot.
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4.3.3 Powering SMA Artificial Muscle

An instantaneous drop in voltage of the supply capacitor (5.5V to 4.0V) indicated the
relatively large initial current drawn by the SMA actuator. The SMA contracted to
a length of 17.8mm due to the charge from the capacitor Figure 16(a) with a peak
force,F= 29mN. The actuator reaches its fully contracted state within 500ms (Fig-
ure 16(b)).
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Figure 16: The supply voltage from the capacitor, the voltage across of the SMA actu-
ator and the displacement of the suspended mass during discharge of 0.33F capacitor,
charged to 5.5V into SMA artificial muscle.

During the initial contraction, the first law thermodynamic efficiency η was found

to be 0.2% by η = Wmech

Eelec
=

∫ t
0
Fvdt

1
2CV 2

n−1−
1
2CV 2

n
where Wmech =

∫ t

0
Fvdt, F is axial

force v is linear velocity, and Eelec is the energy consumed from the capacitor. The
force and displacement output may be employed in the design of a robot combining
the advantageous characteristics of both soft robotics and MFC power, however these
benefits may come at the price of reduced thermodynamic efficiency.

5 Conclusion
The development of an MFC artificial stomach, with a soft robotic mouth, has shown
great potential to increase the energy autonomy with which aquatic robots can operate.
Additionally it may expand the application of MFCs in aquatic environments due to
electrical isolation of the anode chamber. This entirely new mechanism for feeding
a novel power source will enable increased use of soft robots in real world aquatic
environments. In this study, the materials and dimensions of the MFC design were
chosen so that the performance of novel design features (the mouth) may be directly
evaluated against the results of previous work using the same configuration of MFC
[27]. However, future work may include adapting the design of the artificial stomach
to include features that related work has shown to improve MFC performance in terms
of increased energy output ([35], [36]). Additionally, replacing rapid fabrication with
higher precision techniques may be a way to improve the mechanical efficiency of op-
eration, for example through better component alignment and reduced friction. The use
of soft robotic actuators, such as the IPMC and SMA artificial muscles presented in this
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work, may be instrumental in improving the real world survivability of the design of
the robot, by replacing the complex, multicomponent, rigid actuators. However, there
is a likely trade-off between mechanical robustness and thermodynamic efficiency, as
shown by the lower efficiency operation of the IPMC actuator in this study (0.2% com-
pared to 2.86-3.83% (DC motor)). High efficiency, low power control is a current them
of our work towards achieving full energetic autonomy of the foraging soft robot. Ad-
ditionally, our future work will investigate the use of a soft mouth to feed a totally soft
robot. This work makes a significant contribution to soft and MFC-powered robotics,
by their combined use in a completely novel aquatic robot.
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