
 

 

 

 

 

THE DEVELOPMENT OF 

A POINT OF CARE DEVICE FOR 

MEASURING BLOOD AMMONIA 

 

by 

Niamh T. Brannelly 

 

A thesis submitted in partial fulfilment of the requirements of the 

University of the West of England, Bristol for the degree of Doctor 

of Philosophy  

July 2016 

 

Supervisors:  

Prof. Anthony J. Killard 

& 

Prof. Julian P. Hamilton-Shield 



I 

 

DECLARATION 

I hereby certify that this material, which I now submit for assessment on the 

programme of study leading to the award of PhD, is entirely my own work, that I 

have exercised reasonable care to ensure that the work is original, and does not to the 

best of my knowledge breach any law copyright, and has not been taken from the 

work of others save and to the extent that such work has been cited and 

acknowledged within the text of my work. 

 

 

 



III 

 

ACKNOWLEDGEMENTS 

 The first person I would like to thank is Prof. Tony Killard. Thank you for 

your encouragement and guidance through the highs and lows of this research.  

 Thank you to my second supervisor Prof. Julian Hamilton-Shield. 

 I would also like to thank Dr. Laura Gonzalez-Macia. Your friendship and 

support during this time meant so much to me. Thank you for the long scientific 

discussions and guidance. You were always there for me and I am ever grateful.   

 Thank you to Dr. Roy Pemberton and Dr. Timothy Cox for their help in 

preparing for my viva voce examination. Their time and advice was sincerely 

appreciated. 

 To Hanan Alabouh and Maya El Hindy, thank you habibati for the laughter 

and tears shared. The personal journeys we ventured while in Bristol are those I will 

never forget. 

 I would like to mention my all of my friends in UWE, especially Matt Harris 

for his positive encouragement and Eleni Siasou for her humour. Thank you to 

George Papaharalabos who kindly provided technical support. 

 Thank you also to Fiona Rice, true friends are never apart. 

 I would like to thank Carmel Ryan for her kindness, love and support. 

 A special thank you to Derek Conway. Without you, I would not have 

started, let alone finish. Thank you for wiping all of my tears, listening to my 

obsessive science talk and for the necessary distractions with many happy weekends 

away from Bristol.  

 Finally, I would like to thank my family. To my Mother - you are incredible! 

You ground and strengthen me to strive and continue on the path of my dreams. 

Thank you also to my sister, Ciara and brother, Liam for their continued love and 

support. Thank you all for the daily phone calls which cheered me up and kept me 

going. 



III 

 

DEDICATION 

 

 

 

 

 

 

 

 

To my Grandfather, James P.A. Kenny (1939 - 2007) 



IV 

 

TABLE OF CONTENTS 

DECLARATION ......................................................................................................... I 

ACKNOWLEDGEMENTS ....................................................................................... III 

DEDICATION ........................................................................................................... III 

TABLE OF CONTENTS ........................................................................................... IV 

ABBREVIATIONS .................................................................................................... V 

ABSTRACT ............................................................................................................... IX 

 

CHAPTER 1 ................................................................................................................ 1 

BLOOD AMMONIA AND ITS CURRENT AND POTENTIAL USE IN 

CLINICAL DIAGNOSTICS ....................................................................................... 1 

1.1. THE CURRENT STATUS OF CLINICAL BLOOD AMMONIA TESTING .... 2 

1.1.1. The role of the liver in ammonia metabolism ................................................ 6 

1.1.2. The role of the kidneys in nitrogen metabolism ........................................... 11 

1.1.3. The effects of ammonia on the central nervous system ............................... 12 

1.1.4. The digestive system .................................................................................... 13 

1.1.5. The relationship between the lungs and ammonia ....................................... 15 

1.1.6. Muscle metabolism and exercise and their association with ammonia ........ 16 

1.2. TECHNIQUES FOR AMMONIA DETERMINATION .................................... 17 

1.2.1. Test kits and POC devices ............................................................................ 20 

1.2.2. Conducting polymers such as polyaniline used as ammonia sensing 

materials ................................................................................................................. 22 

1.2.3. The reaction mechanism of ammonia and polyaniline ................................. 25 

1.3. CONCLUSIONS ................................................................................................. 26 

1.4. THESIS OUTLINE ............................................................................................. 28 

1.5. REFERENCES .................................................................................................... 30 

 



V 

 

CHAPTER 2 .............................................................................................................. 42 

MATERIALS AND METHODS ............................................................................... 42 

2.1. MATERIALS ...................................................................................................... 43 

2.2. INSTRUMENTATION....................................................................................... 44 

2.3. SOFTWARE ....................................................................................................... 45 

2.4. METHODS ......................................................................................................... 45 

2.4.1. Buffer ............................................................................................................ 45 

2.4.2. Electrode fabrication via screen printing ...................................................... 45 

2.4.3. Polyaniline nanoparticle synthesis ............................................................... 46 

2.4.4. Inkjet printing of polyaniline nanoparticles ................................................. 46 

2.4.5. Assembly of the aqueous ammonia sensing device ..................................... 47 

2.4.6. Characterisation techniques .......................................................................... 49 

2.4.7. Cyclic voltammetric analysis of polyaniline dispersions ............................. 49 

2.4.8. Electrochemical impedance spectroscopic measurement of ammonia ........ 50 

2.4.8.1. Ratiometric method ............................................................................... 50 

2.4.9. Spectrophotometric measurement of ammonia ............................................ 50 

2.4.10. Bradford protein assay ................................................................................ 50 

2.4.11. Oil red O analysis for cellular lipids .......................................................... 51 

2.5. REFERENCES .................................................................................................... 52 

 

CHAPTER 3 .............................................................................................................. 53 

OPTIMISATION AND CHARACTERISATION OF POLYANILINE 

NANOPARTICLE INK PRODUCTION AND SENSOR FABRICATION ............ 53 

3.1. INTRODUCTION .............................................................................................. 54 

3.1.1. Polyaniline nanoparticle synthesis and processability ................................. 54 

3.1.2. Electrochemical impedance spectroscopic analysis ..................................... 55 

3.2. RESULTS AND DISCUSSION ......................................................................... 57 



VI 

 

3.2.1. Fabrication and characterisation of polyaniline nanoparticles ..................... 57 

3.2.2. Screen printed silver interdigitated electrode design as part of the inkjet-

printed polyaniline sensor....................................................................................... 61 

3.2.3. Impedimetric assessment of polyaniline sensors .......................................... 63 

3.2.4. Impact of the synthesis method on particle size and its effect on sensor 

impedance ............................................................................................................... 66 

3.2.5. Impact of the synthesis method on zeta-potential and its effect on sensor 

impedance ............................................................................................................... 68 

3.2.6. Characterisation of the ammonia sensor in response to liquid samples ....... 71 

3.2.6.1. The use of a hydrophobic membrane for ammonia gas measurement 

from a liquid sample........................................................................................... 72 

3.2.6.2. Ammonia sensor reproducibility and drift ............................................ 74 

3.2.6.3. Investigation of the polyaniline nanoparticle inkjet printing process on 

the characterisation and performance of the ammonia sensor ........................... 75 

3.2.7. Electrochemical characterisation of inkjet-printed polyaniline films .......... 81 

3.3. CONCLUSIONS ................................................................................................. 85 

3.4. REFERENCES .................................................................................................... 86 

 

CHAPTER 4 .............................................................................................................. 91 

DESIGN AND TESTING OF THE AQUEOUS AMMONIA DEVICE .................. 91 

4.1. INTRODUCTION .............................................................................................. 92 

4.2. RESULTS AND DISCUSSION ......................................................................... 93 

4.2.1. Impedance spectroscopic characterisation of the prototype ammonia 

measurement device ............................................................................................... 93 

4.2.2. Strategies to eliminate solvent interferents .................................................. 97 

4.2.2.1. Investigation of the effect of membrane composition........................... 97 

4.2.2.2. Ammonia sensor recovery .................................................................... 99 

4.2.2.3. Investigation of sample exposure time in the sampling chamber ....... 103 



VII 

 

4.2.2.4. Investigation of the effect of sample pH ............................................. 105 

4.2.3. Time course analysis of the ammonia measurement process ..................... 110 

4.2.4. Sensor pre-calibration ................................................................................. 112 

4.3. CONCLUSION ................................................................................................. 116 

4.4. REFERENCES .................................................................................................. 118 

 

CHAPTER 5 ............................................................................................................ 121 

CHARACTERISATION AND VALIDATION OF THE BLOOD AMMONIA 

SENSOR DEVICE ................................................................................................... 121 

5.1. INTRODUCTION ............................................................................................ 122 

5.1.1. Blood buffering capacity ............................................................................ 122 

5.1.2. Consideration of sample interferences ....................................................... 123 

5.2. RESULTS AND DISCUSSION ....................................................................... 124 

5.2.1. Spectrophotometric analysis of ammonia in solution using the Berthelot 

reaction ................................................................................................................. 124 

5.2.2. Validation of the device using the Abcam® spectrophotometric assay ..... 125 

5.2.3. Interference study ....................................................................................... 131 

5.2.4. Characterisation of sample matrix effects on ammonia measurement ....... 134 

5.2.4.1. Determination of ammonia in a protein sample matrix ...................... 134 

5.2.4.2. Ammonia analysis in serum ................................................................ 136 

5.2.4.3. Spectrophotometric assessment of protein and lipid assay interference

 .......................................................................................................................... 139 

5.2.4.4. Delipidated and deproteinated serum as a matrix for ammonia 

determination using the ammonia device ......................................................... 142 

5.2.5. Lifetime study of the blood ammonia device ............................................. 149 

5.3. CONCLUSIONS ............................................................................................... 151 

5.4. REFERENCES .................................................................................................. 153 

 



VIII 

 

CHAPTER 6 ............................................................................................................ 157 

FUTURE DEVELOPMENTS ................................................................................. 157 

6.1. FURTHER DEVELOPMENTS OF THE BLOOD AMMONIA DEVICE ..... 158 

6.1.1. Reflections and lessons .............................................................................. 159 

6.1.1.1. Limitations .......................................................................................... 159 

6.1.1.2. Sensitivity and reproducibility ............................................................ 159 

6.1.1.3. Optimisations ...................................................................................... 160 

6.1.3. Further matrix and interference assessments .............................................. 161 

6.2. INTEGRATED SENSING SYSTEMS ............................................................ 162 

6.3. OTHER APPLICATIONS AND ALTERNATIVE TECHNIQUES ............... 162 

6.3.1. Wearable sensors ........................................................................................ 162 

6.3.2. Clinical and environmental gas-based ammonia measurements ................ 163 

6.3.3. Enzymatic biosensors ................................................................................. 163 

6.3.4. Alternative techniques to impedimetric ammonia analysis ........................ 164 

6.4. REFERENCES .................................................................................................. 166 

 

CHAPTER 7 ............................................................................................................ 169 

OVERALL CONCLUSIONS .................................................................................. 169 

7.1. CONCLUSIONS ............................................................................................... 170 

7.2. CLOSING STATEMENT ................................................................................. 171 

 

LIST OF PUBLICATIONS AND PRESENTATIONS ........................................... 173 

1. SCIENTIFIC PUBLICATIONS ....................................................................... 174 

2. ORAL PRESENTATIONS .............................................................................. 174 

3. POSTER PRESENTATIONS .......................................................................... 175 

APPENDIX .............................................................................................................. 178 

 



 

V 
 

ABBREVIATIONS 

a.c.   Alternating current 

ADP   Adenosine diphosphate 

Ag/AgCl  Silver/silver chloride  

ALF   Acute liver failure  

APS   Ammonium persulphate 

ATP   Adenosine-5-triphosphate  

BCAAs  Branched chain amino acids 

BSA   Bovine serum albumin 

BUN   Blood urea nitrogen  

CF   Cystic fibrosis  

CNS   Central nervous system  

CPS-1   Carbamoyl phosphate synthetase-1  

CV   Cyclic voltammetry 

D   Diffusion coefficient  

DBSA   Dodecylbenzene sulphonic acid 

d.c.   Direct current 

DLS   Dynamic light scattering 

E   Emeraldine 

EC   Ethyl cellulose  

EIS   Electrochemical impedance spectroscopy 

ESRD   End stage renal disease  

f   Frequency 

FBS   Foetal bovine serum 

GCE   Glassy carbon electrode 

GCS   Glasgow Coma Scale  

GLDH   Glutamate dehydrogenase  

GS   Glutamine synthetase  



 

VI 

 

HE   Hepatic encephalopathy 

HM   Hepatic myelopathy  

H. pylori  Helicobacter pylori  

I   Current 

IDEs   Interdigitated electrodes  

ICP   Increased intracranial pressure  

L   Leucoemeraldine 

LED   Light-emitting diode  

LOD   Limit of detection 

MELD   Model for End-Stage Liver Disease 

M   Mean  

Mn   Number average molar mass 

Mw   Weight average molar mass 

NADPH  Nicotinamide adenine dinucleotide phosphate 

NAG   N-acetylglutamate  

NMDA  N-methyl-D-aspartate  

OTC   Ornithine transcarbamylase  

ϕ   Phase shift 

P   Pernigraniline 

P   Permeation 

PBS   Phosphate buffered saline solution  

PDI   Polydispersity index 

PET   Polyethylene terephthalate  

pKa   Acid dissociation constant  

POC   Point of care  

ppbv   parts-per-billion volume  

PPI   Proton pump inhibitor  

ppm   Parts-per-million  

PSA   Pressure sensitive adhesive 



 

VII 

 

PTFE   Polytetrafluoroethylene 

PVDF   polyvinyl fluoride  

QC   Quality control 

R   Pearson product-moment correlation coefficient 

R
2
   Coefficient of determination 

RBCs   Red blood cells  

Refs   References 

RSD   Relative standard deviation 

S    Solubility coefficient 

SD   Standard deviation 

SDS   Sodium dodecyl sulfate 

SEM   Scanning electron microscopy  

TCA   Trichloroacetic acid 

te   Ejection time  

TEM   Transmission electron microscopy  

TIPS   Transjugular intrahepatic portosystemic shunt  

TMT   Trail Making Test   

UCD   Urea cycle disorder  

UTI   Urinary tract infection  

UV   Ultra violet 

V   Voltage  

VOCs   Volatile organic compounds 

v/v%   volume/volume percent 

WHC   West Haven Criteria 

Z    Impedance  

Z’   Real impedance 

Z”   Imaginary impedance 

|Z|   Absolute impedance 

Zair   Impedance in air 



 

VIII 

 

Zd   Average diameter of a nanoparticle 

 

 

 

  



 

IX 

 

ABSTRACT 

Ammonia is produced in the body during the metabolism of amino acids. In 

the liver, it is converted to urea via the urea cycle and excreted by the kidneys as 

urine. Normal levels are between 11 to 50 µM, whereas a blood ammonia level of 

approximately 100 µM indicates pathology. Elevated blood ammonia is associated 

with a number of pathological conditions including liver and kidney dysfunction. 

Conditions such as these can affect brain function and can be fatal. Current blood 

ammonia analysis requires a laboratory blood test. Few, if any of the techniques used 

are suitable for point of care (POC) testing. The development of a reliable and 

simple method for blood ammonia determination is essential for clinical diagnosis 

and management of patient progress in order to prevent further debilitating illnesses 

developing, and extending life. This is particularly critical in many disorders such as 

hyperammonaemia of the new-born, inborn errors of metabolism including urea 

cycle defects, organic acidaemias, hyperinsulinism/hyperammonaemia, liver disease 

and other causes of hyperammonaemic encephalopathy. This thesis investigates the 

development of an electrochemical sensor for the measurement of ammonia in blood.  

Polyaniline has a known affinity for ammonia which operates on the 

deprotonation of the polyaniline backbone forming an ammonium ion. In this work, 

polyaniline nanoparticles were fabricated and inkjet-printed onto silver screen 

printed electrodes. The sensors were then incorporated into devices containing a gas-

permeable membrane, which facilitated the measurement of gaseous ammonia from 

a liquid sample (blood) using electrochemical impedance spectroscopy. The 

combination of impedance spectroscopy with a gas-permeable membrane allowed 

the measurement of gaseous ammonia from solution.  

The ammonia device developed possessed refinements to enhance its 

sensitivity and included careful optimisation of other aspects of the measurement. 

For example, an air purge through the device gas chamber was employed to remove 

matrix interferences from the sensor and improve the specificity to ammonia. The 

pH of the sample to be analysed was modified in order to increase the mass of 

ammonia in solution, thus lowering the limit of detection (LOD) of the device. 

Finally, assay timings were optimised in order to increase the impedimetric response 



 

X 

 

of ammonia. These optimisations resulted in the effective detection of ammonia in a 

liquid sample down to the lowest clinically relevant levels found in blood.  

The devices displayed an impedimetric baseline intra- and inter-variability of 

25 and 6.9%, respectively for n = 15 over a period of 160 s. A calculated limit of 

LOD of 12 µM was achieved for human serum measurements, with a coefficient of 

determination of 0.9984, slope of 0.0046 and an intercept of 1.1534 across the linear 

range of 25 to 200 μM ammonia (n = 3). The device was validated against a 

commercial spectrophotometric assay which resulted in excellent correlation 

(0.9699, p < 0.0001) with a slope of 1.4472 and an intercept of 0.5631 between both 

methods (n = 3). The devices could be stored in desiccant for up to five months and 

displayed minimal variation (0.64%) over time (n = 12). 
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CLINICAL DIAGNOSTICS 
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1.1. THE CURRENT STATUS OF CLINICAL BLOOD AMMONIA TESTING 

Ammonia is an important analyte in clinical diagnostics. It is an inorganic 

nitrogen compound found naturally in the body and is involved in many metabolic 

processes. It is produced from the deamination of amino acids in the liver, muscle 

and kidneys. It is also produced by bacteria in the colon and small intestine and also 

from the metabolic breakdown of dietary proteins (Huizenga et al., 1996). It may be 

combined with glutamate to form glutamine, which is an important metabolic fuel 

for some tissues {{142 Adeva,Maria M. 2012}}. The importance of ammonia in 

metabolism has been known for a very long time. (Dawson, 1978) It is neurotoxic 

and can penetrate biological membranes such as the blood-brain barrier. It is 

detoxified by converting it to urea via the urea cycle in the liver and excreted by the 

kidneys as urine, so maintaining a low concentration of ammonia in the body. 

Impaired clearance of ammonia results in rising ammonium ion (NH4
+
) levels in the 

blood. Levels exceeding 1 mM are toxic (Barsotti, 2001) and often affect the central 

nervous system, deteriorating brain, liver, kidney, stomach and lung function 

(Brusilow and Maestri, 1996). Blood ammonia is in the form of either ammonium 

ions (NH4
+

(aq)) or aqueous ammonia (NH3(aq)) which is in equilibrium with dissolved 

gaseous ammonia (NH3(g)). Throughout this thesis, unless stated otherwise, we will 

refer to these interchangeably as ammonia. Ammonia has a pKa of 9.3 and a pKb of 

4.7 and so under normal physiological conditions (pH 7.4) above 98% of ammonia is 

present as an aqueous species, as determined by the Henderson-Hasselbalch equation 

(Solga et al., 2013):  

        
                                 

  Eq. 1.1 

    
    

       

   
  

when [   
 ] = [   ], then        

    

       
    9.3 and                       

Under normal conditions, ammonia-rich blood is transported via the portal 

vein to the liver which goes on to be detoxified via the urea cycle and excreted by 

the kidneys as urea in urine, thus maintaining nitrogen homeostasis (Fig. 1.1).  
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Figure 1.1. Schematic of ammonia metabolism in the body under normal 

conditions and during liver dysfunction. Endogenous or exogenous ammonia is 

transferred to the liver and detoxified. It is then transferred to the kidneys and 

excreted as urea. During liver dysfunction ammonia is not detoxified and 

accumulates in the body, passing through the blood-brain barrier. Skeletal 

muscle begins to use up excess ammonia, generating glutamine. 

Blood ammonia levels are typically in the range of 11 to 50 µM. Levels may 

vary between venous, capillary and arterial blood (Ong et al., 2003, Mehmood et al., 

2013). When ammonia homeostasis is affected, there can be an increase in systemic 

ammonia (hyperammonaemia). Hyperammonaemia is not itself a diagnosis but a 

prompt for further investigation to find the underlying cause which may be inherited 

or acquired (Elgouhari and O'Shea, 2009).  Ammonia toxicity can affect all organs, 
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especially the brain. Levels exceeding 100 µM may trigger a cascade of pathological 

events in which the liver, kidney, stomach, lung and central nervous system (CNS) 

may be irreversibly affected, leading to encephalopathy with associated neurological 

and cognitive impairment across a broad spectrum of severity (Pita et al., 2004, 

Bosoi and Rose, 2009). Congenital hyperammonaemia is a neonatal emergency. 

Ammonia levels should be measured in seemingly healthy neonates with 

unexplained non-specific systemic illness with neurological symptoms (Leonard and 

Morris, 2006). There is often no definitive cure for most hyperammonaemic 

conditions. However, restriction of dietary protein intake and prevention of 

catabolism through high calorie diets and supplements can prevent encephalopathy 

(Lee et al., 2015). Current treatment of hyperammonaemia involves lowering 

ammonia levels immediately by treating any ammonia producing processes 

(stopping gastrointestinal bleeding, treating infections, kidney failure, and electrolyte 

abnormalities). Management of ammonia levels then takes place by inhibiting 

ammonia production in the gut and targeting ammonia removal pathways. 

Management requires tailored intake of protein and a provision of carbohydrates (to 

stop catabolism and promote anabolism) and intake of ammonia scavenging drugs 

(sodium benzoate, sodium phenylbutyrate and arginine hydrochloride) (Broomfield 

and Grunewald, 2012). Severe cases may require haemofiltration or dialysis. 

Medicines containing ammonium (including certain antacids) should also be 

avoided. Table 1.1 presents numerous pathological conditions associated with 

hyperammonaemia.  
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Table 1.1. Pathological conditions associated with hyperammonaemia.  

Classification Underlying causes Ammonia 

(µM) 
Details Treatment 

Congenital Transient hyperammonaemia 

of  new-borns 
>1500  Lactitol, carglumic acid 

 Urea cycle disorders 
 

>600 Enzyme and transporter defects, citrin 

deficiency, hyperornithinaemia 

hyperammonaemia homocitrullinuria, 

lysinuric protein intolerance 

Sodium benzoate, branched 

chain amino acids (BCAAs), 

glycerol phenylbutyrate. 

Liver (Mukhtar et al., 2013) 

and/or kidney (Bezinover et 

al., 2010) transplant 
 Organic acidaemias 100-150 

 

 
~600 

Pyruvate dehydrogenase deficiency, 

Type B
 
pyruvate carboxylase deficiency 

Propionic, methylmalonic, isovaleric 

Biotin, thiamine, 

dichloroacetate, citrate 
 

 Respiratory alkalosis ~200 Hepatic glutamine synthetase 

deficiency, primary pulmonary  

hypertension and high nitrogen load 

Lung transplant (Hocker et 

al., 2011, Lichtenstein et al., 

2000) 
 Fatty acid oxidation disorders 200-600 Carnitine palmitoyltransferease-1/ long 

chain 3-hydroxyacyl-CoA 

dehydrogenase deficiency/ very long 

chain hydroxyacyl-CoA dehydrogenase 

deficiency/ glutaric aciduria type II/ 

carnitine deficiency 

Bone marrow transplant 

(Davies et al., 1996) 

 Hyperinsulinism 

hyperammonaemia syndrome 
~250 Hypoglycaemia and hyperinsulinaemia Diazoxide, KATP antagonist, 

epigallocatechin gallate 
Acquired Sepsis, liver dysfunction <200  BCAAs, L-orthinine, L-

aspartate, glycerol 

phenylbutyrate 
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1.1.1. The role of the liver in ammonia metabolism 

The liver maintains nitrogen homeostasis. It does this by converting 

nitrogenous compounds produced via the breakdown of amino acids into less toxic 

soluble forms which can be safely removed by the urea cycle (Fig. 1.2) and excreted 

by the kidneys (Adeva et al., 2012). The liver is subject to a number of congenital or 

acquired disorders, which can affect its ability to effectively metabolise ammonia to 

urea. A urea cycle disorder (UCD) is a genetic mutation in one of the six enzymes 

that control the cycle: N-acetylglutamate synthase (NAGS), carbamoyl phosphate 

synthetase-1 (CPS-1), ornithine transcarbamylase (OTC), argininosuccinate 

synthetase-1, arginiosuccinate lyase, arginase-1 hydrolysis (Table 1.2). Protein 

breakdown results in an increase in glutamate concentration, which signals the up-

regulation of N-acetylglutamate synthase (NAGS) and thus the entire cycle. The 

remaining enzymatic steps are controlled by their substrate concentrations. Impaired 

enzymatic function obstructs the cycle causing hyperammonaemia (Voet and Voet, 

2004). Half of patients with UCD present in the neonatal period with non-specific 

symptoms which develop into hyperammonaemic crisis and which results in severe 

intellectual disability (Leonard and Morris, 2002). Effective neonatal monitoring for 

elevated ammonia could reduce associated morbidity and mortality. Acquired UCD 

can present at any time. It is usually brought on by pregnancy, infectious illnesses or 

fasting with subsequent catabolism or the use of sodium valproate which unmasks 

latent CPS-1 or OTC deficiency (Gropman et al., 2007). Sodium valproate is known 

to cause hyperammonaemia (Aires et al., 2011). Diagnosis of an acquired UCD is 

performed by measuring ammonia levels and enzyme activity in leukocytes or 

cultured fibroblasts. Timely detection, close monitoring, diet and drug management 

are used to maintain blood ammonia at physiological levels (Daniotti et al., 2011). 

Patients with UCD and other chronic hyperammonaemic conditions have no 

effective means of monitoring their condition as blood ammonia self-testing is not 

effective. The use of a reliable POC test could allow effective self-monitoring. 
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Figure 1.2. The urea cycle. N-acetylglutamate (NAG) is synthesised from 

glutamate and acetyl-CoA by N-acetylglutamate synthase (NAGS). This 

activates carbamoyl phosphate synthetase-1 (CPS-1) to initiate the urea cycle. 

Ammonia is first absorbed into the liver and combined with bicarbonate to 

form carbamoyl phosphate in the mitochondrial matrix. This enters the urea 

cycle and combines with ornithine (from the cytoplasm) to form citrulline. In 

the cytosol, amino acids are fed into the cycle by aspartate which combines with 

citrulline to form argininosuccinate. Arginiosuccinate is then split into fumarate 

(which is fed into the citric acid cycle) and arginine. Arginine then reacts with 

arginase and water to produce urea and regenerated ornithine. This travels 

from the mitochondrial matrix via the ornithine transporter, so completing the 

cycle.  
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Table 1.2. A list of the enzymes associated with the urea cycle, along with 

the causes of their disorders and symptoms. 

Enzyme Role and deficiency Symptoms 

N-acetylglutamate 

synthase (NAGS) 
Catalyses synthesis of 

NAG from acetyl-CoA-1 

and glutamate which 

activates CPS-1 

Congenital: Respiratory 

alkylosis, hyperammonaemia, 

coma 

Acquired: Acute attacks of 

hyperammonaemia, 

neurological, gastrointestinal 

and psychiatric clinical signs. 

May be developed secondary 

to carnitine deficiency 

Carbamoylphosphate 

synthetase-1 (CPS-1) 
Catalyses the first step of 

the urea cycle; synthesis 

of carbamoyl phosphate 

from HCO3
-
, ATP, and 

NH3 using  NAGS 

Urea cycle cannot proceed 

without 

carbamoylphosphate 

Congenital: 

Hyperammonaemia, coma, 

delayed development, 

intellectual disability 

GJJGFJLJGFJ 

Acquired: Secondary to 

hyperinsulinism/hyperammona

emia syndrome 

 

Ornithine 

transcarbamylase 

(OTC) 

Catalyses the synthesis of 

citrulline from carbamoyl 

phosphate and ornithine 

that enters the 

mitochondria from the 

cytosol 

Congenital: 

Hyperammonaemia, 

respiratory alkalosis and 

cerebral oedema 

Acquired: Triggered by 

catabolism 

Argininosuccinate 

synthetase-1 

 

Combines citrulline and 

aspartate in the cytosol 

generating 

arginosuccinate 

Type 1 citrullinemia, cancer 

Agininosuccinate 

lyase 
Catalyses the breakdown 

of arginosuccinate to 

arginine, arginase and 

fumerate
 

Argininosuccinic aciduria, HE, 

respiratory alkalosis with 

neurological manifestations, 

reduced arginine synthesis 

Arginase-1 

 

Catalyses the hydrolysis 

of arginine to ornithine 

and urea 

May go undiagnosed until later 

in life and recognised as 

cerebral palsy, spastic 

tetraplegia in children 
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Cirrhosis is scarring of the liver tissue as a result of long-term damage. This 

scarring cuts down on blood flowing through the liver, causing a loss of function. 

Severity is measured with the Child Pugh or Model for End-Stage Liver Disease 

(MELD) scores which are a measure of the prevalence of portosystemic shunting and 

redistribution of organ blood flow. The portal vein is a blood vessel from the 

gastrointestinal tract and spleen to the liver. In healthy individuals, ammonia levels 

in the portal vein are higher than in the hepatic vein because ammonia is removed by 

the liver. Patients with liver disease may develop portal collateral veins (varices) that 

bypass the liver and divert portal blood with high ammonia levels to systemic 

circulation (Imran et al., 2012, Frontera, 2014, Luo et al., 2014) (Fig. 1.3).  

 

Figure 1.3. Blood from the gastrointestinal tract and spleen is carried by the 

portal vein and diverted to the hepatic vein, bypassing the liver via a 

transjugular intrahepatic portosystemic shunt (TIPS).  

Noiret et al. have developed a mathematical model of portosystemic shunting 

in cirrhosis to monitor hyperammonaemia to be used in conjunction with other 

monitoring techniques such as ammonia levels (Noiret et al., 2014). Ammonia has 

also been shown to drive dendritic immune cells into dysfunction which contributes 

to the immunocompromised state of cirrhosis (Auffermann-Gratzinger et al., 2001) 

and tumour patients (Luo et al., 2014).  

Hepatic myelopathy (HM) is an unusual complication of chronic liver disease 

which manifests as cirrhosis and portosystemic shunts (Utku et al., 2005). It is 

characterised by spastic paraparesis which results in patients being confined to a 
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wheelchair (Ben Amor et al., 2014). Ammonia has been identified as a major 

contributor to the development of HM (Campellone et al., 1996). Although 

ammonia-lowering treatment has not been shown to help, liver transplantation along 

with Lioresal treatment has been shown to improve patient mobility (Campellone et 

al., 1996, Weissenborn et al., 2003, Endre et al., 2011).  

Reye's syndrome is a rare encephalopathy that causes swelling in the liver 

and brain. It is characterised by cerebral oedema which often occurs during recovery 

from viral infection. It has also been linked to the use of aspirin.  Changes occur to 

liver cells and so diagnosis is carried out via liver biopsy. Reye's syndrome also 

features hyperammonaemia of unclear cause and increased blood concentration of 

fatty and lactic acids (Delong and Glick, 1982).  

Acute liver failure (ALF) is a rare but life threatening illness. It may rapidly 

lead to adverse events including systemic inflammatory response, renal failure, 

hyperammonaemia, cerebral oedema, hepatic encephalopathy (HE), increased 

intracranial pressure (ICP), coma and death mainly due to ammonia toxicity (Cauli et 

al., 2014). While HE (Endre et al., 2011) and blood ammonia (Zhao et al., 2014) are 

used as markers for ALF, its diagnosis is quite complicated. It is important to note 

that encephalopathy can be delayed in some cases of ALF. Cirrhotic patients that 

present with neurological symptoms may be misdiagnosed with Parkinson’s disease 

(Noone et al., 2008). Patients that present with high blood ammonia levels without 

liver disease may have an underlying liver issue such as cirrhosis or ALF which is 

often also associated with coagulopathy and hyperbilirubinaemia (Elgouhari and 

O'Shea, 2009). Liver disorders may also be asymptomatic until severe late stages of 

the disease and can develop into cancer. It is therefore imperative to monitor those 

with a history of hepatitis virus.  

Blood ammonia has the potential to diagnose, support and treat patients with 

underlying problems related to the liver such as those discussed above. When 

symptoms are life-threatening a liver transplant may be considered. Ammonia should 

be monitored throughout a transplant to avoid elevations during the procedure. 

Future hopes for a definitive cure for ALF lie in gene replacement therapy, which 

could again be supported by blood ammonia monitoring.  
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Most pharmaceutical drugs are metabolised by the liver and so impact on 

liver function. Many drugs are hepatotoxic, while others are used to treat liver 

dysfunction and associated hyperammonaemia. Blood ammonia could also be used 

as a tool for studying the metabolism of other drugs for potential hepatotoxic effects 

so as to allow dosage to be optimised for individual patients; using a personalised or 

precision medicine approach (Finberg and Guharoy, 2012, Poh and Chang, 2012). 

1.1.2. The role of the kidneys in nitrogen metabolism 

Along with the liver, the kidneys also play an important role in nitrogen 

homeostasis (Weiner et al., 2014). Urea is passed into the blood stream by the liver 

and is absorbed by the kidneys via the glomerulus. The kidneys filter the blood urea. 

Excess ammonia is divided between the ureter for excretion as urine and the renal 

vein to be used in cellular metabolism. The kidneys play an important role in 

correcting acidosis by enhanced production or excretion of ammonia. A large acid 

load initiates ammonia excretion while a basic load initiates ammonia production 

(Garibotto et al., 2004).  

Numerous pathological conditions result in chronic kidney disease. It may 

result in end stage renal disease (ESRD), uraemia, acidosis/alkalosis or oedema. 

Creatinine, blood urea nitrogen (BUN) and glomerular filtration rate are important 

indicators of kidney function. Currently, those with ESRD are managed using 

dialysis. Principally, haemodialysis is used, which is typically performed in a 

hospital or clinic. However, home dialysis and continuous ambulatory peritoneal 

dialysis are becoming increasingly used (Castledine et al., 2013). Ammonia has been 

used as a marker to indicate haemodialysis efficacy (Narasimhan et al., 2001, 

Gouma et al., 2010, Neri et al., 2012, Hibbard et al., 2013) and uraemia breath 

during haemodialysis (Romero-Gomez et al., 2001, Mochalski et al., 2014). 

Treatment for kidney damage may include blocking N-methyl-D-aspartate (NMDA) 

receptors which delay kidney damage by allowing the improvement of glomerulus 

filtration and ammonia elimination in order to delay hyperammonaemia. This 

treatment reduces changes in cerebral blood flow and brain lactate, allowing time for 

kidney transplant or regeneration (Cauli et al., 2014).  

A urinary tract infection (UTI) develops when part of the urinary tract 

becomes infected, usually by urease-producing bacteria. Urease breaks down urea, 
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releasing ammonia into the systemic circulation. This may overwhelm the urea 

cycle, resulting in hyperammonaemia and coma (Samtoy and Debeukelaer, 1980, De 

Jonghe et al., 2002, Sato et al., 2008). Blood ammonia has the potential to serve as a 

diagnostic tool for UTIs and monitor treatment. 

1.1.3. The effects of ammonia on the central nervous system 

As previously discussed, several dysfunctions of ammonia metabolism may 

lead to hyperammonaemia and consequent HE and that most of the impact of 

hyperammonaemic disease is on the CNS, predominantly the brain (Ong et al., 

2003). Ammonia can cross the blood-brain barrier to reach levels over 400 µM in the 

CNS, leading to neurological deterioration (Munoz et al., 2000, Felipo and 

Butterworth, 2002). Congenital defects such as UCDs and organic acidaemias are 

rare and are frequently undiagnosed at birth until significant and irreparable 

neurological impairment has occurred (Leonard and Morris, 2002, Prasad et al., 

1997). It is not yet fully understood why the brain is more susceptible to permanent 

damage from elevated ammonia than other organs (Rose, 2014). Ammonia is also a 

product of synthesis of glutamate from glutamine at nerve endings located in the 

CNS (Daniotti et al., 2011) (Fig. 1.4). 

 

Figure 1.4. Ammonia can pass through the blood-brain barrier and into brain 

astrocytes. Here, ammonia may be metabolized to glutamine via glutamine 

synthetase (GS). 
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HE is a metabolic disorder which presents as a spectrum of neurological 

symptoms, principally as a consequence of hepatic dysfunction (Ferenci et al., 2002, 

Cordoba and Minguez, 2008, Amodio et al., 2013). The pathogenesis is not fully 

understood. Ammonia accumulation brought about by hepatic dysfunction and 

portosystemic shunting has been described as a primary cause. HE may be triggered 

by the intake of too much protein, dehydration, abnormal electrolyte homeostasis, 

gastrointestinal bleeding, infections and low blood oxygen. Elevated serum ammonia 

levels are detected in up to 80% of HE patients (Frontera, 2014). HE occurs in 30-

45% of cirrhotic patients (Romero-Gomez et al., 2001) and 10 to 50% of those with 

TIPS (Boyer and Haskal, 2010). The diagnosis is typically confirmed by blood 

ammonia determinations and electrophysical methods such as EEG (Eklou-Lawson 

et al., 2009). Psychometric tests can then be used to grade HE such as the Trail 

Making Test (TMT), West Haven Criteria (WHC), and the Glasgow Coma Scale 

(GCS). Newer techniques such as positron emission tomography and magnetic 

resonance imaging are then used to confirm diagnosis. Management of HE is broken 

into five steps; stabilisation, addressing modifiable factors, lowering blood ammonia, 

managing ICP and managing complications (Frontera, 2014). Drug treatment options 

include lactose and neomycin, along with a combination of Rifraxamin and lactulose 

(Sharma et al., 2013). A liver transplant is considered to be a successful long-term 

therapy for HE. However, recipients who have HE at the time of a transplant are at 

high risk of neurological complications due to their susceptibility to stress of surgery 

and the neurotoxicity of drugs used in treatment (Dhar et al., 2008).  

1.1.4. The digestive system 

The digestive system breaks down food into their basic forms such as sugars, 

amino acids and fatty acids. These are absorbed into the blood stream and provide 

energy where required. Food passes through the gastrointestinal tract which is made 

up of the oral cavity, pharynx, oesophagus, stomach, small and large intestines. The 

digestive system has long been acknowledged as a major source of ammonia. 

Ammonia is produced by protein breakdown and amino acid metabolism in the 

gastrointestinal tract. Bacteria in the gastrointestinal tract may also produce ammonia 

(Aprea et al., 2012). 
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The oral cavity contains a large and diverse microbial flora. As microbes 

accumulate, they form biofilms. Bacteria reside in these biofilms producing 

numerous volatile organic compounds (VOCs). When bacterial levels are excessive 

due to poor oral hygiene, halitosis can result. This oral malodour is mostly due to by-

products of microbial metabolism, principally sulphur and nitrogen compounds 

(Amano et al., 2002). Several studies have shown that oral bacteria contribute to 

ammonia levels measured in breath (Wang et al., 2008, Smith et al., 2008, Hibbard 

and Killard, 2011). In order to measure the correlation between blood ammonia and 

breath ammonia relating to physiological processes and not to bacteria in the mouth, 

antibacterial mouth rinses have been used (Solga et al., 2013). The contribution 

made by oral bacteria in the measurement of ammonia levels in breath sampling 

remains an issue of some debate in breath research (Schmidt et al., 2013). The 

clinically accepted way to determine ammonia relating to a biological process is 

blood analysis.  

Helicobacter pylori (H. pylori) are a Gram negative spirillum bacillus, often 

found infecting the stomach and duodenum. Infection may be contracted from food 

or water. The bacteria can survive in the acidic environment of the stomach by 

secreting urease enzymes which generate ammonia to neutralise acids (Mobley et al., 

1991). This weakens the lining tissue of the stomach causing ulcers. The ammonia 

produced may be released into systemic circulation causing hyperammonaemia. H. 

pylori infection is the main cause of peptic ulcer, chronic atrophic gastritis, gastric 

MALT lymphoma and gastric cancer. Elimination of H. pylori is performed in order 

to treat peptic ulcers, and is achieved using a combination of antibiotics (amoxicillin, 

clarithromycin, metronidazole) and a proton pump inhibitor (PPI) (lansoprazole and 

omeprazole), allowing the ulcer to heal naturally. 

In the intestines, the majority of ammonia production is due to digestive 

amino acid breakdown, predominantly glutamine (Turner et al., 2006). Significant 

levels of ammonia are also produced by bacterial breakdown of amino acids and urea 

(Damink et al., 2009). Amino acids, nucleotide bases, and other nitrogenous 

compounds then diffuse into the blood and are transported to the liver (Berg et al., 

2002). The highest ammonia concentration in the body is found in the colon. As 

ammonia is absorbed through the colonic epithelium, levels of L-glutamine and L-

arginine in the portal blood are increased (Eklou-Lawson et al., 2009). Thus, there 
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may be a metabolic link between colon mucosa and liver biosynthesis. Small 

intestinal bacterial overgrowth in patients with liver cirrhosis is more frequent in 

alcoholic liver cirrhosis cases.  

Diet also affects ammonia metabolism and can be used as a tool to manage 

many disorders associated with hyperammonaemia (Lee et al., 2015). It has been 

found that ammonia emissions from the skin and blood concentrations increased 

after protein intake and reached maximum levels after two hours (Tsuda et al., 

2011). Protein intolerances and related deficiencies (as mentioned in Table 1.1) can 

prevent normal ammonia metabolism, causing severe and often irreversible damage 

(Shaw et al., 1989, Sebastio et al., 2011). Blood ammonia along with other 

metabolites has the potential to analyse gastrointestinal physiology (Spacek et al., 

2015). 

Glutamate dehydrogenase (GLDH) has been used as a marker of liver 

function as well as for a marker for recent alcohol consumption in alcoholics 

(Kravos and Malesic, 2010). This reaction proceeds towards the direction of 

oxidative deamination of glutamate, which releases ammonia, normally with an 

activity of 6.4 U/L for women and 11.0 U/L for men. However, these values are 

higher in alcoholics (Jung et al., 1985). GLDH and ammonia levels decrease rapidly 

after cessation of alcohol (Smith et al., 2002). There is the potential to replace the 

current GLDH assay with a blood ammonia test which could be used to monitor and 

screen for liver dysfunction and alcohol activity (Adeva et al., 2012). H. pylori 

infection is also common in alcoholics (Lieber, 1998). Mutations of glutamate 

dehydrogenase 1 (GDH1) can occur. This may cause 

hyperinsulinism/hyperammonaemia which is characterised by hypoglycaemic 

hyperinsulinemia along with elevated blood ammonia, which requires monitoring 

and management.  

1.1.5. The relationship between the lungs and ammonia 

Hyperventilation is an early sign of the metabolic crisis associated 

hyperammonaemia, followed by encephalopathy. Hyperventilation can occur as a 

response to acidosis in order to improve carbon dioxide removal (Tizianello et al., 

1977). Liver disease, together with an abnormal pH balance is likely to cause 

respiratory alkalosis. Altered consciousness along with respiratory alkalosis/acidosis 
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should prompt the determination of blood ammonia (Msall et al., 1984, Krivitzky et 

al., 2009). Blood ammonia with transaminases should also be considered for 

perinatal asphyxia markers (Esque-Ruiz et al., 2003). 

Breath ammonia has been linked to cystic fibrosis (CF) and blood ammonia 

monitoring may contribute to its management (Newport et al., 2009). Although, 

ammonia is not likely to compete with the current means of diagnosis which is based 

on salt in sweat.   

1.1.6. Muscle metabolism and exercise and their association with ammonia 

Since the early 1920s it has been known that ammonia is released during 

skeletal muscle movement. However, the importance of skeletal muscle in ammonia 

homeostasis was not recognised until the 1970s (Dawson, 1978). Abnormal nitrogen 

metabolism is caused by increased production of ammonia (seizure with increased 

movement of muscle) or impaired clearance of ammonia (kidney and liver 

dysfunction, portosystemic shunting) causing hyperammonaemia. The skeletal 

muscle becomes the most important organ in ammonia homeostasis during liver 

and/or kidney dysfunction (Lockwood et al., 1979). Skeletal muscle has a large mass 

capacity to remove ammonia produced during the purine nucleotide cycle by 

forming glutamine through the enzyme glutamine synthetase (Sabina et al., 1984). 

At rest, there is no uptake or release of ammonia by skeletal muscle. The intensity of 

exercise governs how ammonia is released into the venous blood of the exercising 

limb, either by the purine nucleotide cycle during brief exercise or by increased 

metabolism of branched chain amino acid (BCAA) breakdown during prolonged 

exercise (Lowenstein, 1990, Maclean et al., 1992, Derave et al., 1997). 

Physical exercise has been used to study ammonia metabolism (Wilkinson et 

al., 2010, Solga et al., 2014). Ammonia produced during exercise has been shown to 

induce immune and inflammatory responses (Gleeson, 2007). To counter these 

responses, arginine supplements have been shown to decrease hyperammonaemia 

and lymphocyte response during intense exercise. The use of amino acids has also 

been used to modify metabolism during exercise (Goncalves et al., 2012). In order to 

evaluate, monitor and prescribe exercise intensity for conditioning programmes, 

ammonia and lactate levels may be used (Gorostiaga et al., 2010). However, gender 
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and age need to be considered when compiling a conditioning programme (Lourenco 

and Turner, 2014).  

1.2. TECHNIQUES FOR AMMONIA DETERMINATION 

Blood plasma is the clinical standard sample for determination of systemic 

ammonia levels. It can also be measured in whole blood, erythrocytes, breath, saliva, 

sweat and urine (Green, 1988). While arterial blood ammonia is accepted as being 

most representative of systemic ammonia levels, sampling arterial blood is 

challenging (Metz, 2014). Venous ammonia levels varies somewhat from arterial 

ammonia, but is routinely used (Adeva et al., 2012). Ammonia levels may 

spontaneously increase in a blood sample (Maranda et al., 2007). Difficult 

venepuncture, haemolysis of red blood cells (RBCs) and changes in metabolism can 

cause a sudden rise in the ammonia levels of the blood sample (Conway, 1935). 

Factors such as anxiety, exercise, smoking, and food and alcohol intake may also 

affect systemic ammonia levels. A major limitation of blood ammonia measurement 

is the complexity involved in the correct drawing and handling of the sample. When 

collected for transportation to the hospital laboratory, the sample should be kept 

below 0°C and separated from RBCs within 15 min of collection. Once separated, 

the plasma ammonia is stable for four hr at 4°C. Analysis should be repeated at the 

same time of day and under the same conditions to confirm the result due to the high 

risk of false positives. This urgency in time requires the patient to be close to a 

clinical laboratory (Huizenga et al., 1994).  

Numerous techniques have been developed to quantify ammonia in blood, 

most of which are covered in a comprehensive review of blood ammonia 

measurement by Barsotti (2001). A number of wet chemistry methods have been 

available for the purpose of determining blood ammonia and urea. They include 

distillation, micro-diffusion and ion-exchange chromatography which require the 

release or capture of ammonia from the blood sample before they can be used to 

quantify ammonia levels. More modern methods such as the enzymatic method and 

spectrophotometric titration quantify ammonia levels present in the blood sample 

which is why they are most commonly used. 
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Distillation is one of the earliest techniques for measurement of ammonia. It 

involves the addition of an alkaline buffer to the blood sample, followed by vacuum 

distillation. The vacuum lowers the pressure which lowers the boiling point of the 

sample. The released ammonia gas is collected in a trap containing dilute acid which 

converts the gas into ammonium ions. Although a vacuum is used the method is it is 

still slow compared to others. It requires a subsequent quantification step and is also 

dependent on the pH environment. For these reasons the technique is rarely used 

today.  

Another old technique is the micro-diffusion method which liberates 

ammonia from a blood sample by alkalisation (Conway and Cooke, 1939). It is 

performed using two Pyrex ‘Petri dishes’, one inside the other. The sample is placed 

in the outer chamber and a known amount of strong base is added and gaseous 

ammonia is released from the alkaline solution and travels through an air gap into the 

other chamber and absorbed by an ammonium indictor. The change in colour is 

measured by reflectance spectroscopy (Obrink, 1955). The micro-diffusion method 

is not very accurate or precise. It is also time consuming and is seldom used.   

Ion exchange methods have also long been used for the determination of 

ammonia in blood (Dienst, 1961, Fenton, 1962, Fenton and Williams, 1968). Strong 

acidic cation exchange resin captures ammonium ions. They are then eluted with 

sodium chloride or a dilute alkali. Quantification of ammonia is performed by 

spectrophotometric analysis. Long determinations and a second quantification step 

prevent this method from being widely used.  

After release or capture of ammonia by distillation, micro-diffusion or ion 

exchange chromatography, the Berthelot reaction, which is a spectrophotometric 

reaction step used to quantify ammonia. The formation of a blue colour on mixing 

ammonium ions, hypochlorite and phenol was described by Berthelot as early as 

1859. Berthelot developed the reaction which was given his name (Fig. 1.5) to detect 

aniline. This is now used as a reference method for the determination of ammonia. 

The reaction is selective and suitable at low concentrations (Hioki et al., 1991). From 

the Beer-Lambert Law ammonia concentration is related to the light absorption at the 

absorption maximum of indophenol blue (670 nm). The reaction consists of two 

steps. The first is a fast second order reaction in which hypochlorite transforms all 
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ammonia into chloramine. The rate and products of this reaction are highly 

dependent on the pH of the environment. The second step is the rate limiting step 

which involves the addition of phenol to chloramines forming indophenol (Searle, 

1984). At room temperature the reaction takes 15 min, although heating will 

accelerate this.  

 

Figure 1.5. The Berthelot reaction which can be used to quantify ammonia 

levels via colorimetric analysis.  

In the UK, the enzymatic method is the most commonly used technique to 

quantify blood ammonia and is capable of direct measurmenet, measuring levels 

over a broad range (12 µM to 1 mM) (Hawke, 2012). It catalysis the reaction of 

ammonium with α-ketoglutarate and nicotinamide adenine dinucleotide phosphate 

(NADPH) with glutamate dehydrogenase to form glutamate, NADP
+ 

and water. An 

absorbance change can then be used to measure the oxidation of NADPH, which is 
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proportional to ammonia concentration. In the reaction UV absorbance of NADPH 

co-factor is measured as it is converted to NADP
+
. 

                    
        

                       

 
                            Eq. 1.2 

Although the enzymatic method is the most commonly used method of 

clinical quantification of ammonia it is not suitable to in situ measurements. 

1.2.1. Test kits and POC devices 

Major improvements have been made to these older techniques focusing on 

the production of commercial test kits and POC devices, see Table 1.3. Wet 

chemistry kits dominate the commerical field however solid absorptive supports (test 

strip devices) have gained attentention because of their POC advantage such as 

simple use and easy disposal (Tanzer, 1997). The absorbent layer is often 

impregnated with alkaline reagents to convert ammonium ions to gaseous ammonia 

(Hrboticka, 2005). Most of these kits and devices are made for use in a clinical 

setting by trained personnel, requiring sample treatment, additional chemicals and 

instrumentation. In addition, the nature of the methods available contributes to 

additional pre-analytical errors due to issues such as sample transportation and 

handling. They may detect over the clinical range but require expensive equipment 

and not all can be used in whole blood.  
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Table 1.3. Analytical performance characteristics of a range of commercial kits and devices for ammonia  

Product Name Technique LOD 

(µM) 

Range 

(µM) 

Analysis 

Time (min) 

Sample 

Volume 

(µL) 

Operational 

Temperature 

(°C) 

Method Limitations Refs 

PocketChem™ BA 

and ammonia test 

kit II 

Berthelot Not 

specified 

2-285 ~6 20 10-35 Memory capacity is 50 

measurements. 

(Arkray, 

2016) 

Vitros® Chemistry 

Products AMON 

Slides 

Berthelot Not 

specified 

8.7-500 5 10 37 Anticoagulant, 

centrifugation, calibrators 

and QC materials required. 

(Ortho-

Clinical 

Diagnostics 

Inc., 2015) 

Abcam® Ammonia 

Assay Kit - 

Modified Berthelot 

Berthelot >10 Not 

specified 

30 100 37 Centrifugation, 

colorimetric microplate 

reader, orbital shaker, 

required. Phenol is used. 

(Abcam 

Plc., 2016) 

Sekisui Ammonia 

L3K® 

Enzymatic 4.1 8.8-1174 Not 

specified 

Not 

specified 

Not 

Specified 

Anticoagulant, 

colorimetric microplate 

reader, calibrators and QC 

materials required. 

(Sekisui 

Diagnostics 

(UK) Ltd., 

2013) 

Sigma Aldrich® 

Ammonia Assay 

Kit 

Enzymatic 12 12-881 20 10-200 18-35 Anticoagulants, 

colorimetric plate reader 

and cuvettes required 

(Sigma-

Aldrich Co. 

LLC., 

2015) 
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1.2.2. Conducting polymers such as polyaniline used as ammonia sensing 

materials 

Conducting polymers have been an area of intense interest over the past 30 

years, culminating in the 2000 Nobel Prize in Chemistry to MacDiarmid, Heeger and 

Shirakawa (Nobelprize.org, 2013). In recent decades, conducting polymers have 

received attention as the active layer in sensors due to their conductive, electrical and 

optical properties. Their multi-functionality has led to developments in sensing 

devices as well as actuators, batteries, corrosion science, light-emitting diode 

(LEDs), membranes and photovoltaics. Their utility has been further improved with 

new nanostructured fabrication and deposition techniques (Weng et al., 2010). 

Selectivity and lack of interference from atmospheric gases such as H2, CH4, CO and 

CO2 make these polymers very attractive gas sensing materials. 

Polyaromatic polymers such as polyaniline, polypyrrole, polythiophene and 

polyphenylene are redox-active. Alteration of the electron density on the polymer 

backbone (by means of (a) doping/de-doping, (b) interactions of ions, functional 

groups, lone pairs, or (c) charge transfer between polar molecules) can change their 

conductivity (for example, Fig. 1.6 polyaniline). Conductivity of the polymer 

depends on two factors; the ability of the polymer backbone to transport charge 

carriers and the carriers hoping between different polymer chains (Fratoddi et al., 

2015). Conducting polymers show almost no conductivity in their neutral 

(uncharged) state. They may be doped (oxidised) into a more conductive form, 

creating a positive charge on the conjugated backbone, to behave as a p-type 

conductor. Polyaniline has three forms; emeraldine (E), pernigraniline (P) 

leucoemeraldine (L) which may exist as a base (B) or a salt (S). EB is the half 

oxidised from, it can either be fully oxidised to PB which is an insulator or instead 

be reduced to LB which is also an insulator. ES is the only conductive form and is 

formed by the protonation of EB by exposure to protonic acids, upon oxidation of 

LB or reduction of PB. ES has positively charged local centres located at nitrogen 

atoms through which valance electrons can hop, giving rise to conduction. It has a 

broad conductivity range, for example 14 S cm
-1

 (Stejskal et al., 1999), 28.4 S cm
-1

 

(Jang et al., 2007) and 32 mS cm
-1

 (Ngamna et al., 2007). 
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Polypyrrole has been used widely in the literature as an active material for ammonia. 

Polypyrrole films have been synthesised and combined with gold electrodes for the 

resistance measurement of gaseous ammonia (4 to 80 ppm) at room temperature 

(Joshi et al., 2011). Polypyrrole nanowires have also been used to determine the 

resistance response upon exposure to ammonia (40 to 300 ppm) in argon carried gas 

(Hernandez et al., 2007). Research involving dip coated polypyrrole colloidal 

suspensions onto non-conducting substrates, such as acrylic, (Ratcliffe, 1990) has 

resulted in the determination of volatile amines, including ammonia, across the range 

of 1 to 1000 ppm (Costello et al., 1996). 

The main advantage of using polyaniline over other aromatic conducting 

polymers, such as polypyrrole, is its processability. Polyaniline is easily synthesised 

into an aqueous nanoparticle ink and inkjet print deposited. There are very few 

examples in the literature of inkjet-printed polypyrrole. This is most likely because 

polypyrrole is difficult to disperse and process into stable printable formulations 

(Weng et al., 2011). Although, Weng et al. (2011) have developed printable 

polypyrrole nanodispersions formed in the presence of novel gemini surfactants. 

These dispersions were formed by controlling particle size, size distribution, 

viscosity and surface tension to ensure that the requirements for inkjet printing 

systems were met and resulted in relatively high conductive and stable ink 

formulation. 
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Figure 1.6. The protonation and reactions between the various forms of polyaniline and their associated colours. Reproduced with 

permission from CRC Press (Wallace et al., 2003) and adapted. 
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1.2.3. The reaction mechanism of ammonia and polyaniline 

The principle feature of polyaniline as ammonia sensor material lies in the 

affinity of the ES form for ammonia due to a distinct similarity of the coordinative 

roles of nitrogen atoms in both compounds. Nitrogen atoms of the polymer chains 

serve as adsorption centres for ammonia molecules, which are deprotonated. When 

the ES form of polyaniline (PANIH
+
) interacts with ammonia the following reaction 

occurs (Fig. 1.7):  

PANIH
+
 + NH3   PANI + NH4

+   
Eq. 1.3 

Ammonia de-protonates ES polyaniline to form energetically favourable 

ammonium ions (Kukla et al., 1996). It is this deprotonation that causes changes in 

the observable conductive behaviour.  

 

Figure 1.7. Schematic of the ES polyaniline interaction with ammonia. 

Polyaniline is deprotonated by ammonia generating the EB polyaniline form. 

Much research has been performed on the ES form of polyaniline when 

exposed to ammonia, as observed by electrochemistry or spectroscopy (Kukla et al., 

1996, Wu et al., 2000, Dhawan et al., 1997). There are many polyaniline-based 

aqueous ammonia sensors in the literature, with a wide variety of fabrication 

techniques and sensing applications. For example, an optical detector in combination 

with polyaniline coated silica micro-capillaries has been used for the detection of 

aqueous ammonia (Florea et al., 2013). Optical sensing has also been used to 
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quantify aqueous ammonia utilising chemically synthesised polyaniline and 

deposited onto glass substrates (Castrellon-Uribe et al., 2009). Amperometric 

analysis of aqueous ammonia has been reported within a flow injection system 

including electropolymerised polyaniline modified platinum electrode (Trojanowicz 

et al., 1997). Our group have reported a number of biosensors and chemical sensors 

produced using inkjet printable polyaniline nanodispersion for the determination of 

aqueous ammonia in a variety of matrices. The application of the inkjet polyaniline 

nanoparticles has been illustrated in a sensor for aqueous ammonia in refrigerant 

waste water via an amperometric flow injection system (Crowley et al., 2008). The 

system was found to have good performance and stability. An ammonia 

measurement probe for continuous monitoring of secondary refrigerants has also 

been developed. Impedimetric analysis was used to generate a strong calibration in 

the industrially relevant range of 0 to 100 parts-per-million (ppm) (0 to 560 mM) 

(Subramanian et al., 2013). All of these technologies are useful in an industrial 

setting. However, they are not all suitable to miniaturised on-site environmental 

testing or POC bedside monitoring of pathological diseases relating to ammonia. 

Miniaturisation and reconfiguration of these technologies is required for them to be 

adapted for environmental and clinical applications. 

1.3. CONCLUSIONS 

Ammonia is involved in many processes in the body. As a 

consequence, it may potentially be used to diagnose and monitor a number of 

conditions, either alone, or in combination with other tests and biomarker 

profiles. Blood ammonia may be used as a minimally invasive means of 

diagnosis. New technology is required which has excellent analytical 

performance and accurate measurement across the diagnostically relevant 

range. Few, if any, of the available POC kits and assays are suitable to patient 

testing. Most are limited to use by trained personnel as they require high 

volumes and/or sample handling and preparation. Ultimately they are too 

complex, bulky and expensive to be developed as viable POC technologies.  

Application of a suitable sensor technology, followed by clinical 

evidencing has the potential to lead to a broad range of screening, monitoring 

and diagnostic solutions for the conditions discussed. Sensor technology has 
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gained a reputation as the answer to many analytical problems, especially in the 

clinical arena where many laboratory techniques fail to reach the diagnostically 

relevant ranges. Sensors provide a low cost, simple and rapid way to directly analyse 

low concentrations of analyte in complex matrices often with little or no sample 

preparation or handling (Komuro et al., 2013). For these reasons they have potential 

for use in blood gas analysis.  
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1.4. THESIS OUTLINE 

The purpose of this research was to develop a POC device for the 

quantification of aqueous ammonia in blood. This was achieved using a combination 

of printing processes to produce silver interdigitated electrodes modified with 

polyaniline nanoparticles, which were individually used in conjunction with a gas 

permeable membrane and encapsulated to form the device. This device may be 

capable of diagnosis, treatment and monitoring of pathological conditions associated 

with blood ammonia. 

Chapter 1 presents a literature survey on the topic of blood ammonia. The 

importance of blood ammonia testing is outlined and an overview of ammonia 

metabolism in the body is described. External factors that can influence ammonia 

metabolism are also highlighted. Current techniques to determine blood ammonia are 

discussed along with new technologies capable of being utilised as POC blood 

ammonia tests. 

In Chapter 2, the materials, instrumentation and methods used throughout this 

thesis are outlined.  

Chapter 3 describes the initial development of polyaniline-modified silver 

screen-printed interdigitated electrodes for the application of ammonia sensing. The 

materials used to produce these sensors were characterised and optimised using a 

range of optical and electrical techniques. The sensors were then electrochemically 

assessed with the use of electrochemical impedance spectroscopy.   

Chapter 4 details the design and testing of the aqueous ammonia device with 

the use of a gas-permeable membrane to allow contact with ammonia in solution. 

The device required a sample pH change to detect ammonia and an air purge to 

remove matrix interferences. 

The clinical viability of the device is discussed in Chapter 5 with efforts focused 

on matrix effects and interferences. The device was then validated against a 

commercially available kit.  
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Recommendations for future work and developments emerging from this 

thesis are discussed in Chapter 6.  Overall conclusions of the thesis are presented in 

Chapter 7.   
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2.1. MATERIALS 

Acetaminophen (AC100) and L-ascorbic acid (BDH9242) were purchased 

from the British Drug House Ltd. (Poole, UK). 

Calcium chloride (BP510), ethanol (BP2818500), hydrochloric acid 

(11355890), magnesium chloride (M35), methanol (A41120), potassium chloride 

(P/4280/53), potassium dihydrogen orthophosphate (P/4800/53), 2-propanol (A461), 

sodium chloride (S/3160/60), sodium dodecyl sulphate (S/5200/53), sodium 

hydroxide (S/4920/60), disodium hydrogen orthophosphate (S/4520/53), toluene 

(T324) and Vivaspin 20 centrifuge tubes (10015804) with a molecular weight cut off 

(MWCO) of 3 kDa were purchased from Fisher Scientific UK Ltd. (Loughborough, 

UK).  

Ammonium chloride (326372), ammonium persulphate (A7460), aniline 

(132934; distilled and stored frozen under nitrogen before use), bovine serum 

albumin (BSA) lyophilized powder (A2153), Brij® S10 (388890), cellulose acetate 

dialysis tubing 22 mm width with a molecular weight cut off of 14 kDa (D9777), 

Coomassie blue G dye (B0770), creatinine anhydrous (C4255), ethyl cellulose 

(433837), foetal bovine serum (F7524), L-glutamic acid monosodium salt 

monohydrate (49621), Oil red O stain (O0625), paraformaldehyde (P6148), 

phosphoric acid (P6560), uric acid (U2625) and Whatman® 0.2 µm 

polytetrafluoroethylene (PTFE) membrane filters (WHA10411411) were purchased 

from Sigma-Aldrich Company Ltd. (Dorset, UK).  

Other materials were obtained as follows: Ammonia Assay Kit – Modified 

Berthelot (ab102509) was purchased from Abcam® Plc. (Cambridge, UK). Carbon 

SPE (DRP-110) with 3 mm carbon working electrode, carbon counter electrode and 

silver reference electrode were provided by DropSens (Asturias, Spain). Compressed 

air was provided by BOC (British Oxygen Company Ltd., Manchester, UK). 

Dodecylbenzene sulphonic acid (DBSA) soft type (D0989) was purchased from TCI 

Europe N.V. (Zwijndrecht, Belgium). Pooled delipidated processed serum (S139) 

was purchased from Scipac Ltd. (Kent, UK). Glassy carbon electrodes (GCE) with 3 

mm diameter (010763) were sourced from IJ Cambria Scientific Ltd. (Llanelli, 

Wales, UK). Rubber o-rings (BS013 Viton) were purchased from Polymax Ltd. 
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(Hampshire, UK). Polyester pressure sensitive adhesive (PSA, ARcare 92712) of 48 

µm thickness were supplied by Adhesives Research Inc. (Limerick, Ireland). 

Preshrunk polyethylene terephthalate (PET) substrates of 175 µm thickness were 

supplied by HiFi Industrial Film Ltd. (Hertfordshire, UK). Sericol (ZT639) was 

purchased from Fujifilm Dimatix Inc. (Santa Clara, CA). Electrodag PF-410 silver 

conductive ink was purchased from NorCote International, Ltd. (Hampshire, UK).  

2.2. INSTRUMENTATION 

During ammonia sensor production and assessment the following 

instrumentation was used. Screen printing was performed with a semi-automated 

DEK-248 printing machine (DEK International, Dorset, UK). Inkjet printing was 

carried out using a Dimatix Materials Printer DMP-2831 with Dimatix Drop 

Manager DMP-2800 series software (Fujifilm Dimatix Inc., Santa Clara, CA). The 

MEMS-based Dimatix cartridge with 16 nozzles (20 µm diameter) spaced at 254 µm 

was used. Centrifugation of polyaniline nanoparticles was carried out using a 

Beckman Coulter Allergra X-22R Centrifuge with a Beckman C0650 conical rotor 

head. A Graphtec CE5000-40 Craft Robo Pro cutting plotter (Graphtec GB Ltd., 

Wrexham, UK) and Robo Master-Pro software were used to prepare the PSA 

patterns for encapsulation of the sensor. All electrochemical protocols were 

performed on a Metrohm Autolab PGSTAT 128N potentiostat (Metrohm UK Ltd., 

Cheshire, UK) with Nova 1.6 software equipped with a FRA2 electrochemical 

impedance analyser. A glassy carbon electrode with a silver/silver chloride 

(Ag/AgCl) reference electrode and a platinum mesh auxiliary electrode were used 

during voltammetric experiments. Unless otherwise stated all measurements were 

performed at room temperature 25 ± 3°C. 

To characterise the materials produced and the fabricated sensors the 

following instrumentation was used. Particle sizing and zeta potential analysis was 

performed using a Malvern Zetasizer Nano ZS (Malvern Instruments Ltd., 

Worcestershire, UK). Scanning electron microscopy (SEM) was performed using a 

Phillips X230 scanning electron microscope. Transmission electron microscopy 

(TEM) was performed using a Phillips CM10 transmission electron microscope. The 

UV-vis results were observed using a Perkin Elmer Lambda XLS spectrometer. A 

Fluostar Optima spectrophotometer was used to analyse spectrophotometric results 
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(BMG LabTech Ltd., Buckinghamshire, UK). Serum centrifugation was carried out 

using an ALC PK 120 centrifuge with an ALC T534 rotor. 

2.3. SOFTWARE 

AutoCAD 2008 was used to design screen printed electrodes, inkjet-printed 

patterns and PSA designs for device encapsulation. AutoCAD was also used to 

present the device assembly in Fig. 2.3. ACD/ChemSketch was used to draw 

chemical structures printed throughout the thesis. SigmaPlot version 10.0 was used 

for all data analysis and graphic presentations. 

2.4. METHODS 

2.4.1. Buffer 

0.1 M phosphate buffered saline solution (PBS) was prepared by dissolving 

13.609 g of potassium dihydrogen orthophosphate (0.1 M), 8 g of sodium chloride 

(0.137 M) and 0.2 g of potassium chloride (2.7 mM) in 1 L deionised water. A 1 L 

solution was made up in deionised water containing 14.196 g of disodium hydrogen 

orthophosphate (0.1 M), 8 g of sodium chloride (0.137 M) and 0.2 g of potassium 

chloride (2.7 mM). The second solution was gradually added to the first until pH 7.4 

was reached. 

2.4.2. Electrode fabrication via screen printing 

Silver screen printed interdigitated electrodes (IDEs) were fabricated using a 

DEK-248 screen printer with a polyester screen with a mesh thickness 77 T 

(filaments per cm) and mounted at 45° to the print stroke (Crowley et al., 2008a). 

Electrodag PF-410 silver ink was deposited onto a 175 µm thick PET substrate and 

cured at 120°C for five min. Silver screen printed IDEs were designed in a two 

electrode configuration. The design of the IDE used in this work is illustrated in Fig. 

2.1. At one end of the structure is a set of IDEs which occupy an area of 

approximately 14 × 14 mm, each with a width of 0.2 mm and a pitch of 0.75 mm, 

respectively. Bonding pads are located at the other end of the electrode. 
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Figure 2.1. Image of a silver interdigitated screen printed electrode with 14 × 14 

mm head dimensions containing an interdigitate width of 0.2 mm and pitch of 

0.75 mm. The electrode legs are 35 mm long with bonding pads located at the 

end of the structure.   

2.4.3. Polyaniline nanoparticle synthesis 

Polyaniline nanoparticles were synthesised using the rapid mixing method 

(Ngamna et al., 2007). Synthesis was as follows: dodecylbenzene sulphonic acid 

(DBSA; 3.6 g) was made up to 40 mL with deionised water and ammonium 

persulphate (APS; 0.36 g) was dissolved in 20 mL of the DBSA solution. The 

remaining 20 mLs of the DBSA solution was stirred at 20°C whilst aniline (0.6 mL) 

was added, followed quickly by the DBSA-APS solution. The mixture was left 

stirring for 2.5 hours at 300 rpm. A 0.05 M solution of sodium dodecyl sulphate 

(SDS) was prepared by dissolving 14.4 g of SDS in deionised water. After stirring, 

20 mL of SDS was added to the polyaniline dispersion which was centrifuged for 30 

min at 3,000 × g. The supernatant was finally dialyzed for 48 hours against 500 mL 

of SDS to remove excess material such as unwanted aniline. The final product was a 

dark green aqueous solution that was inkjet-printed onto the screen printed 

electrodes using a Dimatix Drop Manager-2381 Inkjet Printer.  

2.4.4. Inkjet printing of polyaniline nanoparticles 

A Dimatix 2381 printer based on piezoelectric technology was used to print 

the polyaniline nanoparticle layer. Previous work by our group detailed the technique 

of inkjet-printed polyaniline nanoparticles (Crowley et al., 2008b). In brief, 

polyaniline nanoparticles were syringed into a Fujifilm Dimatix ink cartridge using a 

Thermo Syringe combined with an Acrodisc polyvinyl fluoride (PVDF) syringe 

filter (0.2 µm) and needle to inject 2 mL of the polyaniline nanoparticulate solution. 
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The Fujifilm Dimatix inkjet printer cartridges contain 16 nozzles that eject 10 pL of 

ink. The cartridge was placed into the Dimatix inkjet printer at a head angle of 4.5° 

where ten layers were printed onto the silver IDEs. The operating conditions were 

optimised with a voltage of 18 V and pitch density spacing set to 20 µm. The 

substrate conditions were set to a print height of 1 mm and at ambient conditions. 

After printing, the sheets of dry sensors were lightly rinsed with deionised water to 

remove residual SDS. The sensors were then placed in a dry-heat oven at 70°C for 

30 min. A resulting sensor is shown in Fig. 2.2. 

 

Figure 2.2. Image of a silver interdigitated screen printed electrode modified 

with ten inkjet-printed layers of polyaniline nanoparticles. 

2.4.5. Assembly of the aqueous ammonia sensing device 

The printed ammonia sensors were further assembled into a device suitable 

for measuring ammonia in solution. A Graphtec Robo Pro S (Model no. CE50000-4-

CRP) cutting plotter and Robo Master Pro software (Wrexham, UK) were used to 

prepare the PSA patterns for sensor and device fabrication. Patterns were drawn 

using AutoCAD and uploaded into the Robo Master software. To create the 

headspace between the sensor and the sample solution, an o-ring with a thickness of 

1.78 mm was adhered to the modified sensor using PSA, with a thickness of 48 µm 

and a gas-permeable PTFE membrane, with a 0.2 µm pore size and a diameter of 25 

mm, was fixed above the o-ring using PSA to create a headspace of 247 mm
3
. The 

distance between the sensor and membrane was 1.88 mm. The sensor and headspace 

along with the PTFE membrane was encapsulated with PSA and a lid was then 

attached to create a sample chamber with a capacity of 52 µL. Air inlet and outlet 

ports were created using two hypodermic needles inserted into the o-ring at opposite 

sides of the device to allow the passage of compressed air over the sensor surface. 

An exploded version of the device is shown in Fig. 2.3. 
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Figure 2.3. Design layout of the sensing device assembly. A silver screen printed 

interdigitated electrode deposited onto PET substrate was inkjet print modified 

with ten layers polyaniline creating an ammonia sensor. A gas headspace of 247 

mm
3
 was created above the sensor using a PTFE membrane and a 1.78 mm 

thick o-ring (with air inlet and outlet ports created using two hypodermic 

needles inserted into the o-ring at opposite sides of the device to allow the 

passage of compressed air over the sensor surface) adhered together using 48 

μm thick PSA. This gas headspace chamber was adhered to the modified sensor 

using PSA. The sensor and headspace along with the PTFE membrane was then 

encapsulated using PSA and a lid was attached to create a sample chamber with 

a capacity of 52 µL.  

PSA top layer

PTFE gas permeable 
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Inkjet printed 

polyaniline layer

O-ring gas chamber (two 
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2.4.6. Characterisation techniques 

UV-visible spectroscopy was carried out on the polyaniline aqueous 

nanodispersions. They were diluted in deionised water at a ratio of 1:100 and 

analysed in the range of 300 to 900 nm. 

Irradiation at 632.8 nm using a He-Ne laser was used to perform particle size 

and zeta potential analysis. The polyaniline nanodispersions were diluted in 

deionised water at a ratio of 1:100. In order for the Zetasizer to apply Mie theory, 

optical properties are required such as refractive index of both the dispersed particles 

and dispersant and the imaginary refractive index (absorption) of the dispersed 

particles (Malvern Instruments Ltd., 2016). Mie theory predicts the scattering 

intensity of light upon exposure to an extremely dilute suspension of particles. It is 

based on Maxwell's electromagnetic field equations and uses the refractive index 

difference between the particle and the dispersing medium to predict the intensity of 

the scattered light. It also describes how the absorption characteristics of a particle 

affect the amount of light which is transmitted through the particle which may be 

either absorbed or refracted.  

Optical parameters used were taken from recommendations by Escubed Ltd. 

for the measurement of polyaniline in deionised water. They were as follows: 

Refractive index of particles 1.52 

Imaginary refractive index of particles 0.1 

Refractive index of dispersant  1.33 

 

2.4.7. Cyclic voltammetric analysis of polyaniline dispersions 

 Cyclic voltammetry was performed on polyaniline films by drop casting 7 µL 

of the polymer dispersion onto GCEs cycled in 1 M HCl at a scan rate of 0.1 V s
-1

 

from -0.2 to 0.9 V vs. Ag/AgCl. 

 Inkjet-printed polyaniline films were studied on DropSens carbon screen 

printed electrodes in 1 M HCl at a scan rate of 0.1 V s
-1

 from -0.2 to 0.9 V vs. 

Ag/AgCl. 
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2.4.8. Electrochemical impedance spectroscopic measurement of ammonia 

Impedance spectroscopic measurements were carried out on the encapsulated 

ammonia devices. The devices were exposed to ammonia as ammonium chloride in 

0.1 M PBS, unless otherwise stated. PBS was initially made at pH 7.4, upon the 

addition of ammonia it was altered to pH 11.0 using 5 M NaOH ready for device 

exposure. A sample volume of 52 µL was left to incubate on the electrode surface 

for 15 min and removed before 5 psi of compressed air was passed over the sensor 

surface for 1 min. Impedance was measured across the range of 0.1 Hz to 100 kHz, 

at 5 mV amplitude and a 1 s sampling rate. For impedimetric single frequency 

experiments 1 kHz was applied using the same parameters.  

2.4.8.1. Ratiometric method 

Each individual device response was normalised (Z/Zair) with respect to its 

initial baseline (Zair) and its response to ammonia (Z). This gave rise to a value 

which was due to the response of ammonia alone as opposed to the inherent 

differences due different devices being compared to each other.  

2.4.9. Spectrophotometric measurement of ammonia  

The Abcam® ammonia assay kit which utilises the Berthelot reaction was 

used for the spectrophotometric assays carried out to validate the ammonia device. 

Unless otherwise stated, 100 µL of ammonia chloride standards (25 to 200 μM) were 

prepared using a provided calibrator stock of 1 mM ammonia. Standards were made 

up in 0.1 M PBS pH 7.4 and were analysed in triplicate in a 96 well plate. To the 

standards, 80 µL of Assay Reagent 1 (nitroferricyanide, 2-phenylphenol) and 40 µL 

of Assay Reagent 2 (sodium hypochlorite) were added and incubated for 30 min at 

room temperature and measured at 650 nm. 

2.4.10. Bradford protein assay 

The Bradford assay was used to measure the protein concentration of 

biological samples. A stock dye of Coomassie blue G dye (330 mg Coomassie blue 

G dye dissolved in 100 mL phosphoric acid/ethanol 2:1) was prepared fresh. The 

working solution was prepared from 3% stock dye, 8% phosphoric acid and 3.8% 

ethanol in deionised water. BSA protein standards (0.25 to 1.25 μg μL
-1

) were 

prepared from a BSA stock of 1 µg µL
-1

 and added in triplicate to a 96 well plate. 
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Working dye solution (200 µL) was added to each well and the absorbance was 

monitored at 620 nm (Bradford, 1976). 

2.4.11. Oil red O analysis for cellular lipids 

Oil red-O was used to measure the lipid content of serum samples. Serum 

samples were dried onto glass slides, then washed in PBS and fixed in 2.5% 

parafomaldehyde (PFA) and then stained for lipids. A stock solution of 0.5% (v/v) 

(saturated) Oil red-O in 2-propanol was freshly diluted (three parts stock solution in 

two parts deionised water) and filtered. The serum samples were stained for 30 min 

at 37°C then briefly de-stained in 60% (v/v) 2-propanol and washed in water before 

mounting in PBS/glycerol (Moffitt et al., 2005). Imaging was carried out under a 

light microscope.  
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CHAPTER 3 

OPTIMISATION AND CHARACTERISATION OF POLYANILINE 

NANOPARTICLE INK PRODUCTION AND SENSOR FABRICATION
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3.1. INTRODUCTION 

Of the available tests and kits for blood ammonia detailed in Chapter 1, none 

utilise electrochemical methods. Few, if any, are suitable for in situ testing for blood 

ammonia. Thus, the concept of an impedimetric measurement of a liquid sample 

using a gas phase sensor was considered as a potential solution to the problem of 

aqueous (blood) ammonia measurement. 

3.1.1. Polyaniline nanoparticle synthesis and processability 

It was the aim of this work to develop a blood ammonia device based on the 

principal of the interaction of polyaniline with ammonia. Fabrication options 

available for conductive polyaniline were, in the past, limited to chemical or 

electrochemical polymerisation. Both of these techniques gave minimal control over 

film formation and morphology (Li et al., 2005). The development of polyaniline 

sensors has been greatly facilitated by the work of Han et al. (2002). They 

demonstrated the chemical oxidative polymerization of aniline with APS in a DBSA 

micellar solution to obtain conductive nanoparticles with enhanced thermal stability, 

processability and conductivity (Fig. 3.1).  

 

Figure 3.1. Reaction scheme of a polyaniline-dodecylbenzene sulphonic acid 

micellar structure. Reproduced with permission from Elsevier (Han et al.; 

2002). 



Chapter 3 

55 

 

This method of polymerisation enables large numbers of sensors to be 

prepared simultaneously via inkjet printing which overcomes poor processability 

previously associated with the deposition of conducting polymers. Our group has 

focused research in the area of polymer science culminating in the development of 

inkjet printable polyaniline nanoformulations (Ngamna et al., 2007). In this work, 

polyaniline nanodispersions were synthesised to produce an aqueous ‘nanoink’ 

which was then inkjet-printed using an Epson desktop printer for pattern deposition. 

Later work applied the inkjet-printed polyaniline nanoparticles to the development of 

a breath ammonia monitoring system known as AmBeR® (Hibbard et al., 2013a). 

The AmBeR® technology quantifies ammonia across the clinically relevant range of 

40 to 2175 parts-per-billion (ppbv) using electrochemical impedance by measuring 

impedance changes of the polyaniline film upon exposure to ammonia. Parallel to 

the AmBeR® technology, the quantification of aqueous ammonia leaks in secondary 

refrigerant systems was developed (Subramanian et al., 2013). This system also 

utilised impedimetric measurement of ammonia, but employed a gas-permeable 

membrane allowing for gaseous ammonia measurements to be conducted in an 

aqueous environment. Current work discussed in this thesis is built upon the 

foundations of the AmBeR® technology and secondary refrigerant system ammonia 

probe. The development of a blood ammonia sensor using screen printed electrodes 

modified with inkjet-printed polyaniline nanoparticles in combination with a gas-

permeable membrane was selected as the basis of the development of a sensing 

device for the measurement of ammonia in a liquid sample, particularly in blood.  

3.1.2. Electrochemical impedance spectroscopic analysis  

The fabricated ammonia sensor was characterised and analysed using 

electrochemical impedance spectroscopy. Electrochemical impedance spectroscopy 

is based on the opposition of the flow of an alternating current (a.c.) through a 

system. It is an extremely powerful technique for probing the behaviour of materials. 

It is used throughout the literature as an analytical measurement method providing a 

wealth of information about the physiochemical processes occurring at electrodes 

including ion migration, and charge distribution at the electrode/electrolyte interface 

and the velocity of the reaction. Impedance (Z) can be thought of as the ratio 

between an applied sinusoidal voltage (V) and a responding sinusoidal current (I) in 
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the frequency domain (Macdonald, 1992) (Fig. 3.2). It is a product of the resistance 

(ZR) to the input function and the capacitive reactance (ZC): 

             
 

       Eq. 3.1 

where the resistance (R) is calculated by real impedance and the capacitance 

(– j/ωC) is calculated by imaginary angular frequency. In the complex plane diagram 

(Nyquist plot) the capacitance (Z”) is on the y-axis and the resistance (Z’) is found 

on the x-axis. Impedance has properties of magnitude and phase angle as portrayed 

in Fig 3.2. The sinusoidal ac input response is altered when a disturbance resulting 

from resistances, capacitances or inductances in the system result in changes to 

phase and magnitude. 

 

Figure 3.2. Sinusoidal representation of impedance - the change in magnitude 

represented by phase shift (ϕ) upon the introduction of a change to the system, 

i.e. the difference between the input voltage (red) and the output current (blue).  

In the context of this study, the polyaniline sensor will have particular 

impedance characteristics which will be altered by the introduction of ammonia 

(Crowley et al., 2008a). This impedimetric change is hypothesised to be proportional 

to the concentration of ammonia added to the device.  
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The fabrication of the ammonia sensor is described in this chapter. To 

achieve this, polyaniline nanoparticles were synthesised as an aqueous dispersion 

and piezoelectrically inkjet-printed onto silver screen printed IDEs on a PET 

substrate. The quality of the sensors produced was studied using optical and 

electrochemical techniques. For preliminary gas-phase measurements, the sensor was 

used without further modification. However, to allow characterisation with liquid 

samples it was initially combined with a PTFE membrane. This allowed the 

ammonia sensors to be studied and optimised in relation to the impedimetric 

measurement of ammonia derived from a liquid sample, but which was in the gas 

phase.  

3.2. RESULTS AND DISCUSSION 

3.2.1. Fabrication and characterisation of polyaniline nanoparticles 

Micellar emulsion polymerisation was employed to produce aqueous 

polyaniline nanodispersions as described by Ngamna et al. (2007) and detailed in 

Chapter 2, Section 2.4.3. In brief, 3.6 g of DBSA was made up to 40 mL in deionised 

water. APS (0.36 g) was dissolved in 20 mL of the DBSA solution. The remaining 

DBSA solution was stirred at 20°C and 0.6 mL of aniline was added, followed 

quickly by the DBSA-APS solution. The mixture was left stirring for 2.5 hr. After 

stirring, 20 mL of a 0.05 M solution of SDS was added to the dispersion, which was 

then centrifuged for 30 min at 3,000 × g. The supernatant was finally dialyzed for 48 

hours against 500 mL of SDS to remove excess material such as unwanted aniline 

and to stabilise the DBSA-polyaniline nanoparticles. Batches of polyaniline 

nanoparticles were subsequently characterised using a range of analytical techniques. 

Parameters such as absorbance, particle sizing and zeta (ζ)-potential were analysed 

to ensure batch quality. 

Initially, UV-visible spectra were obtained for the aqueous polyaniline 

dispersions (1:100 polyaniline dilution in deionised water) over a wavelength range 

from 300 to 900 nm. In total, eleven polyaniline batches were synthesised 

throughout this study and the spectra for each is shown in Fig. 3.3. The UV-visible 

spectrum of polyaniline is very well established in the literature and so any 

deviations in batch production were easily identified. It is characteristic of the π-π* 
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band to appear between 320 nm and 360 nm, the π-polaron band is expected to be 

seen between 400 nm and 420 nm and the localised polaron should be between 740 

nm and 800 nm (Kim et al., 2001). It can be seen from Fig. 3.3 that typical 

characteristics of the emeraldine salt form of polyaniline were observed for all 

eleven batches. There was no shift of features for any batch, meaning there was little 

deviation in batch to batch quality during synthesis or compared to the literature, but 

they do appear to vary significantly in overall concentration. This may have been 

caused during the centrifugation step of the synthesis. Subsequent to centrifugation, 

larger entities form a pellet. However, this pellet is not solid and leaks into the 

supernatant when decanting. Thus, altering the concentration of the polyaniline 

nanodispersion and resulting in absorbance intensity variations. 

 

Figure 3.3. UV-visible spectra of 11 polyaniline nanoparticle dispersions in 

deionised water at a range of 300 to 900 nm. For all batches the π-π* band was 

visible between 320 nm and 360 nm, the π-polaron band could be seen between 

400 nm and 420 nm and the localised polaron was observed between 740 nm 

and 800 nm. 

UV-Visible spectroscopy provided confirmation of the polyaniline form 

synthesised. However, this technique measures bulk optical properties and could not 

contribute nanoscale suspension information.  
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Particle sizing and ζ-potential provided nanoscale information for each of the 

diluted polyaniline batches synthesised. This information was investigated for links 

to the quality and processability of the inks produced. Polyaniline nanoparticle sizes 

were firstly analysed using TEM at 100 kV and 15.5 k × magnification. The 

nanoparticles were diluted in deionised water and imaged on a carbon grid (Fig. 3.4). 

The morphology of the nanoparticles was spherical but did appear to vary in size, 

ranging from 30 to 388 nm. The average particle size was 157 nm for batch 1. 

 

Figure 3.4. Transmission electron micrograph of diluted batch 1 polyaniline 

nanoparticles deposited onto a carbon grid and recorded at 100 kV and 15.5 k × 

magnification. 

The shape of the nanoparticles synthesised did appear to be similar to that 

reported for other polyaniline dispersions (Ngamna et al., 2007, Han et al., 2002, 

Moulton et al., 2004, Morrin et al., 2008). The quality of the images attained using 

TEM does not provide accurate or quantitative particle size information. Further 

particle size information was required to support the TEM results.  

Particle size distribution using Dynamic Light Scattering (DLS) was carried 

out on the polyaniline nanoparticles. An example of the particle size distribution of a 

typical polyaniline batch can be seen in Fig. 3.5. A major distribution centred at 

approximately 77 nm and a smaller distribution at approximately 4800 nm was 
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observed. It can be seen that the majority of the dispersion was nanoparticulate with 

the second peak attributable to some aggregation of these nanoparticles.  

 

Figure 3.5. Size distribution of polyaniline nanodispersion batch 11 in deionised 

water. A major distribution can be seen for particles of 77 nm in diameter and a 

small distribution can be seen at 4800 nm.  

The size of these nanoparticles was similar to the approximately 82 nm 

particle size reported for polyaniline dispersions generated by Ngamna et al. (2007). 

However, they are larger than those reported by Han et al. (2002) and Moulton et al. 

(2004) which were approximately 25 nm and 10 nm, respectively. The same 

synthesis methodology was used in all these studies. This suggests the micellar 

polymerisation is prone to particle size variations. In this study, each batch of 

polyaniline contained the same concentration of APS, DBSA and aniline and they 

were all treated in the same way. Thus, in theory the rate of the polymerisation 

reaction should have been similar. However, during the synthesis, temperature was 

difficult to control. According to the protocol produced by Ngamna et al. (2007) the 

temperature needed to be maintained at 20°C. It was difficult to achieve typical room 

temperature levels using a hot plate or a water bath and so it was decided that 

synthesis would take place at ambient temperature. Considering the variation due to 

time of day or season, the temperature would typically remain near 20°C in the 

absence of a reaction chamber. Sensitivity and activity and variability of reactive 
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reagents such as APS may also account for this variation which has also been seen in 

the literature.  

The micellar synthesised polyaniline nanoparticles were inkjet-printed onto 

silver screen printed IDEs to produce polyaniline ammonia sensors. The 

impedimetric quality of these sensors was then assessed. 

3.2.2. Screen printed silver interdigitated electrode design as part of the inkjet-

printed polyaniline sensor 

The IDE array design is one of the most common configurations in 

electroanalysis as it produces high currents from the redox cycling and feedback 

between the closely arranged interdigitated generators and collectors (Guajardo et 

al., 2013). The currents generated between the interdigitates form dielectric fields 

which penetrate short depths (tens of nanometres) making them less dependent on 

cell geometry and allow the use of sensing layers for tailoring selectivity (de la Rica 

et al., 2006). Polyaniline was synthesised into a nanoparticulate aqueous ink which 

was readily inkjet-printed as a thin film (~30 nm) (Morrin et al., 2008). IDEs are 

compatible with thin films such as inkjet-printed polyaniline (Zaretsky et al., 1988, 

Sheppard et al., 1993). Thus, the IDE array design was chosen for the impedimetric 

measurement of ammonia using polyaniline. Silver was chosen as the electrode 

material, principally due to the combination of conductivity, chemical reactivity, 

printability and price. It has been used as a sensing material for gaseous ammonia 

determination, most commonly in the nanoparticulate form (Dubas and Pimpan, 

2008). Silver nanoparticles have also been used as part of a composite for ammonia 

detection. Composite materials used in combination with silver nanoparticles include 

silicon (Guo and Tao, 2007), graphene oxide (Kavinkumar and Manivannan, 2016), 

pyrrole (Karmakar et al., 2013) and polyaniline (Detsri and Popanyasak, 2015). The 

IDE was designed in a two-electrode configuration. A two electrode system 

facilitates a truly planar, solid-state configuration which is simpler to fabricate. In 

addition, the planar diffusion characteristics can be superior to bulk electrolytic 

devices, particularly for gas sensing (Mamishev et al., 2004). The silver IDEs used 

in this study were fabricated using screen printing. Screen printing has been used as 

the basis of electrode sensors for more than 20 years (Weng et al., 2010). It is a rapid 

and low cost way to mass produce highly reproducible electrodes for the 
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determination of a wide range of analytes (Wang, 1994). It provides a platform with 

broad applicability (Renedo et al., 2007).  

The screen printed electrodes fabricated during this study were modified with 

polyaniline nanoparticles via inkjet printing. Drop-on-demand piezoelectric inkjet 

printing has also displayed great promise in sensor development. In combination 

with conducting polymers it allows for the production of flexible electronics (Tekin 

et al., 2008). Piezoelectric inkjet printing is a digital, non-contact printing 

technology that facilitates high resolution prints (Weng et al., 2010). It is based on 

piezoelectric technology, involving the controlled ejection of pL volumes of ink 

from a micrometer-size nozzle via application of an electric field applied to a 

piezoelectric crystal (Magdassi, 2010, Magdassi and Ben Moshe, 2003) (Fig. 3.6). It 

has been shown to produce films with comparable conductivity and electroactivity to 

those electrochemically deposited (Morrin et al., 2008). The modification of 

chemical polymerisation methods to produce nano-structured forms of polyaniline 

has allowed the deposition technique of inkjet printing to be explored (Ngamna et 

al., 2007). 

 

Figure 3.6. Principle of piezoelectric inkjet printing - the application of an 

electrical field in a waveform across the piezoelectric crystal causes its 

expansion to control the volume of ink being deposited onto the substrate. 
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3.2.3. Impedimetric assessment of polyaniline sensors 

In electrochemical impedance spectroscopy, an ideal resistor will exhibit real 

impedance (Z’) in the complex plane (Nyquist plot) equal in magnitude to the value 

of the resistance. It will have no imaginary impedance (Z” = 0) and will have a 

constant absolute impedance (summation of resistive and capacitive properties, |Z|) 

at all frequencies, equal to the value of resistance. Phase angle (ϕ) will also be 0° at 

all frequencies. By contrast, a perfect capacitor will exhibit imaginary impedance 

with no real impedance components. It will display a |Z| slope of -1 and a -90° phase 

shift at a frequency dependent on the magnitude of capacitance (Fernandez-Sanchez 

et al., 2005). Combinations of resistors and capacitors in series and in parallel will 

exhibit more complex impedance characteristics.  

Printed ammonia sensors were combined with a PTFE membrane and an o-

ring spacer to allow solutions of ammonia to interact with the sensor. The sensors 

were assessed and optimised in response to these ammonia solutions using 

impedance spectroscopy. However, initial experiments were performed in air, which 

displayed both resistive and capacitive properties corresponding to the components 

that make up the sensor such as the IDE and the polyaniline layer. Impedance spectra 

were recorded in air across a frequency range of 0.1 Hz to 100 kHz at 5 mV rms. 

This can be observed in Fig. 3.7 represented by (a) Nyquist (insert displays the 

Nyquist plot on the same axis scale), Bode (b) modulus and (c) phase (ϕ) plots. The 

polyaniline sensor displayed a small capacitance (-Z”) value at approximately 20 Ω 

and a series resistance (Z’) offset value of 2980 Ω. Thus, the polyaniline sensor 

displays predominantly resistive characteristics. This is evident from the Bode plots 

(b and c). At low frequencies |Z| can be seen as a nearly straight line at 2980 Ω and 

the phase angle was 0°. At high frequencies, capacitive properties of the polyaniline 

sensors were observed as a decrease in the total impedance from 2970 to 2951 Ω, 

this was accompanied by a decrease in phase shift from 0° to -1.4° above 1 kHz. 
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Figure 3.7. Impedance spectra of a polyaniline sensor in air, (a) Nyquist (insert 

displays the Nyquist plot on the same axis scale), Bode (b) modulus and (c) 

phase plots across a frequency range of 0.1 Hz to 100 kHz. 

The characteristics of the printed polyaniline sensor were similar to results 

obtained by Hibbard et al. (2013b) which used a similar polyaniline sensor platform. 

They used a two-electrode gas phase set-up and observed almost identical 

behaviours. For example, a small capacitance up to 20 Ω and an offset resistance of 1 

kHz for Nyquist data. Bode plots showed a decrease from the main resistance data 

which appeared as a straight line at 956 Ω |Z| and 0° phase to 951 Ω |Z| and -1.8° 

phase. The impedimetric data gathered in this study was also comparable to data 

collected by Kalaji and Peter (1991) in which polyaniline films were grown on 
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indium-doped tin oxide coated glass as part of a three-electrode cell containing redox 

active systems. For polyaniline films, the imaginary impedance was near 0 Ω and 

resistance lay at approximately 10 Ω on the Nyquist plots which displayed a typical 

arc (Kalaji and Peter, 1991).  

An a.c. frequency of 1 kHz was chosen at which to probe the polyaniline film 

for resistive behaviour as the polyaniline becomes deprotonated by ammonia, 

forming the more stable ammonium ion and resulting in increased resistance within 

the polyaniline film (Kukla et al., 1996). It is at this frequency that time-based 

measurements were carried out during this work. It is important to note that the 

polyaniline sensor acts as a bulk resistor in series with a negligible capacitance and 

the focus of the interaction with ammonia is on the polymer’s deprotonation. 

Polyaniline has been widely used as a super-capacitor (Snook et al., 2011). However, 

in the current context it appears to possess low capacitance. This is perhaps due to 

the nature of the films formed from the deposition of the doped polymer 

nanoparticles which may result in low surface concentration of charged sites within 

the polymer, leading to low capacitance (Hibbard et al., 2013b).  

The equivalent circuit of the polyaniline sensor was interpreted and drawn as 

shown in Fig. 3.8 (a). It was interpreted as a resistor in series with a parallel 

capacitor and resistor. These components represented the resistance of the IDEs and 

their connection with the polymer and the resistance and capacitance associated with 

the polymer. The polyaniline sensor was mapped using Nova 1.6 software and the 

equivalent circuit presented can be seen in Fig. 3.8 (b) represented by (i) Nyquist, 

Bode (ii)modulus and (iii) phase. The generated equivalent circuit may be compared 

to the impedance spectra of a polyaniline sensor in air (Fig. 3.7). in which the 

characteristics are similiar. For example, both display small capacitance values of 

approximately 20 Ω and a series resistance offset at 2980 Ω for the experiment and 

2033.5 Ω for the equivalent circuit. Both display predominantly resistive 

characterisitcs which can be seen as a straight line at 2033.5 Ω and a shift from 0° to 

0.8° in the Bode plots of the equivalent circuit and a nearly straight line at 2980 Ω 

and a shift from 0° to -1.4° in the Bode plots of the polyaniline sensor in air 

impedance spectra.  



Chapter 3 

66 

 

 

 

Figure 3.8. (a) Interpretation of the equivalent circuit of a polyaniline sensor 

and (b) the mapped equivalent circuit of the polyaniline sensor using Nova 1.6 

software including (i) Nyquist, Bode (ii)modulus and (iii) phase.  

3.2.4. Impact of the synthesis method on particle size and its effect on sensor 

impedance 

The purpose of the polyaniline nanoparticles synthesised in this study was to 

be used as inkjet-printed semi-conductive sensing films. It was hypothesised that 

nanoparticle size may affect the impedance of the printed sensors. In order to 

investigate this, polyaniline batches with an associated particle size were inkjet-

printed onto silver IDEs and analysed impedimetrically. Ten layers of polyaniline 

nanoparticles were inkjet-printed at a voltage of 18 V at room temperature. Fig. 3.9 

shows the relationship between |Z| in air versus particle size for five polyaniline 

batches. Average particle sizes of these five polyaniline batches ranged from 77 to 

412 nm. There was no significant difference in the impedances of the films with 

respect to particle size. Indeed, other factors appear to contribute more to variations 

in impedance than particle size.   
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Figure 3.9. Polyaniline nanoparticle size (nm) versus inkjet-printed film 

absolute impedance |Z| for five synthesised batches, n = 4, 11, 6, 9, 6 from left to 

right, respectively.   

The relationship between particle size and polydispersity index (PDI) was 

also investigated. Polydispersity is a measure of the distribution of molecular mass 

throughout a sample. It is calculated using the PDI. For a given polymer sample the 

PDI is defined as the ratio of the weight average molar mass (Mw) to its number 

average molar mass (Mn) (Vieville et al., 2011). Malvern DLS software system of 

the DLS instrument performed this calculation as a dimensionless measure of the 

broadness of the size distribution calculated from cumulant analysis of the Gaussian 

distribution related to standard deviation (SD) and the average diameter (Zd) of the 

particle size (Malvern Instruments Ltd., 2016), according to Eq. 3.2. 

     
   

   
     Eq. 3.2 

Acquired PDI values greater than 1 are typically too polydisperse for DLS 

analysis, with values less than 0.05 being regarded as monodisperse. It can be seen in 

Fig. 3.10 that the PDI of a number of polyaniline batches had a positive correlation 

with particle size, demonstrating that an increase in particle size was also 

accompanied by an increase in polydispersity.  
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Figure 3.10. The relationship between polyaniline nanoparticle size (nm) and 

polydispersity of five synthesised batches of polyaniline nanoparticles. 

It has been shown that inkjet-printed polyaniline nanoparticles form a 

homogenous semi-conductive film (Morrin et al., 2008). This happens during the 

process of inkjet printing. As the printer ejects pL volumes of polyaniline 

nanodispersions onto the electrode, the micellar structure of the individual 

nanoparticles are disturbed. They coalesce to form a homogeneous film, which may 

be reinforced when the sensors are rinsed and cured. It can be concluded that 

impedance is independent of nanoparticle size as the particles lose all shape and 

merge into one homogeneous film.  

3.2.5. Impact of the synthesis method on zeta-potential and its effect on sensor 

impedance 

As discussed in Chapter 1, Section 1.2.2, polyaniline in the emeraldine salt 

form is doped to incorporate more protons, producing a positive surface charge (de 

Medeiros et al., 2003). In 2002, when the micellar emulsion synthesis method was 

developed, it employed APS as an initiator and DBSA as a surfactant which 

produced micelles around which aniline was polymerised (Han et al., 2002). The 

synthesised polyaniline acquired a negative charge which corresponds to the 

formation of the DBSA micelle (Kirby and Hasselbrink, 2004). This negative charge 

interacts with the dispersion, which aids in the maintenance of the particles in 

suspension. The distribution of charge between the particle surface and the solution 
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is known as the ζ-potential, and is described for nanoparticles in suspension as the 

electrostatic surface potential of the particles. It is highly dependent on the nature of 

the solvent in which they are suspended (Doane et al., 2012). The ζ-potential value 

of a particular dispersion will also relate to how stable the dispersion is likely to be. 

A ζ-potential value of ± 30 mV and above is associated with a stable colloidal 

suspension, while any value below this is considered unstable (Malvern Instruments 

Ltd., 2016, Müller, 1996). This value will vary depending on the dispersion used 

(Vallar et al., 1999). For the eleven batches of polyaniline nanoparticles synthesised 

during this study, ζ-potential varied greatly (Table 3.1).   

Table 3.1. ζ-potential values for polyaniline nanoparticle dispersions. 

Batch 

number 

1 2 3 4 5 6 7 8 9 10 11 

ζ-potential 

(mV) 

-48 -1 -40 -45 -2 -2 -6 -1 -7 -33 -9 

 

To date the effect of the ζ-potential of the polyaniline nanodispersions on the 

impedimetric performance of the sensors has not been investigated. It has been 

shown that changes in ζ-potential may occur by altering pH, salt and surfactant 

concentrations (Micheau et al., 2013). SDS is an anionic surfactant which is able to 

disperse organic materials by adsorption in high concentrations of aqueous solutions 

(White et al., 2007). Anionic surfactants impart a negative charge, creating repulsion 

between surfactant molecules which further stabilises the dispersion. SDS was used 

during the synthesis process of polyaniline nanoparticles, dispersions were dialysed 

against 0.05 M SDS for 48 hr. Thus, rather than being a simple monodispersion of 

DBSA-polyaniline nanoparticle in water, it is a more complex co-colloidal 

suspension of DBSA-polyaniline and SDS micelles. Therefore, it is not immediately 

possible to measure a ζ-potential of the DBSA-polyaniline alone, or in a manner that 

reflects the actual ink formulation. To observe the impact SDS had on DBSA-

polyaniline, dispersions were dialysed against 0.01, 0.05 and 0.1 M SDS and the 

resulting impact on ζ-potential and conductivity was assessed (Fig. 3.11). Increasing 

SDS concentration caused an increase in negative ζ-potential from -1.56 to -5.59 mV 
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for 0.01 to 0.1 M SDS. The conductivity of the dispersion increased with increasing 

SDS concentration from 0.005 to 0.016 mS cm
-1

 for 0.01 to 0.1 M SDS.    

 

Figure 3.11. Relationship between (a) ζ-potential and (b) conductivity with 

increasing SDS concentration.  

In order for a conclusion to be reached in relation to SDS concentrations, 

further analysis is required on numerous batches of polyaniline nanoparticles. To 

assess the relationship between ζ-potential and the impedimetric properties of the 

polyaniline sensors, batches of polyaniline nanoparticles with different ζ-potentials 

were impedimetrically measured at 1 kHz in air. Fig. 3.12 shows the relationship 

between ζ-potential and |Z| of the sensors associated with five batches of polyaniline. 

The |Z| for these five batches decreased from 660 to 320 Ω with decreasing ζ-

potential. While the use of ζ-potential can be an excellent predictor of the stability of 

colloidal suspensions, its value and usefulness here is not clear. While we have seen 

large variation in ζ-potential values, this has been in dilute aqueous solutions which 

do not reflect the actual character of the ink. Significant experience has demonstrated 

good stability of the SDS co-colloidal suspensions, and so, in this form, the 

measurement of ζ-potential may be ineffective and irrelevant.  
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Figure 3.12. The relationship between zeta (ζ)-potential and absolute sensor 

impedance |Z| of four batches of polyaniline. 

3.2.6. Characterisation of the ammonia sensor in response to liquid samples 

The development of a blood ammonia sensor system that could detect 

gaseous ammonia produced from a liquid sample, such as blood was a technical 

challenge. Ammonia has been measured amperometrically using polyaniline-based 

sensors (Trojanowicz et al., 1997, Crowley et al., 2008b, Basak et al., 2013). 

However, this results in current transients which require regeneration of the sensor in 

buffer, making it unsuitable for direct and continuous contact measurement. 

Conductivity measurements have been used for continuous monitoring of ammonia 

using polyaniline sensors (Crowley et al., 2008a, Sutar et al., 2007, Matsuguchi and 

Asahi, 2011, Stamenov et al., 2012, Wongchoosuk et al., 2012). Conductimetry 

cannot be performed in direct contact with liquid samples. Although POC testing is 

not typically continuous, the sample is typically applied directly onto the sensor 

system. In addition, direct current conductimetry requires the application of a 

potential which may result in unwanted redox processes and oxidative degradation. 

While d.c. conductimetry requires the application of a bias potential, ac impedance 

methods apply a very small a.c. waveform which maintains the material at an 

average zero potential (Rheaume and Pisano, 2011). Impedance has been used to 

measure the interaction between polyaniline and ammonia (Hibbard et al., 2013a, 

Subramanian et al., 2013, Basak et al., 2013).  
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3.2.6.1. The use of a hydrophobic membrane for ammonia gas measurement 

from a liquid sample 

Hydrophobic separation membranes have been used for a long time for the 

determination of ammonia amongst ammonium ions in solution (Willason and 

Johnson, 1986). PTFE is a hydrophobic membrane which is impermeable to water 

but which is permeable to gas (Tarsiche et al., 1997). It is widely used in many 

applications due to its excellent chemical stability (90-95%) and high melting point 

of 327°C (Wikol et al., 2007). A SEM of a PTFE membrane with pore size of 0.2 

μm can be seen in Fig.3.13.  

 

Figure 3.13. Scanning electron micrograph of a Whatman® PTFE membrane 

filter, (A) 0.2 μm pore size of PTFE active layer (B) support polypropylene 

layer. Reproduced with permission from Elsevier (Fard et al., 2015). 

Ammonia has a high diffusion coefficient of 0.2 cm
2
 s

-1
 at room temperature 

(Massman, 1998) and therefore is expected to pass through the PTFE membrane at a 

very fast rate. A PTFE membrane has previously been employed by Subramanian et 

al. (2013) for the determination of ammonia in an aqueous secondary refrigerant 

system. The determination was carried out using polyaniline-modified IDEs in 

combination with impedance spectroscopy which could not be in direct contact with 

a liquid. Aqueous measurements were achieved using a PTFE membrane which also 

allowed gaseous ammonia diffusion whilst preventing liquid from passing through 

and affecting the analysis. In this way, the membrane serves as a physical support for 

the liquid-gas interface and does not allow one phase to enter another (Chiam and 

Sarbatly, 2013). The three phase system works on the basis that ammonia in solution 

(NH4
+

(aq)) and (NH3(aq)) establishes equilibrium with ammonia in the gas phase 
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(NH3(g)) and which in turn establishes equilibrium of ammonia in the conducting 

polymer film.  

                                        
    Eq. 3.3 

In this way, direct and continuous measurements of a liquid sample could be 

made using the change in conductance of the polymer film in response to ammonia. 

A similar set-up was developed here to assess the polyaniline sensor in response to 

ammonia. This set-up comprised of the polyaniline sensor upon which a PTFE 

membrane was suspended 1.78 mm above using a rubber o-ring. Ammonia as 

ammonium chloride in PBS pH 7.4 was placed on the PTFE membrane and a lid 

fixed on top creating a sample chamber in which 52 μL of sample was analysed.  

 

Figure 3.14. Schematic of the aqueous ammonia set-up. Gaseous ammonia 

(NH3(g)) from an aqueous sample (NH4
+

(aq) and NH3(aq)) diffuses through a PTFE 

membrane and interacts with the polyaniline sensor. 

The ammonia probe developed by Subramanian et al. (2013) had a headspace 

distance of 6 mm and a volume of 1.134 cm
3
. The volume of the refrigerant test 

system was 220 mL and was under circulation. In the current work, the device was 

being developed for measurement of ammonia in a drop of blood (52 μL). In 

comparison to Subramanian et al. (2013), the analyte mass transport and mass 

characteristics of the current work were much less favourable, representing an 

available analyte mass of only 1/5,000
th

 that available to Subramanian et al. (2013), 

while also being under static fluidic conditions.  
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3.2.6.2. Ammonia sensor reproducibility and drift 

Sensor reproducibility and drift were investigated prior to ammonia 

measurements. This was carried out using time-based impedimetric experiments on 

15 screen printed electrodes modified with ten layers of inkjet-printed polyaniline at 

18 V. Sensors were examined at 1 kHz at 5 mV amplitude and a 1 s sampling rate 

over a period of 160 s (n = 15) in air. The recorded impedances consisted of 160 data 

points and were analysed for inter and intra-sensor differences (Fig. 3.15). Although 

all 15 sensors were printed in a single batch and measured consecutively, they 

exhibited variations in |Z|. Inter-sensor |Z| ranged from to 354 to 466 Ω. This 

corresponds to an inter-sensor baseline mean, standard deviation and RSD of 390.5 

Ω, 26.9 Ω and 6.9% respectively. All 15 sensors displayed stable responses in air for 

the duration of the baseline measurements. The intra-sensor mean drift for all 15 

sensors was 0.4 Ω, the SD and RSD was 0.1 Ω and 25%, respectively. The complete 

data set for the 15 sensors is listed in Appendix I. 

 

Figure 3.15. (a) Baseline absolute impedance of polyaniline sensors (n = 15) at 1 

kHz and amplitude of 5 mV for 160 s. (b) Variation in average baseline of 15 

inkjet-printed polyaniline layered sensors at 1 kHz frequency, ranging from to 

354 to 466 Ω, 6.9% RSD.  

Variability in sensor impedance may be due to the variations in the inkjet 

printing process. For example, material in-homogeneity and/or nozzle blockages 

during deposition of the ten print layers may result in the observed variations. Inkjet-

printed polyaniline ammonia sensors have been fabricated previously with 33% RSD 

(Hibbard et al., 2013b). This value is 4.8 fold higher than that reported in this work 

(6.9%). For comparison, commercial companies typically have a RSD of 3 to 5% 
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(DropSens, 2015a). To compensate for variation in baseline impedances of printed 

sensors, a ratiometric method has been employed by Hibbard et al. (2013b). This 

method was established based on initial sensor baseline in air (Zair) and the response 

of the sensor to ammonia (Z). Each individual sensor response was normalised 

(Z/Zair) with respect to its initial baseline (Zair) and its response to ammonia (Z). It 

was found that the sensors maintained a constant sensitivity to ammonia when 

measured in this manner. This method was also adopted throughout this work to 

compensate for changes in initial sensor (baseline) impedance.  

3.2.6.3. Investigation of the polyaniline nanoparticle inkjet printing process on 

the characterisation and performance of the ammonia sensor 

To investigate the effect of the mass of polyaniline deposited during inkjet 

printing on the characteristics of the sensor, the inkjet printing process was 

examined. Studies were carried out to determine the optimum printing nozzle voltage 

and number of inkjet-printed polyaniline layers for ammonia measurement. The 

process of ink deposition via piezoelectric inkjet printing may be controlled using 

nozzle voltage. When a drop is ejected from a cartridge nozzle, it leaves with a 

trailing ligament attached. This ligament is reduced when the nozzle voltage is 

decreased as the drop falls in its entirety from the cartridge and onto the substrate 

(Fujifilm Dimatix, 2010). The voltage felt across the drop affects the velocity and 

mass (Tekin et al., 2008, Saunders et al., 2008). When choosing a drop volume and 

print number it is important to consider drop splashing and fingering which may 

occur as a drop with a particular velocity lands on a substrate (Magdassi, 2010). 

The Fujifilm Dimatix Inkjet printer has a patterning and firing mode that may 

be used to deposit materials (Fujifilm Dimatix, 2010). The patterning mode permits 

printing based on a pre-defined, customized pattern. Herein this case, the material 

can be deposited layer-by-layer. The firing mode consists of ejecting material at a 

fixed position. Although this mode does not allow pattern formation, it does allow 

volume calculations. It may be used to calculate the drop volume, simply by 

weighing the substrate before and after the deposition of a certain amount of drops 

and approximating the material density to that of water (1 g ml
-1

). It is known that 

nozzle voltage alters the volume of ink deposited. Therefore, nozzle voltage may 

have an impact on the behaviour of the sensors to the measurement of ammonia. In 
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order to investigate this, polyaniline nanoparticles were inkjet-printed onto pre-

weighed substrates for 60 s at 5 kHz frequency using a range of nozzle voltages. 

From the literature polyaniline nanoparticles have been inkjet-printed at 16 V 

(Crowley et al., 2008b, Suman et al., 2011) and 26 V (Hibbard et al., 2013b). 

Consequently, a nozzle voltage range of 14 to 30 V was studied. The number of 

drops was estimated to be 1.2 × 10
6
 by multiplying the ejection time (te) by the 

frequency (f) and by the number of working nozzles which was 4, according to Eq. 

3.4 (Fujifilm Dimatix, 2010). The drop mass was then calculated by dividing the 

mass of solution ejected by the number of drops, according to Eq. 3.5 (Fujifilm 

Dimatix, 2010). 

                        Eq. 3.4 

 

   
     

       
     Eq. 3.5 

 

For the 14 mm inkjet pattern using a 20 µm drop spacing there were an 

estimated 4.9 × 10
5
 drops being ejected at 18 V which was calculated as 2.24 × 10

-7
 

L in one print layer. The results for drops mass and volume of polyaniline deposited 

for a range of nozzle voltages (14, 18, 22, 26, 30 V) are shown in Table 3.2. 

Table 3.2. Inkjet-printed drop mass calculated for a range of nozzle voltages. 

Nozzle voltage 

(V) 

Mass of polyaniline 

(g) 

Drop mass  

(g) 

Volume (L) for 10 

print layers 

14 4.0 × 10
-4

 3.33 × 10
-10

 1.63 × 10
-6

 

18 5.0 × 10
-4

 4.58 × 10
-10

 2.24 × 10
-6

 

22 8.0 × 10
-4

 6.67 × 10
-10

 3.27 × 10
-6

 

26 1.1 × 10
-3

 6.67 × 10
-10

 3.27 × 10
-6

 

30 1.0 × 10
-3

 7.92 × 10
-10

 3.88 × 10
-6

 

 

The plot of drop mass versus nozzle voltage for the inkjet printing process is 

illustrated in Fig. 3.16. Drop mass was seen to increase with nozzle voltage in a 

linear fashion. Increased nozzle voltages generated polyaniline inkjet drops of a 

larger mass and velocity. These results were in agreement with those produced by 
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the manufacturer’s technical notes (Fujifilm Dimatix, 2010). For example, the drop 

mass of polyaniline obtained by applying 30 V for 60 s at 5 kHz using 4 nozzles was 

7.92 × 10
-10

 g, which was nearly two-fold higher than that achieved applying 14 V 

which was 3.33 × 10
-10

 g. 

 

Figure 3.16. Drop mass versus nozzle voltage applied during the inkjet printing 

process of polyaniline nanodispersions. Ink ejection was carried out using 4 

working nozzles for 60 s at 5 kHz frequency.  

 

Fig. 3.16 shows the relationship between nozzle voltage and mass of ink 

deposited. The relationship between mass deposited (as nozzle voltage) and sensor 

response to ammonia was also studied. This was conducted using ten inkjet-print 

layer polyaniline sensors. Fig. 3.17 illustrates the effect of varied nozzle voltage on 

the 1 mM ammonia ratiometric response of polyaniline sensors (n = 2). There was a 

non-linear relationship between nozzle voltage and impedimetric sensor response to 

ammonia. However, increased sensitivity to ammonia was observed with decreasing 

nozzle voltage. This decreased up to the application of 22 V where a saturation point 

was seen and the sensors possess invariable response ammonia at higher nozzle 

voltages (and therefore higher deposited mass of polyaniline). This can be seen in the 

normalised plot but also in the separated absolute impedance data for polyaniline 

sensors in air and upon exposure to ammonia (Fig 3.17 insert). While at 14 V, the 

impedance in air was significantly higher than at higher nozzle voltages (and 

deposition volume), the response to ammonia was proportionately greater than at the 
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higher voltages. While 14 V gave the highest response to ammonia, reproducibility 

was 7.9% RSD, while at 18V it was 0.9%. While thinner films deposited at lower 

voltages appear to have greater sensitivity, they may be more variable in their 

conductivity as they are at the borderline of confluence, while at 18 V, films are 

sufficiently confluent to ensure reproducible behaviour (Morrin et al., 2008). It can 

be seen that 18 V gave the highest and most reproducible response (RSD = 0.9%) to 

1 mM ammonia, although 14 V did give a better response it was less reproducible 

(RSD = 7.9%).  

 

Figure 3.17. Mean impedimetric response of ten inkjet-print polyaniline layered 

modified electrodes with varying voltages in response to 1 mM ammonia 

exposure to at a frequency of 1 kHz (n = 2). The insertion plots the separated 

ratiometric data as initial electrode baselines in air (Zair) and after ammonia 

exposure (Z).  

In conclusion, for lower inkjet printer nozzle voltage and therefore for thinner 

polymer films, the response of the sensors to ammonia was higher. This may be due 

to the relationship between gas diffusion characteristics through the film and the 

thickness of the electrical field layer of the IDES. Thinner films of polyaniline allow 

more effective diffusion of ammonia to layers of polyaniline which are within the 

electrical field. However, thin films may not produce continuous, confluent film 
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which explains the increase in variability between sensors. Baseline impedance is 

also higher for thinner films which may also be due to this lack of confluence. 

An inkjet printer nozzle voltage of 18 V was used throughout the rest of the 

study as it deposited an appropriate drop volume creating a film with the best 

balance between sensitivity and reproducibility. Ten inkjet-print layers was used to 

study nozzle voltages, as it was used in recent published work by our group for the 

determination of ammonia in breath (Hibbard et al., 2013a). However, there are 

reports in the literature which utilise a single inkjet-print layer of polyaniline 

nanodispersion for the determination of urea in serum (Suman et al., 2011). Eight 

inkjet-print layers have also been reported for use in an aqueous ammonia sensing 

system (Crowley et al., 2008b). In order to validate the choice in number of layers, a 

range of layers were deposited and studied for their response to aqueous ammonia. 

Using nozzle voltages of 18 V, sensors with a range of printed layers (0, 5, 10, 20 

and 40 layers) were fabricated and exposed to 1 mM ammonia and assessed using 

impedance spectroscopy at 1 kHz. It can be seen from Fig. 3.18 that 40 print layers 

which corresponded to a polyaniline volume of 8.96 × 10
-6

 L, displayed reproducible 

responses to 1 mM ammonia with a RSD of 1.9%. A single inkjet-print polyaniline 

layer, which is the equivalent of 2.24 × 10
-7

 L, showed the greatest ratiometric 

impedance response. However, it was not reproducible with a RSD of 38.8%. The 

impedimetric baseline of the devices (Zair) did decrease with increased polyaniline 

mass (Fig. 3.18 insert). The major contribution to the overall sensitivity of the device 

was observed subsequent to ammonia exposure (Z) which also decreased with 

increased polyaniline mass. There was little difference in the RSD between 5 and 10 

(10.1 and 8.7% respectively) inkjet-print layers. Ten inkjet-printed layers (2.24 × 10
-

6
 L), was chosen as the most favourable number of layers for sensor fabrication as it 

exhibited marginally better reproducibility. Detailed statistical information is 

provided in Appendix II. 
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Figure 3.18. Impedimetric response of inkjet-printed polyaniline sensors (n = 3) 

with varying number of prints (1 to 40 layers) to 1 mM ammonia exposure at 1 

kHz. The insertion plots the separated ratiometric data as initial electrode 

baselines in air (Zair) and after ammonia exposure (Z).  

Low volumes of material inkjet-printed onto the electrodes resulted in higher 

ratiometric responses to ammonia, which was consistent with the previous findings. 

Again, this response was not reproducible which is most likely due to the lack of 

confluence of the polyaniline film resulting in increased and variable film resistance. 

This is comparable with the work carried out by Morrin et al. (2008), who observed 

film heterogeneity and lack of confluence at low numbers of prints. The kinetic 

parameters of a sensor are affected by the diffusion of the gas molecules into the 

polyaniline film. Thus, decreasing the polyaniline film thickness is known to 

increase sensitivity of the sensor (Kukla et al., 1996). Diffusion of ammonia through 

the polyaniline film is restricted by large layering of material deposited on the 

electrode. Ten layers were considered an appropriate balance between achieving 

sensor reproducibility, while maximising sensitivity.  
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In conclusion, it was decided that a nozzle voltage of 18 V and a print 

number of 10 inkjet layers was optimum for further ammonia sensor production. The 

volume of material deposited and the time constraints for manufacturing a mass 

producible sensor were also considered in the selection of these parameters.  

3.2.7. Electrochemical characterisation of inkjet-printed polyaniline films 

The optimised inkjet-printed polyaniline films were also studied using cyclic 

voltammetry (CV). This was carried out to corroborate the impedimetric 

characterisation of the polyaniline nanodispersion. Initially CVs were performed on 

polyaniline films obtained by drop casting 7 µL of the polymer dispersion onto 

GCEs (as inkjet printing onto GCEs was not possible) and cycled in 1 M HCl at a 

scan rate of 0.1 V s
-1

 vs. Ag/AgCl. The CV in Fig. 3.17 shows typical polyaniline 

redox electrochemistry obtained using the DBSA-polyaniline nanodispersion 

(Wallace et al., 2002). On the oxidative sweep, the peaks correspond to the 

transformation of leucoemeraldine base to emeraldine salt at approximately 0.23 V 

and from emeraldine salt to pernigraniline at approximately 0.78 V. On the reduction 

scan the peaks correspond to the conversion of pernigraniline to emeraldine salt at 

0.75 V and from emeraldine salt to leucoemeraldine at 0.08 V. The peaks in between 

are associated with the transformation of p-benzoquinone and hydroquinone as side 

products upon cycling to high oxidative potentials necessary to observe the transition 

(Mirmohseni and Wallace, 2003).  
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Figure 3.19. Cyclic voltammogram of a polyaniline nanodispersion drop cast 

onto a glassy carbon electorde and cycled in 1 M HCl at a scan rate of 0.1 V s
-1 

from -0.2 to 0.9 V vs. Ag/AgCl. 

The CV observed in this study was very similair to that obtained by Ngamna 

et al. (2007) for a polyaniline nanodisersion cast on GCE and cycled at a scan rate of 

0.1 V s
-1

. They observed peak potentials in the same region. However, peak currents 

in that study were ten-fold greater than those observed here (Ngamna et al., 2007) 

and may relate to the amount of material deposited.  

In order to characterise inkjet-printed polyaniline films, polyaniline 

nanodispersions were deposited onto carbon screen printed electrodes supplied by 

DropSens, Spain. The DropSens electrodes were obtained because they were 

reproducible enough to ensure no interference relating to the screen print production 

was observed on the cyclic voltammograms. These electrodes had a 4 mm diameter 

carbon working electrode, carbon counter electrode and silver reference electrode 

(DropSens, 2015c). A number of polyaniline layers (0, 1, 5, 10, 15, 20, 30, 40) were 

inkjet-printed onto the DropSens electrodes and were cycled in 1 M HCl at a scan 

rate of 0.1 V s
-1

 from -0.2 to 0.9 V vs. Ag/AgCl. The peak which can be seen at 

approximately 0.2 V in Fig. 3.20 (a) is typical of the emeraldine salt form of 

polyaniline as seen when polyaniline was drop cast onto GCEs in Fig. 3.19. The 

emeraldine salt peak is clearly defined at approximately 0.2 V in both instances. 
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Peak current was then plotted against inkjet-print layer; see Fig. 3.20 (b). A near 

linear relationship was observed between the peak current and the number of prints 

deposited onto the electrode. Comparing this data to that of Fig. 3.19 where the 

polymer was drop-cast onto GCE which is the equivalent of 31 inkjet-printed 

polyaniline layers as per the drop calculation (Table 3.2). This produced a current of 

1 × 10
-4

 A. This is comparable when 35 layers were inkjet-printed onto DropSens 

screen printed electrodes which also produced a current of 1 × 10
-4

 A.   

 

Figure 3.20. Cyclic voltammogram of 0 to 40 layers inkjet-printed polyaniline 

modified DropSens screen printed carbon electrodes in 1 M HCl at a scan rate 

of  0.1 V s
-1

 from -0.2 to 0.9 V vs. Ag/AgCl. The voltammetric peak current at 

0.2 V was then plotted against increasing inkjet-printed polyaniline layers.  

The data gathered here is comparable with the manufacturers technical note 

in which DropSens available carbon screen printed electrodes modified with 

polyaniline (DropSens, 2015b) were assessed. The peak voltage appear in the same 

region (approximately 0.3 V), however the peak currents in the technical note were 

lower (1.1 × 10
-5

 A) than those obtained during this study (2.2 × 10
-4

 A).  

It has been seen by Morrin et al. (2008) that increasing the number of layers 

(and therefore thickness) varies the charge held within the film. Layer thickness was 

also studied using SEM. Fig. 3.21 (a) shows the typical morphology of a bare silver 

electrode being a grainy, coarse bright surface imaged using the backscattered 

electron detector (BSE). Fig. 3.21 (b), (c), (d) and (e) show 5, 10, 20 and 40 layers 

respectively of the polyaniline on silver electrodes which were gold sputtered. 

Increasing number of polyaniline layers was seen to build up on the surface, filling 
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in the bright grainy surface resulting in a smoother, darker morphology. Polyaniline 

coverage for five inkjet-print layers was sparse. At 10 inkjet-print layering, 

polyaniline covered the silver surface which remained visible from beneath the 

smooth dark polyaniline deposit. The homogeneous polyaniline layers begin to 

become visible after 20 layers have been inkjet-printed. It has been seen in the 

literature that 30 layers was required for homogenous film formation to be observed 

(Morrin et al., 2008). However, the inkjet-print parameters were not comparable.  

 

Figure 3.21. Scanning electron micrographs were taken using the backscattered 

electron detector of gold sputtered (a) bare screen printed silver electrode and 

(b) 5, (c) 10, (d) 20 and (e) 40 layers of polyaniline inkjet-printed onto the silver 

electrode at 20 kV and 1453 × magnification. 

(a) 

(e) (d) 

(c) (b) 
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Individual polyaniline nanoparticles cannot be seen as they appear to 

coalesce forming a continuous film. This is a phenomenon seen in previous work 

(Morrin et al., 2008). Nano-structuring was thought to be lost upon inkjet printing, 

where nanoparticles combine to form a continuous polymer film. The continuous 

film described is evident in Fig. 3.21 (d). The polymer film can be seen to cover 

most of the electrode. The cracks seen in the polyaniline film (Fig. 3.21 (e)) may be 

drying artefacts during the vacuum process of SEM or gold sputtering. 

3.3. CONCLUSIONS 

Polyaniline nanoparticles were synthesised utilising micellar polymerisation 

of aniline to produce an aqueous printable ink. This ink was characterised using UV-

visible spectroscopy, TEM and DLS. The ink was then deposited via inkjet printing 

onto silver screen printed IDEs to fabricate polyaniline sensors for ammonia 

determination. In order to measure gaseous ammonia from a liquid sample, the 

sensors were combined with an o-ring and a gas-permeable membrane. This set-up 

was used along with established impedance measurement protocols to optimise 

inkjet printing parameters. Ammonia sensors were fabricated using 10 inkjet-printed 

layers of polyaniline  at a nozzle voltage of 18 V. Chapter 4 continues on to develop 

a device capable of detecting aqueous ammonia concentrations in water and buffer at 

the clinically relevant range (11 to 50 µM) for blood ammonia testing.  
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4.1. INTRODUCTION 

Gaseous ammonia determination has attempted using a wide range of 

sensors. During this time a wide range of sensors have been developed including 

catalytic, conducting polymers, metal oxides and optical sensors (Timmer et al., 

2005). Determining gaseous ammonia in an aqueous environment has proven more 

of a challenge. In previous work, ammonia in liquid has been determined using 

inkjet-printed polyaniline nanoparticle-based sensors. Measurements have taken 

place in a continuous flow system amongst PBS (Crowley et al., 2008) and brine 

(Subramanian et al., 2013) in the range of 0.02 to 10 mM and 0.28 to 5.6 mM, 

respectively. The work carried out by Crowley et al. (2008) utilised an amperometric 

three-electrode set-up in direct contact with PBS at pH 7.5. Ammonium ion (NH4
+
) 

as a representative of aqueous ammonia concentrations was determined. The 

ammonia sensing probe developed by Subramanian et al. (2013) utilised a 

polyaniline sensor in conjunction with a gas-permeable membrane for the 

impedimetric sensing of gaseous ammonia in brine. This work demonstrated the 

ability of ammonia gas to permeate through PTFE and be determined by a 

polyaniline sensor. Permeation, P, of gaseous ammonia through the PTFE membrane 

can be thought of as: 

        Eq. 4.1 

Where D is the diffusion coefficient and S is the solubility coefficient 

(Yampolskii, 2012). The solubility of a particular gas may be given by Henry’s Law 

(Budd and McKeown, 2010).  

         Eq. 4.2 

Where c is the concentration of the gas in solution and kH is the Henry’s Law 

constant (Atkins and de Paula, 2009). The Henry’s Law constant relates the partial 

pressure of ammonia in the gas phase to its concentration in solution. The Henry’s 

Law constants for ammonia in water (+4 to -15°C) are in the range of 172.77 to 

511.88 mol kg
-1

 bar
-1

 (National Institute of Standards and Technology, 2011). 

Dissolved species such as salts may alter water availability and complicate this 

equilibrium (Sing et al., 1999).  
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The work presented in Chapter 3 focussed on the optimisation of the 

fabrication process of the polyaniline nanoparticle-based sensor for the measurement 

of aqueous ammonia. Optimisation of the sensor utilised a PTFE gas-permeable 

membrane in conjunction with an o-ring, which generated a gas headspace for 

ammonia gas to diffuse into. This chapter focuses on the integration of the 

polyaniline sensor into a preliminary device capable of measuring ammonia in a 

static liquid sample at relevant minimum ammonia concentrations of 11 to 50 μM 

(Barsotti, 2001). This was done by encapsulating the polyaniline sensors, o-ring and 

gas-permeable membrane using pressure sensitive adhesive (PSA). Testing was 

carried out on this preliminary device in water and electrolyte matrices at the 

clinically relevant range for blood ammonia testing. This device was further adapted 

into a prototype device for the eventual testing of ammonia in blood. This 

preliminary device was fabricated in a manner that would be consistent with the 

requirements of a POC patient test i.e. inexpensively mass produced, simple to use, 

disposable and self-contained integrated devices.  

4.2. RESULTS AND DISCUSSION 

4.2.1. Impedance spectroscopic characterisation of the prototype ammonia 

measurement device 

 The sensor set-up utilised in Chapter 3 was modified in this Chapter to 

establish a prototype ammonia measurement device. The initial configuration 

included a PTFE membrane and an o-ring to create a gas headspace bonded together 

by adhesive PSA layers. PSA transformed the sensor set-up into an air tight, durable 

device.  

To assess the device for ammonia determination, detailed impedance 

spectroscopic characterisation in air, aqueous media (PBS buffer) and in the presence 

of ammonia was performed. Impedance spectroscopic characterisation took place 

across a frequency range of 0.1 Hz to 100 kHz at amplitude of 5 mV rms. The 

impact of the device upon exposure to air, 52 µL of PBS and PBS containing 

ammonia was assessed (Fig. 4.1).  

The impedimetric spectra of all three systems (air, PBS and ammonia in 

PBS) exhibited that of a resistor and capacitor in series. As discussed in Chapter 3, 
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Section 3.2.3, printed polyaniline sensors in air behave as bulk resistance in series 

with capacitance. This is typically observed on the Nyquist plot as an arching 

vertical line, and as a horizontal line on the Bode modulus and phase plots at low 

frequency values (Fernandez-Sanchez et al., 2005). It is clear from the Nyquist plot 

of the device in air shown in Fig. 4.1 (a), that while some change in -Z” appears to 

be present, indicating a capacitance, this is insignificant in comparison to the 

magnitude of Z’ which indicates resistance, as seen in the isotropic insert. This 

suggests that the device appears to exhibit the characteristics of a resistor and 

capacitor in series in which the capacitance is negligible. This is supported by the 

Bode modulus and phase diagrams (b and c) which show negligible frequency-

dependent changes in absolute impedance (|Z|) or phase (ϕ), which is typically 

associated with that of a resistor. 

Upon exposure of the device to PBS, a decreased response was observed for 

|Z| and ϕ across all frequencies. This is most evident in the Bode modulus plot, Fig. 

4.1 (b). At lower frequencies a decrease in |Z| of 50 Ω was observed which increased 

to 200 Ω at higher frequencies. The decrease in impedance in PBS when compared 

to air, suggests that species from PBS (water vapour) are able to diffuse across the 

membrane and are affecting the impedance of the sensor. While it was observed that, 

in the presence of PBS, there was an overall decrease in impedance (largely due to 

resistance), PBS containing 1 mM ammonia exhibited a significant overall increase 

in impedance. This is most evident in Fig. 4.1 (b) where |Z| can be seen to increase 

by approximately 1 kΩ compared to the device in air. 
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Figure 4.1. Impedance spectra of the device in air, PBS and 1 mM ammonia in 

PBS. (a) Nyquist, (b) Bode modulus and (c) phase plots across a frequency 

range of 0.1 Hz to 100 kHz. 

While species from the PBS buffer were seen to contribute to a decrease in 

impedance of the device when compared to the device measured in air, ammonia in 

buffer was seen to contribute to an opposing increase in impedance. Water vapour is 

known to cause a decrease in the resistance of polyaniline films when in direct 

contact (Crowley et al., 2008, Wu et al., 2000, Hibbard et al., 2013a). While the use 

of a hydrophobic PTFE membrane prevents diffusion of liquid water, it would 

appear that it does not prevent water vapour. This is well known in the fabrics 

industry with the production of Gore-Tex® which is made from PTFE. It repels 

liquid water while allowing water vapour to pass through. It has been seen that water 
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vapour may permeate the PTFE membrane if pressure, humidity, or temperature 

varies across the membrane (Wikol et al., 2007). This has been seen to correspond to 

a decrease in resistance, as water vapour is conductive (Wu et al., 2000). The work 

by Subramanian et al. (2013) using an analogous system did not make this 

observation. This may have been due to the large volumes and high ammonia 

concentrations used in the system which lead to large magnitude of resistance. Thus, 

water vapour capacitance was observed as background signal. However, this study is 

attempting to measure extremely low concentrations of ammonia in very small 

samples and so water vapour interference may be more significant under these 

conditions. 

In order to assess ammonia determination in the presence of water vapour 

preliminary devices were exposed to deionised water, PBS and ammonia in PBS as 

described in detail in Chapter 3, Section 3.2.6.2. It can be seen from Fig. 4.2 that 

deionised water caused a consistent decrease in |Z| with frequency range. The 

decrease was observed at a Z/Zair value of 0.95 which was approximately 320 Ω 

below its baseline in air (Appendix III). The decrease in resistance for PBS was also 

steady throughout the range of frequencies. However, it displayed a larger Z/Zair 

decrease of 0.98, corresponding to 1180 Ω below its baseline. Upon comparison of 

the water and PBS results, it was speculated that something other than water was 

traversing the membrane. It is widely known that small molecules such as helium, 

oxygen and carbon dioxide can permeate through PTFE membrane via micro-porous 

gaps in the polymer structure. It can be seen from Fig. 4.2 that high concentrations of 

ammonia such as 1 and 5 mM in PBS exhibited a ratiometric increase of 1.0 and 1.2, 

respectively (943 and 14,787 Ω). However, 0.1 mM had a Z/Zair less than 1 (0.97), 

which indicated the response to low concentration ammonia was lower than its 

baseline in air. In this case the water vapour signal was effectively a negative 

interferent i.e. the magnitude of impedimetric decrease was so substantial that any 

increase associated with ammonia was obscured. Full impedimetric spectra are 

available in Appendix IV. 
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Figure 4.2. Ratiometric impedance spectrum of the device upon exposure to 

deionised water, 0, 0.1, 1 and 5 mM ammonia in PBS. Frequency range 0.1 Hz 

to 100 kHz. 

From the literature it has been observed that as the concentration of ammonia 

increases the rate of deprotonation of the polyaniline film is heightened which is 

proportional to the increased resistance of the film (Subramanian et al., 2013, Wu et 

al., 2000, Hibbard et al., 2013a). This increased resistance caused by ammonia is 

also associated with a corresponding decrease in resistance due to the PBS matrix.  

Unfortunately, at the concentrations of ammonia found in blood (between 11 - 50 

μM), the decrease in impedance brought about by the matrix was greater than the 

increase in impedance due to the presence of ammonia, which would render the 

sensor unsuitable for measurement in blood at the required concentrations. While the 

response to the aqueous medium may be constant, it was necessary to be able to 

differentiate it from the ammonia signal. The impact on the quantitative 

measurement of ammonia in the presence of the opposing response exhibited by the 

aqueous medium was further investigated. 

4.2.2. Strategies to eliminate solvent interferents  

4.2.2.1. Investigation of the effect of membrane composition 

Upon contemplation of the solvent interferences, the possibility of preventing 

water vapour permeation through the PTFE membrane was explored. The addition of 
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compounds to reinforce the PTFE membrane was considered. It was seen from the 

literature that ethyl cellulose (EC) and Brij® S10 have been employed to support 

hydrophobic membrane during the development of an aqueous ammonia test (Dobler 

et al., 2006) and also to control water breakthrough (Malinowska and Meyerhoff, 

1998, Munkholm, 2000). It was decided to combine these compounds with the PTFE 

membrane. The concentrations used were taken from studies by Malinowska and 

Meyerhoff (1998) and Munkholm (2000). A 10% EC solution was dissolved in 

80:20 ratio of toluene to ethanol. The 30% Brij® solution was made up in deionised 

water and heated to 50°C to encourage homogeneity. The Whatman® PTFE 

membrane filter used in the device had a polypropylene support material on one side 

on which Brij® was deposited using a paint brush. EC was deposited onto the PTFE 

side of the membrane filter in the same way. The modified membrane was 

incorporated into the device and exposed to ammonia at a concentration range of 0 to 

30 mM in buffer and measured impedimetrically.  

It can be seen from Fig. 4.3 for all ammonia concentrations used that their 

Z/Zair values were approximately 1. Thus, the use of EC and Brij® in combination 

with the PTFE membrane prevented a decrease in impedance associated with water 

vapour. However, this also compromised ammonia permeation as no increase upon a 

Z/Zair was observed.  
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Figure 4.3. Ratiometric impedance data of the device incorporating a modified 

PTFE membrane coated with 10% EC and 30% Brij® S10 on either side. The 

device was exposed to 0, 5, 15, 25 and 35 mM ammonia in PBS. 

This modified PTFE membrane completely prevented permeation. This was 

an unexpected result as Brij® is known to transport ammonia through hydrophobic 

membranes (Kapoor et al., 2013) in combination with EC this was not the case here. 

Brij® and EC were extremely viscous and therefore difficult to manipulate and 

deposit onto the membrane homogenously. It was also evident from the data 

gathered in Fig. 4.3 that they were completely prevented all permeation through the 

membrane i.e. water vapour and also gaseous ammonia. It was for this reason 

another direction was employed to manage the effect of water vapour on the 

preliminary device. 

4.2.2.2. Ammonia sensor recovery 

Limiting the effect of water vapour interference by prevention did not appear 

to be successful. It was decided to explore the possibility of eliminating the effect of 

water vapour after it permeated through the membrane. It can be seen in the 

literature that polyaniline sensors for ammonia determination have been recovered to 

their initial baselines upon exposure to air (Wu et al., 2000, Hibbard et al., 2013a, 

Wang et al., 2004, Blighe et al., 2012, Wongchoosuk et al., 2012, Prasad et al., 

2005). As discussed in Chapter 1, Section 1.2.3 polyaniline films donate protons 
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from their positively charged local centres upon exposure to NH3 forming 

energetically favourable NH4
+
. This causes an increase in resistance as valence 

electrons can no longer easily hop from one positively charged centre to another. 

When the polyaniline film is in contact with air, NH4
+
 decomposes into NH3 and 

protons. The protons are integrated once again into the local centres restoring initial 

levels of conductivity (Wu et al., 2000, Blighe et al., 2012, Chabukswar et al., 

2001). Conversely, upon exposure of the polyaniline films to humidity, adsorption 

occurs and water molecules are held within the charged centres via weak hydrogen 

bonding. This bond is readily broken by moderate heating (Lubentsov et al., 1991) 

and exposure to air. The movement of air across the film breaks the weak hydrogen 

bonds and dissipates the water vapour. Thus, the rate of association of ammonia with 

polyaniline is very high and its dissociation is very slow. However, both the rate of 

association and dissociation of water with polyaniline are rapid (Kukla et al., 1996). 

This is due to the binding that occurs during interaction with ammonia a strong 

chemisorption interaction is observed.  

Analyses of the literature lead to the conclusion that in order to displace 

water vapour from the device, they may be exposed to air and/or heat. Three 

methods were trialled for this purpose subsequent to PBS exposure. Devices were 

either (a) heated to 30°C in a dry heat oven for 30 min, (b) desiccated for 30 min or 

(c) the air from the device headspace was removed by pulling the air out using a 10 

mL syringe. It can be seen from Fig. 4.4 that heating the devices to 30°C produced 

the lowest Z/Zair value (0.78) of the three methods trialled. Devices that were 

desiccated produced a ratiometric value of 0.92. It was expected that dehydrating the 

devices from residual water vapour would also recover the devices to their initial 

baselines. Devices that were desiccated produced a ratiometric value of 0.92. 

However, this was not the case. Devices that had the headspace gas displaced by 

withdrawing it had the highest ratiometric value (0.96) of the three methods trialled. 

All three methods trialled resulted in ratiometric values below 1, meaning sensors 

displayed a decrease in resistance with respect to their baseline in air. Thus, had the 

devices been exposed to ammonia, any related increases would be concealed by the 

decrease associated with water vapour. 
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Figure 4.4. Ammonia device recovery subsequent to PBS exposure at n = 2, by 

(a) heating to 30°C for 30 min, (b) desiccating for 30 min, (c) removing 

headspace gas. Impedance analysis took place at a frequency of 1 kHz. 

The relationship between humidity and temperature are obviously linked. 

They have been seen to decrease the resistance of the polyaniline sensors (Wu et al., 

2000, Yoshikawa et al., 2006). As with increased temperature in dry heat oven, the 

humidity decreased. The decrease in resistance associated with temperature is 

suggested to be due to an irreversible loss of water molecules from the hydrated 

polyaniline film (Mondal and Munichandraiah, 2006). In the work of Mondal and 

Munichandraiah (2006), polyaniline could be recovered to its initial baseline in air if 

left at atmospheric conditions to rehydrate, achieving equilibrium with the 

atmospheric conditions. The reduced vapour pressure of water vapour in the gas 

phase above the sensor would be much lower than the vapour pressure on the sensor 

surface, causing the water vapour on the sensor to diffuse into the headspace in an 

attempt to re-equilibrate the vapour pressure. This hypothesis together with literature 

studies showing that air has been widely used to regenerate polyaniline sensor 

baselines was further explored.  

The method of withdrawing gas from the device headspace proved difficult 

as it was too vigorous and damaged the device. This was caused by the rate of air 

flow being removed with a 10 mL syringe from the 247 mm
3
 headspace. Instead of 

withdrawing the gas in the device headspace it was decided to purge the device 

headspace with 5 psi of compressed air. This was hypothesised to displace water 
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vapour from the device headspace and allow those that were on the sensor surface to 

equilibrate with the regenerated gas in the headspace. In order to do this the o-ring 

component of the device was pierced with needles on either side. Fig. 4.5 presents 

the modified device. The top view can be seen on the left and the underside on the 

right. This modification allowed the headspace to be easily filled with air via one 

needle and exited through the needle on the opposite side of the o-ring. 

 

Figure 4.5. Photograph of the ammonia device. Depicted are two needles 

inserted into the 247 mm
3
 headspace via the o-ring. This allows the air purge to 

pass over the polyaniline sensor, by entering through one needle and leaving via 

the other on this opposite side. Left shows the top view, while the right shows 

the view from the underside. 

The configuration shown in Fig 4.5 was used to examine the recovery of the 

device to initial baselines in air using an air purge subsequent to water vapour 

exposure. An initial impedimetric baseline reading was taken across a frequency 

range of 0.1 Hz to 100 kHz. The sensor was then exposed to PBS for 15 min before 

being removed. Subsequently, the sensor headspace was then purged with 5 psi air 
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for 1 min and a final absolute impedimetric reading was taken after. It was observed 

from Fig. 4.6 that at 1 kHz a device with an initial baseline |Z| of 528 Ω, upon 

exposure to PBS the devices decreased by 68 Ω in impedance to a |Z| of 460 Ω (this 

decrease corresponds to a Z/Zair of 0.87). Low frequencies (<1 kHz) typically 

correspond to the resistive properties of the device in which there is a significant 

decrease due to water vapour associated with PBS. The subsequent air purge 

recovered the initial baseline to 528 Ω (corresponding to a |Z| of 1.0).  

 

Figure 4.6. Device recovery upon being purged with compressed air for 1 min 

after the exposure of PBS for 15 min. 

In conclusion, the air purge successfully recovered the aqueous ammonia 

device upon exposure of PBS. Device recovery was considered a critical aspect in 

attaining the LOD required for blood ammonia analysis. Returning the device to its 

initial baseline allowed increases in resistance associated with physiological levels of 

ammonia to be observed without being concealed by matrix interference. The 

photograph in Fig. 4.5 therefore illustrates the optimised prototype device which was 

used for further studies and assessed for the potential of blood ammonia 

determination. 

4.2.2.3. Investigation of sample exposure time in the sampling chamber 

Ideally, a blood ammonia device should reach the minimum physiological 

level of blood ammonia testing which is approximately 11 - 50 μM. Testing was 
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carried out to find the LOD of the developed prototype device. It was accepted that 

the 1 min air purge at 5 psi of the device headspace returned the devices to their 

initial baselines across all frequencies. Thus, single point ratiometric impedance 

(Z/Zair) data of the device were analysed at 1 kHz for increased time intervals (2, 4, 

8, 16 and 32 min) and prior to each reading an air purge took place. It was 

hypothesised that increased ammonia exposure time may lead to an increase in the 

resistance of the polymer film, allowing the capacity for lower concentration 

ammonia to be determined. Fig. 4.7 depicts the ratiometric values of the device in 

response to varied ammonia concentrations (100 to 1,000 µM) versus time. The 

ratiometric resistance of the devices increased over time for each concentration 

studied. This suggests that the polyaniline and NH3 interaction continues over time. 

For 250 μM ammonia, Z/Zair increased by a factor of 1.1 over the period of 2 to 32 

min, whereas 1,000 μM increased by a factor of 1.3. The prototype device was 

capable of analysing ammonia concentrations down to 250 μM, beyond that the 

sensor suffered sensitivity limitations, as 100 μM produced a higher Z/Zair response 

than 250 μM. It may be assumed impedance response would eventually saturate due 

to the limited number of NH3 molecules available to deprotonate the polyaniline 

film.  
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Figure 4.7. Change in the ratiometric impedance of the devices in response to 

concentrations of ammonia (0, 100, 250, 500, and 1000 μM) over time. 

Impedimetric data was gathered at a frequency of 1 kHz subsequent to a 1 min 

5 psi air purge.  

While increased exposure time was observed to increase the ratiometric 

impedance of the devices in response to ammonia, it was important to keep in mind 

the POC application of the device. Thus, a balance between acceptable POC 

exposure time and increased response needed to be reached. It seemed that 15 min 

exposure time was the best choice because it gave a greater Z/Zair than earlier times. 

It was also considered a reasonable time for a POC test and was therefore used for 

further device testing. Sample exposure time of 15 min in combination with the air 

purge method improved the impedimetric response of the device to ammonia 

somewhat. However, further improvements needed to be made in order to reach the 

relevant minimum level of blood ammonia testing of 11 to 50 µM.   

4.2.2.4. Investigation of the effect of sample pH  

The previous section optimised sample exposure time in order to improve the 

sensitivity of the prototype device. However, the LOD of the device was still not 

adequate. In 52 µL of 25 µM ammonia in PBS at pH 7.4 there are 7.83 × 10
14

 

molecules of ammonia compared to that of Subramanian et al. (2013) in which a 220 

mL continuous flow system was used to expose polyaniline electrodes to ammonia 
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in brine. The lowest concentration of ammonia reached by this system was 0.28 mM 

(5 ppm) which equates to 3.71 × 10
21

 molecules of ammonia. The impedimetric 

increase associated with ammonia was observed by Subramanian et al. (2013) 

amongst the water vapour decreases due to high concentrations of ammonia at high 

volumes. The relevant minimum level of blood ammonia is between 11 and 50 µM, 

so it can be concluded that detection of ammonia at these concentrations is 

unreasonable using the current set-up (i.e. low volumes). 

This section outlines the investigations undertaken to further improve the 

sensitivity of the device and its measurement of ammonia. Ammonia has a pKa of 9 

meaning that in aqueous solution NH3 and NH4
+
 are in equal abundance at this pH. 

When the pH of the solution is neutral (that is, two units below the pKa) 99% of 

ammonia is in the NH4
+
 form. Reciprocally, at pH 11 (two units above the pKa), 

99% of ammonia will exist as NH3 (Atkins and de Paula, 2009). In the context of the 

prototype blood ammonia device which operates at neutral pH, only some 1% of 

ammonia is available in the gaseous form to diffuse from solution through the PTFE 

membrane into the device headspace, to be measured by the polyaniline sensor. 

Thus, by altering the pH of the solution to shift the balance towards NH3(g), this may 

result in more ammonia molecules being available to diffuse through the membrane 

and thus be measured. This approach has been incorporated into commercial 

ammonia test kits (Vitros® and PocketChem™). It may be performed in situ by 

impregnating an absorbent layer with an alkaline reagent, so when the ammonia 

sample is in direct contact with the buffer it causes a shift in the pH generating more 

NH3 (Dobler et al., 2006). However, for initial studies the alteration of pH was 

investigated in this study by changing the pH of the sampling solution ex situ. This 

was done with the aim of integrating an alkaline reagent into the sensing device if 

proven to be successful.  

NaOH(aq) is a strong base with a pKa of approximately 14. When in solution 

it donates a hydroxide to hydrogen in solution forming water, to make the solution 

more basic. In this work ammonia was typically prepared as ammonium chloride in 

PBS pH 7.4. When sodium hydroxide is in solution with ammonium chloride it 

produces ammonia along with salt and water, see Eq. 4.3.  

                           Eq. 4.3 
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The addition of NaOH was employed to produce more NH3 molecules with 

the aim of increasing the impedimetric response of the device. The PBS pH 7.4 

buffer was adjusted to pH 11.0 by adding 2 µL of 5 M NaOH to 50 µL of the 

ammonia sample (ratio of 1:25 PBS to 5 M NaOH) in an Eppendorf tube. 

Subsequent to the sample pH change, 52 µL of the sample from the Eppendorf tube 

was introduced to the device sampling chamber and impedance measurements were 

performed over 32 min. Prior to measurement, the device chamber was purged with 

air, creating an accumulative ammonia response. This was then compared to PBS pH 

11.0 and ammonia in PBS pH 7.4 using the same parameters. NaOH in PBS at pH 

11.0 did not cause an increase in impedance of the film (Fig. 4.8). Ammonia 

contributed to the increased impedance. Increasing the proportion of NH3 in solution 

by increasing pH of the sample from 7.4 to 11.0 resulted in approximately five-fold 

increase in Z/Zair for 1 mM ammonia in PBS. Over time, the ratiometric impedance 

of the sample at pH 7.4 was consistent with little variance (0.019). The response of 

the sample at pH 11.0 increased gradually over time up to 15 min, whereupon it 

decreased slightly. This suggests that for a higher number of NH3 molecules in pH 

11.0 there is a saturation point beyond 15 min, due to the limited number of NH3 

molecules in solution.  

 

Figure 4.8. The effect of sample pH on ratiometric impedance response over 

time of the prototype device to 1 mM ammonia. The devices were purged with 

air prior to impedimetric measurements taken at frequency of 1 kHz.  
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Increasing the pH of the sample did appear to increase the response of the 

devices to ammonia in solution. This can be considered to increase the number of 

NH3 molecules available to interact with polyaniline. This ammonia-polyaniline 

association continues over time, up to a saturation point of 15 min.  

In order to increase the number of NH3 molecules in solution via pH change, 

optimisation of the interaction kinetics was studied. Previously the change in pH was 

conducted ex situ in an Eppendorf tube and introduced to the device immediately. It 

was hypothesised that allowing time for this process to occur would increase the 

number of NH3 molecules. To study the kinetics of the pH change and its effect on 

the device, the 1 mM ammonia sample was held in the Eppendorf tube for 1, 5 and 

10 min of pre-incubation before being introduced to the device sample chamber for 

measurement. The reaction was carried out as described previously using a 1:25 ratio 

of 5 M NaOH to sample solution. The samples were kept on ice during pre-

incubation, in line with clinical protocols which would be used in further studies 

with serum and plasma (Huizenga et al., 1994). The devices were then 

impedimetrically measured, subsequent to an air purge at various time intervals up to 

32 min. It can be seen from Fig. 4.9 that the ammonia response continued to increase 

with time. Pre-incubation may have had some effect between 1 and 5 min. However, 

the rates were consistent after this. 10 min was little improved over 5 min. 
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Figure 4.9. Kinetic study of the 1 mM ammonia pH sample change from 7.4 to 

11.0 using 5 M NaOH. The devices were purged with air for 1 min at 5 psi prior 

to impedimetric measurements taken at a time intervals up to 32 min at a 

frequency of 1 kHz.  

The pre-incubation step resulted in near linear response of the devices to 

ammonia. This should be compared to when the sample was not incubated and 

placed directly on the device which after 15 min a saturation point was reached (Fig. 

4.8). It appears that NH3 may be accumulating during pre-incubation and diffusing 

from the sample in larger quantities which increased the impedimetric response of 

the device. It is possible a saturation point beyond 10 min of pre-incubation may be 

reached, however this was not covered in the scope of this study. An incubation time 

of 10 min is typical of the ion exchange process used in a similar study which 

allowed 20 min for pre-incubation time using sodium acetate and ammonium 

chloride (Ayyub et al., 2015). It was concluded, from the data gathered and previous 

literature that 10 min of pre-incubation time was used for further studies.   

To summarise, the methodology developed and used throughout further 

studies. Initial device baseline in air was measured impedimetrically at 1 kHz, this is 

denoted Zair. Ammonia as ammonium chloride was dissolved in PBS pH 7.4. The pH 

of this sample was adjusted to pH 11.0 by adding 2 µL of 5 M NaOH to 50 µL of the 

ammonia sample (ratio of 1:25 PBS to 5 M NaOH) in an Eppendorf tube which was 
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left to pre-incubate for 10 min. Subsequently, 52 µL of the sample from the 

Eppendorf tube was introduced to the prototype device sampling chamber and 

exposed for 15 min, upon which the sample was removed and a 1 min at 5 psi air 

purge was introduced to the device headspace. A final impedimetric measurement 

was taken which was denoted Z. This final impedimetric measurement (Z) was 

divided by the initial baseline measurement (Zair) to give the ratiometric response 

(Z/Zair) of the device to ammonia. 

4.2.3. Time course analysis of the ammonia measurement process 

It has been established in the previous sections that water vapour effects on 

device impedance were eliminated when the device headspace was purged with air. 

Increased exposure time and a change in pH of the sample increased the scope for 

low ammonia concentrations to be determined. The majority of these developments 

were made upon analysis of ratiometric data (Z/Zair) of the devices with respect to 

their initial baselines in air i.e. measurements took place after all exposure. It was 

important to gain a comprehensive understanding of the 15 min sample exposure 

process. This would allow the study of the NH3 effects on polyaniline sensor as part 

of the developed device. In order to do this the ratiometric impedance at 1 kHz was 

monitored over time (Fig. 4.10). The procedure was as follows, ammonia samples 

were incubated with 5 M NaOH for 10 min prior to device exposure. Approximately 

200 s of baseline device readings in air were recorded impedimetrically. The pre-

incubated ammonia sample was then introduced to the sample chamber for 15 min 

exposure, the sample was then removed and the device headspace was purged with 

air for 1 min. It can be seen from Fig. 4.10 that the ratiometric impedance value for 

the devices baseline in air was 1, which was expected. Upon exposure to the 52 µL 

sample solution an initial impedimetric increase was seen in proportion for all 

ammonia concentrations with respect to the baseline readings. Cross over between 

ammonia concentrations was observed during the 15 min sample exposure and it was 

corrected when the electrode was purged with air at 1,100 s. This crossover may be 

due to matrix effects. 
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Figure 4.10. Continuous ratiometric impedance monitored at 1 kHz over time 

upon exposure of ammonia in solution at pH 11.0 to prototype devices.  

It is evident from this real time experiment that there was an initial decrease 

in ammonia measurement due to the matrix effect of PBS. The initial decrease was 

expected upon consideration of previous experimentation, discussion and theory 

around water vapour and matrix effects on the device. However, it remains unknown 

why a gradual increase in impedance was observed. The 1 min air purge has been 

seen to remove water vapour from the device headspace leaving residual ammonia to 

be measured. Higher concentration of ammonia means that there was a higher 

proportion of deprotonation resulting in higher impedance. In the literature, 

polyaniline gas sensors have had response times of approximately 2 min (Kukla et 

al., 1996, Jin et al., 2001, Sutar et al., 2007), and fast recovery times of 1 - 5 min 

(Sutar et al., 2007). This was useful information going forward for complete device 

recovery. It was assumed if the devices were left for a longer period of time they 

would return to baseline levels. However, this was an issue as the final impedimetric 

measurement was taken immediately after the air purge because it has been seen in 

the literature that recovery times vary with concentration (Prasad et al., 2005). It is 

important to note that variations in device response to ammonia were thought to be 

linked to the reproducibility of the devices produced. This issue needed to be solved 

if accurate blood ammonia determinations were to be carried out. 
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4.2.4. Sensor pre-calibration 

Sensor reproducibility is a critical parameter in solving sensitivity issues. 

Pre-calibration is a method carried out to validate the eventual measurements of the 

devices in this case. This approach has been seen to improve sensor reproducibility 

(Moser and Jobst, 2013). To test the pre-calibration approach, three devices were 

pre-calibrated using a known concentration of ammonia (1 mM) prior to a range of 

calibration standards 5 days later. For the three devices tested the impedimetric 

response to ammonia was improved upon re-exposure from an average Z/Zair of 3.8 

to 4.2. Conversely, the statistical information available in Table 4.1 shows the 

deterioration of the baseline on day 5 compared with baseline impedance on day 1. It 

worsened from an average and relative standard deviation of 315 to 406 Ω and 9.0 to 

10.2%, respectively. 

 

Figure 4.11. Impedance responses of 3 ammonia sensors to 1 mM ammonia in 

PBS pH 11.0 on day 1 and re-exposure of 1 mM ammonia on day 5. 
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Table 4.1. Statistical table of impedimetric results from ammonia sensors 

response to the effect of 1 mM ammonia re-exposure after 5 days. 

Aqueous NH3 

device 

Z/Zair 

Day 1 

Z/Zair 

Day 5 

Zair 

Day 1 

Zair 

Day 5 

1 4.15 4.31 311 398 

2 3.50 4.08 345 451 

3 3.80 4.11 289 369 

Average 3.82 4.16 315 406 

SD 0.33 0.12 28.21 41.58 

%RSD 8.65 2.98 8.96 10.24 

 

This pre-calibration study allowed the reversible process of ammonia and 

polyaniline using atmospheric air to be studied. It was seen that leaving the 

electrodes for 5 days before re-exposing to ammonia them improved the 

impedimetric reproducibility of the response. It is not fully understood why the 

reproducibility of ammonia response of the devices is accompanied with an increase 

in baseline impedimetric variance after 5 days. It has been seen in the literature that 

the polyaniline interaction with ammonia is a reversible one that improves the 

reproducibility of the response over time. Reports of polyaniline coated multiwall 

carbon nanotubes showed good reproducibility and stability when repeatedly 

exposed to 75 ppm ammonia (He et al., 2009). However, these reports of 

reversibility (Wu et al., 2013, Hibbard et al., 2013b) are contradicted by many 

researchers (Blighe et al., 2012, Jin et al., 2001, Sutar et al., 2007). Prasad et al. 

(2005) observed some irreversibility at high concentrations of ammonia (150 ppm = 

8.4 mM) and suggests this may be due to increased amount of chemisorbed ammonia 

which in turn enhances desorption rates and recovery. These issues are irrelevant for 

biomedical applications as these concentrations are not required.  

 It was evident from Fig. 4.11 that pre-calibration of the devices improved the 

reproducibility of the device response to ammonia. The time between pre-calibration 

and exposure was then optimised. To do this, devices were first exposed to 0.5 mM 

ammonia in PBS pH 11.0 and subsequently measured at two day intervals upon 0.5 

mM ammonia re-exposure. The results are depicted in Fig. 4.12. They demonstrate 
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that device sensitivity to ammonia initially increased with re-exposure time until a 

decrease was observed for an interval of day 5 and beyond. Re-exposure of 0.5 mM 

ammonia on day 3 gave the best response to ammonia (Z/Zair = 3.4), however 

resulted in one of the worst RSD values of 11.0%. Day 5 resulted in the best RSD 

(0.9%), see statistical information of Table 4.2. 

 

Figure 4.12. Ammonia sensors are pre-calibrated with, and re-exposed to 0.5 

mM ammonia in PBS pH 11.0 on 2 day intervals (n = 2).  

Table 4.2. Statistical data for increased re-exposure day of 0.5 mM ammonia in 

PBS pH 11.0 to ammonia sensors. 

Re-exposure day 1 3 5 7 9 

Average 3.23 3.37 2.84 2.54 2.31 

SD 0.57 0.37 0.02 0.11 0.10 

%RSD 17.78 10.96 0.86 4.50 4.29 

 

The aim of this study was to find the optimal time between pre-calibration 

and re-exposure which would result in high ratiometric response but also good 

reproducibility. This study has shown an increase of Z/Zair for re-exposure up to day 

3, beyond this a decline is seen. Interestingly beyond this point, reproducibility 

improves. It could be thought that the response to ammonia would eventually 
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saturate with time. However, there are studies that quote the response lifetime of a 

polyaniline sensor as less than 7 hours (Blighe et al., 2012). Contrastly, work carried 

out by Wu et al. (2000) demonstrated polyaniline film sensitivity to ammonia 

remained consistent over time up to 80 days. Combining knowledge from the pre-

calibration study carried out it was decided for laboratory convenience pre-

calibration of the sensors was carried out 7 days prior to subsequent exposure using 

0.5 mM ammonia in PBS pH 11.0.  

The optimised polyaniline modified sensing devices were then used to 

impedimetrically determine ammonia at the clinically relevant range of blood 

ammonia in a matrix of PBS pH 11.0. Ammonia pre-calibration was carried out 

using the optimised conditions as detailed above. In brief, the 0.5 mM ammonia as 

ammonium chloride was incubated with 5 M NaOH for 10 min on ice prior to 52 µL 

of sample volume being exposed to the sensing device for 15 min. The sample was 

removed from the device and 5 psi of air was passed through the headspace for 1 min 

before the sensor was impedimetrically assessed. This procedure was repeated 7 days 

later with the calibration concentrations (0, 25, 50, 100 and 200 µM) of ammonia. 

The relationship between ratiometric impedance (Z/Zair) and ammonia concentration 

produced excellent linearity across the clinically relevant range. Data points 

including error bars are clearly distinguished, with an R
2
 of 0.9868, a slope of 0.0043 

and an intercept of 0.9562, statistical data is available in Appendix V. Physiological 

ammonia reference levels are between 11 and 50 µM. This demonstrated that the 

device was suitable for measurement of physiological concentrations of ammonia in 

a liquid sample.  
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Figure 4.13. Measurement of ammonia in PBS pH 11.0 from 25 to 200 µM (R
2
 = 

0.9868, slope = 0.0043 and intercept = 0.9562 at n = 3) at 1 kHz. 

4.3. CONCLUSION 

The development and optimisation of a miniaturised aqueous ammonia 

device composed of inkjet-printed polyaniline nanoparticles was demonstrated. An 

aqueous dispersion of polyaniline was deposited over a silver IDE array using 

piezoelectric inkjet printing technique. These sensors in combination with a 

hydrophobic PTFE membrane created a platform for ammonia sensing in liquid 

sample. The developed device solved problems relating to the measurement of 

ammonia in physiological buffers. The device employs a pH change and an air 

purge. The pH change increased the availability of NH3 while the air purge displaced 

solvent interferences from the gas headspace, leaving behind the residual ammonia 

response. This resulted in the final selective and sensitive measurement of ammonia. 

The device was found to perform well in response to ammonia across the 

clinically relevant range with calibration plots obtained for 25 to 200 µM. Pre-

calibration of the sensors was shown to improve the reproducibility of the response 

to ammonia. This work illustrated a low-cost, mass production method for ammonia 

devices with the potential of blood ammonia POC testing. Thus, the goal was then to 

isolate the impedimetric signal specific to ammonia from the common physiological 

interferences in blood. By combination of polyaniline-based silver electrodes and 
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a.c. impedance, isolation and quantification of an ammonia signal in the necessary 

range is shown to be among the matrix of human blood.  
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CHAPTER 5 

CHARACTERISATION AND VALIDATION OF THE BLOOD AMMONIA 

SENSOR DEVICE 
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5.1. INTRODUCTION 

There has been an increase in research efforts around electrochemical sensors 

for healthcare use. This increase is a result of population longevity demand and 

higher global mortality rates (Turner, 2013). Electrochemical sensing has 

demonstrated the capability of POC testing by providing accurate and rapid 

measurement in complex matrices such as blood. Together with mass producible 

fabrication techniques they are used to deliver inexpensive, disposable, single use 

sensors (Wang, 2006).  

Earlier work in this thesis focused on the production of a printed polyaniline 

sensor. This sensor was then incorporated into a device capable of measuring 

ammonia in liquid samples. The work detailed in this chapter utilises the platform 

for ammonia measurements in buffer and applies it to serum. The developed device 

was also validated against a commercially available assay kit. Validation of any 

analytical method is a key requirement in ensuring reliability, traceability and 

compatibility of results (Isabel Lopez et al., 2015).  

5.1.1. Blood buffering capacity 

The developed device incorporated a pH change of the PBS – a buffer which 

is designed to mimic the pH, ionic strength and buffering characteristics of 

physiological buffers in blood. Biological buffering systems strictly regulate blood 

pH at 7.4 (Good et al., 1966). They each possess a characteristic buffering range. 

The buffering capacity of a system, β, is the ratio of incremental amount of acid or 

base added relative to the responding change in pH (Voet and Voet, 2004, Mohan, 

2003).   

There are numerous buffering systems in the body. The main two are the 

bicarbonate and phosphate systems. These work by utilising the hydrogen ion (H
+
) to 

regulate systemic pH, which is one of the most tightly regulated systems in human 

physiology (Kellum, 2000). Proteins also play an important role in buffering 

systems. They act as proton donors and acceptors via functional groups and are 

abundant in the blood system (Ellison et al., 1958). The buffering capacity of blood 

was a critical parameter to investigate with respect to the development of the blood 

ammonia device. During the evolution of the device sodium hydroxide was utilised 
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to induce a pH change (to pH 11.0). This was necessary to facilitate low level 

ammonia determinations. This pH change was developed in a phosphate buffered 

system which has three pKa values 2.12, 7.21, 12.31 (Mohan, 2003). This buffering 

system was capable of maintaining an alkaline pH. However, this is not the case for 

biological based systems which are strictly regulated around pH 7.4. The significant 

increase in pH may precipitate or degrade blood components.   

A blood ammonia test does not have the capacity to identify an acid-base 

imbalance. It exclusively quantifies ammonia levels. The device developed in the 

study will act as a prompt for further investigations such as urinalysis, urine pH and 

blood gas analysis which would then indicate alkalosis.  

5.1.2. Consideration of sample interferences 

Moving from measurements in buffers to blood samples it was expected that 

the sample may contain additional interferences. Clinical laboratory analyses of 

blood samples are often affected by interferents. These interfering substances may 

arise from endogenous (e.g., haemoglobin, bilirubin, lipids, and proteins) and 

exogenous sources (e.g., drugs prescribed for the patient). Lipids are known to 

interfere with spectrophotometric analysis by turbidity, light scattering and volume 

displacement. Volume displacement caused by lipids may also affect analytical 

methods by displacing water, thereby giving rise to problems such as pseudo-

hyponatremia (Kroll and Elin, 1994). Hyperlipidaemia is a condition in which there 

are elevated levels of lipids in the blood (Beaumont et al., 1970). Lipoproteins 

typically range in size from 6 to 1,000 nm depending on the category (Nikolac, 

2014). Hyperlipidaemia has been known to interfere with the determination of 

glucose, phosphorous, total bilirubin, uric acid and total protein (Kroll and Elin, 

1994).  
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5.2. RESULTS AND DISCUSSION 

5.2.1. Spectrophotometric analysis of ammonia in solution using the Berthelot 

reaction 

A number of commercial ammonia quantification kits were considered for 

the purpose of validating the developed device, including Abcam®, PocketChem™, 

Sekisui, Sigma Aldrich® and Vitros® ammonia tests. The Abcam® Ammonia 

Assay Kit which utilises the Berthelot spectrophotometric reaction was chosen to 

validate the ammonia device because it is an enzyme-free method. This method was 

also specific and sensitive enough to reach the critically relevant range of blood 

ammonia testing. For further information on the Berthelot reaction, see Chapter 1, 

Section 1.2.  

The Abcam® Ammonia Assay Kit was used in line with protocol instructions 

provided by the manufacturer. This is fully described in Chapter 2, Section 2.4.9. In 

brief, 100 µL of ammonia standards were prepared in 0.1 M PBS using the provided 

1 mM ammonium chloride calibrator stock. To this, 80 µL of Assay Reagent 1 

(nitroferricyanide, 2-phenylphenol) and 40 µL of Assay Reagent 2 (sodium 

hypochlorite) were added. The resulting blue colouration was measured 

spectrophotometrically at 650 nm after 30 min incubation at room temperature. A 

standard calibration curve was prepared for 25 to 200 μM ammonia at n = 4. This 

can be seen in Fig. 5.1, showing excellent reproducibility and linearity with a 

correlation of determination of 0.9989, a slope of 0.0038, intercept of 0.2628 and a 

RSD of 3.85%. 
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Figure 5.1. Spectrophotometric calibration of ammonia standards in PBS using 

the Abcam® ammonia assay (n = 4). R
2
 = 0.9989, slope = 0.0038, intercept = 

0.2628, RSD = 3.85%. 

 The Abcam® assay was capable of quantifying ammonia levels across the 

range of 25 to 200 µM in a buffer such as PBS. The Abcam® assay is an established 

method reporting a very low LOD (>10 µM) for ammonia determinations which may 

be conducted in complex matrices such as urine, serum, plasma and blood. This 

extremely reproducible result confirmed the assay as a credible validation method 

for the developed device.  

5.2.2. Validation of the device using the Abcam® spectrophotometric assay 

To assess the possibility of using the Abcam® assay to validate the device, 

both methods were exposed to a set of calibration standards (0 to 200 µM, ammonia 

in PBS at n = 2). The calibration standards were prepared using the 1 mM calibrator 

stock provided in the assay kit and were simultaneously exposed to both 

measurement methods. The correlation of both methods can be seen in Fig 5.2. This 

data shows excellent correlation of the two methods with a correlation coefficient of 

0.9747, intercept of 0.6654 and slope of 1.1526, p < 0.0001. 
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Fig.5.2. Correlation of the spectrophotometric and impedimetric responses of 

the ammonia calibration standards (sample size 6 at n = 2), R = 0.9747, 

intercept = 0.6654 and slope = 1.1526, p < 0.0001. 

 There was a good linear relationship between the device and the assay. The 

low p-value (< 0.0001) indicated there was little difference between both methods. 

This data established the Abcam® assay as a viable validation method. In order to 

assess the accuracy and precision of the developed device it was compared to the 

assay.  

A set of calibration standards (0 to 200 µM, ammonia in PBS) were prepared 

using the 1 mM calibrator stock provided in the assay kit. Test samples (0 to 200 

μM, ammonia in PBS) were also prepared in-house using ammonium chloride. The 

calibration standards and the test samples were analysed at n = 2 using the assay and 

the device. The spectrophotometric assay results are plotted in Fig. 5.3. A calibration 

curve with calculated 95% confidence intervals can be seen for the calibration 

standards. This is presented alongside the test sample measurements. The calibration 

curve for the calibrator standards demonstrated excellent correlation with a 

coefficient of determination of 0.9988, a slope of 0.0039 and an intercept of 0.2579. 

All data points lay within the 95% confidence intervals. The test samples also 

exhibited a linear tendency. However, they all lay outside the confidence intervals 

governed by the calibration standards. All test sample data lay above the upper 
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confidence interval. The test sample deviation from the calibration curve increased 

with concentration. This data shows there was a discrepancy between the calibrators 

and the test samples. The interpretation of this discrepancy is discussed below.  

 

Figure 5.3. Comparison of 0 to 200 µM ammonia calibrator standards and test 

samples (n = 2) in PBS with spectrophotometric response using Abcam® assay 

measured at 650 nm. R
2 

= 0.9988, slope = 0.0039, intercept = 0.2579 and 95% 

confidence intervals for calibration standards.  

The same calibration standards and test samples used in the 

spectrophotometric assay were also measured impedimetrically using the device at 

approximately the same time. Ratiometric impedance (Z/Zair) measurements were 

taken at 1 kHz and 5 mV amplitude. The results can be seen in Fig. 5.4 including the 

best fit line for the calibrators. A similar linear response with concentration as 

observed spectrophotometrically with the assay was seen impedimetrically using the 

device. The coefficient of determination was 0.9901 with a slope and intercept of 

0.0044 and 0.9833, respectively. The ratiometric impedance responses of the test 

samples (n = 2) measured were also plotted on Fig. 5.4. The ratiometric response of 

the device exposed to the test samples increased linearly with concentration. Test 

samples deviated from the calibration curve with increasing concentrations. This 

tendency was also observed spectrophotometrically.   
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Figure 5.4. Ratiometric impedance responses of 25 to 200 µM ammonia of the 

calibrator standards and test samples (n = 2) in PBS measured at 1 kHz. R
2
 = 

0.9901, slope = 0.0044 and intercept = 0.9833 with 95% confidence intervals for 

calibrator standards. 

Interestingly, the device tended to underestimate high ammonia 

concentrations, while the assay kit tended to overestimate at high concentrations. 

The response error associated with the device was larger compared to the assay kit. 

For the device, 83% of the test samples lay within the 95% confidence intervals as 

governed by the calibration standards. This can be compared with 0% for the assay, 

although the response errors for the calibrators were lower. As can be seen, there 

were significant differences in the behaviour of the calibrators and the test samples. 

Therefore, it may have been unfair to compare both standards as the errors observed 

may have been caused by them and not by the measurements. The 1 mM ammonia 

Abcam® calibrators were prepared in water, whereas the test samples made in-house 

were prepared in PBS pH 7.4. It was suspected that the calibrators contained 

stabilisers, but this was confirmed not to be the case by the manufacturer. This is 

surprising considering the expiry date was one year upon the date of purchase and it 

is well known that ammonia is volatile in solution.  
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In order to validate the device, the data from both methods were combined to 

statistically assess their correlation and agreement. The standard calibrations at n = 2 

were used to investigate the true experimental concentration of the test samples. The 

relationship between the true experimental concentration values for each method can 

be seen in Fig. 5.5 as represented by (a) correlation and (b) Bland-Altman plots. A 

good correlative relationship was observed in Fig. 5.5 (a) for a test sample size of 6 

at n = 2 with a correlation coefficient of 0.9679 and p-value of 0.0088. This 

correlation declined at higher concentrations with three data points outside the 95% 

confidence intervals. This was expected as both methods exhibited imprecision and 

inaccuracy for higher concentrations of ammonia. The slope and the intercept were 

0.7017 and 3.4302, respectively. The Bland-Altman plot shown in Fig. 5.5 (b) 

presents the level of agreement between these two methods in measuring ammonia. 

Bland-Altman analysis also demonstrates a close agreement from 0 to 100 µM, but 

increasing lack of agreement and imprecision at higher concentrations.  

 

Figure 5.5. Statistical correlation and agreement of the test samples (sample size 

6 at n = 2, with respect to the calibration plots generated using the calibration 

standards) between the Abcam® assay and the device as represented by (a) 

correlation plot with an R = 0.9679, slope = 0.7017, intercept = 3.4302, p < 

0.0088 and (b) Bland-Altman plot at 95% confidence intervals. 

 The test samples used in these studies were prepared in-house. Calculated 

concentrations of the test samples (sample size 5 at n = 2) were compared to the 

experimentally determined values (as calculated from the calibration standards). This 

information is presented in Table 5.1 for both methods, along with their percentage 

difference. The largest difference of the device was ~20%, while the largest 
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difference of the Abcam® assay was ~29%. The least difference was <1% for the 

device and was ~15% for the assay kit. Mean difference for the device was ~9% and 

21% for the Abcam® assay.  

Table 5.1. Percentage mean difference for n = 2 of the Abcam® assay kit and 

the developed device for the measurement of ammonia in PBS. 

 Abcam®   Device   

Calculated 

(µM) 

Found  

1 µM 

Found 2 

μM 

MDifference 

(%) 

Found  

1 µM 

Found 

2 μM 

MDifference 

(%) 

200 239.82 262.82 25.66 152.67 212.19 8.78 

150 189.91  163.52 17.81 101.38 138.15 20.15 

100 139.74 117.79 28.77 97.50 102.07 0.21 

50 59.00 55.87 14.87 44.23 50.95 4.82 

25 30.78 28.95 19.46 20.79 24.90 8.60 

Mean 

 

 21.31 

 

 8.71 

 

The device was more accurate in the determination of ammonia test samples 

(8.71). However, for n = 2 the spread of data was larger (as seen by the larger ± 

values) than the assay measurements. The device measured ammonia as good as the 

reputable, commercially available Abcam® assay kit. The assay consistency 

overestimated the ammonia test sample concentrations, while the device consistently 

underestimated them (relative to the Abcam® calibrator standards). However, in 

general the underestimation of the device was far lower than the overestimation by 

the assay.  

In conclusion, there was excellent correlation between the two methods using 

Abcam® calibrators. The statistical correlation and agreement between the methods 

for test samples (relative to the calibrators) was good. This affirmed the Abcam® 

assay as a validation method for the quantification of ammonia using the developed 

ammonia device. The assay results provided the knowledge of acceptable 

measurement errors for a commercial ammonia measurement kit. In comparison with 

these standards the device was seen to be more reproducible than the assay. 
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5.2.3. Interference study 

The ammonia device showed potential for blood ammonia testing, having 

demonstrated acceptable accuracy and reproducibility in buffer test samples in 

comparison to the Abcam® assay. However, before the quantification of ammonia 

could be conducted in serum, the response of the device to a number of common 

potential electrochemical interferents was evaluated (Park, 2013, Mundaca-Uribe et 

al., 2014, Nuttall et al., 2003, Sutariya et al., 2016, Liang et al., 2015). Electroactive 

interferents including acetaminophen (600 µM) and ascorbic acid (100 µM) were 

assessed, along with ammonia-associated compounds such as creatinine (45 µM), 

glutamic acid (100 µM) and uric acid (500 µM) (Table 5.2). These interferents were 

introduced to the device and assessed across 0.1 Hz to 100 kHz frequency range in 

the manner previously described in Chapter 2, Section 2.4.8. The impedimetric 

responses of ammonia and the potential interferents can be seen in Fig. 5.6. The 

responses of interferents were comparable to background matrix effects of PBS 

which is typically found at ratiometric value (Z/Zair) of 1. No distinguishable 

difference in response was observed between the electroactive species and ammonia-

associated compounds. This was expected as these compounds are volatile. The 

results from this study suggested that the ammonia device was suitable for the 

selective determination of ammonia in the presence of potential interferents 

commonly found in blood and serum.  
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Figure 5.6. Selectivity of the device to ammonia (30 µM) in the presence of 1 M 

PBS and electroactive species such as acetaminophen (600 µM) and ascorbic 

acid (100 µM) as well as potential ammonia associated compounds such as 

creatinine (45 µM), glutamic acid (100 µM) and uric acid (500 µM)  across a 

frequency range of 0.1 Hz to 100 kHz. 
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Table 5.2. Ammonia and the list of potential interferents analysed using the 

device, along with their ratiometric impedance (Z/Zair) values.  

Compound µM Z/Zair Structure 

Ammonia 30 1.197 

 

Acetaminophen 600 0.983 

 

Ascorbic acid 100 1.005 

 

Creatinine 45 1.018 

 

Glutamic acid 100 1.001 

 

Uric acid 500 1.033 

 

 

The electroactive species trialled in this study may not have interfered due to 

the neutral bias potential of the polyaniline film being applied throughout all 

electrochemical impedance spectroscopic measurements. The measurement of 

electroactive species and ammonia associated compounds require the application of a 

voltage potential because they are redox active (Erden et al., 2015, Yadav et al., 
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2011, Barberis et al., 2015, Girousi et al., 2001, Zheng et al., 2011). Polyaniline has 

been used to determine creatinine levels in urine in the presence of the enzyme 

creatinine deiminase (Shih and Huang, 1999). Glutamate has also been determined 

by utilising the glutamate dehydrogenase enzymatic reaction in combination with 

polyaniline/polypyrrole nanoparticles modified gold electrode in food produce (Batra 

et al., 2014). This was not covered in the scope of this work, as it was considered to 

have been extensive, complex and costly at the stage of the device development. 

Compounds such as conjugated bilirubin (684 µM), unconjugated bilirubin (684 

µM), plasma pyruvate (0.75 mM), plasma lactate (22.2 mM), intralipid (6.8 mM) 

may also be assessed as they have the potential to vary blood ammonia levels. The 

enzymes associated with the metabolism of these compounds, were not present in the 

PBS matrix and may not be present in blood as they are typically found in organs 

such as the liver.  

5.2.4. Characterisation of sample matrix effects on ammonia measurement 

5.2.4.1. Determination of ammonia in a protein sample matrix 

Proteins may be anabolised (Sprinson and Rittenberg, 1949) or catabolised 

(Huizenga et al., 1996) to utilise or release ammonia. Potentially, the presence of 

protein in a serum matrix may interfere with ammonia measurements. In order to 

investigate this, serum albumin (as BSA) was evaluated for its effect on the 

impedimetric measurement of ammonia. Albumin is a soluble monomeric protein 

that makes up half of the blood serum protein content (Voet and Voet, 2004). 

Albumin is only synthesised in the liver. It is important in transportation and has the 

capacity to bind to ammonia (Butterworth, 2003, Richards et al., 1975).  

In order to assess the effect of a protein matrix on the impedimetric 

determination of ammonia BSA was employed. BSA was prepared in PBS as per 

typical concentrations found in human blood (50 mg mL
-1

) (Norde and Gage, 2004). 

This matrix was then spiked with 25 to 200 µM ammonia. Impedance measurements 

were then conducted using the device as described in Chapter 2, Section 2.4.8. 

Results can be seen in Fig. 5.7. A non-linear response was observed for ammonia 

determination in a protein matrix. The error associated with the protein measurement 

(0.08, n = 3) was more significant than those in PBS (0.03, n = 2) (Fig. 5.4). There 

were significant differences between the data generated for ammonia in protein and 
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the data generated in PBS. For example, there was an increased background signal 

(Z/Zair) from 1.00 in PBS to 1.69 in protein. The statistical data for Fig. 5.7 is 

provided in Appendix VI. The slope of the line for ammonia in PBS was 0.0044, 

whereas, the slope of the curve for points 25 and 150 µM was 0.0058 and 0.0020, 

respectively. The slope was higher at lower concentrations and decreased with 

concentration. This was due to the production of ammonia in the protein sample, 

which if this trend was to progress would saturate the response.  

 

Figure 5.7. Impedimetric response of the device to 0 to 200 µM ammonia in 

BSA (50 mg mL
-1

 in PBS), slope = 0.0058 and 0.0020 for 25 and 150 µM 

ammonia at n = 3. 

The increase in background signal observed for the measurement of ammonia 

in a protein matrix is believed to be caused by the disintegration of proteins into 

smaller molecules due to the alkaline environment of the experiments (Svedberg and 

Sjögren, 1930). Serum albumin is stable between pH 4 and 9. Outside of these 

regions, proteins may undergo irreversible and drastic conformational changes (Baler 

et al., 2014). Alkaline conditions are known to cause decomposition of proteins, 

especially peptide bond cleavage and disulphide degradation (Manabe and Jin, 

2005). The breakdown of proteins in the presence of NaOH is known as alkaline 

hydrolysis (Fountoulakis and Lahm, 1998). Upon hydrolysis an amide converts into 

a carboxylic acid and an amine or ammonia group. Protein associated ammonia may 
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then pass from the sample into the device to be measured. This was observed by an 

increased the background signal.  

This data demonstrated that while there were increased challenges of 

reproducibility and non-linearity, the device did have the capacity to quantitatively 

measure ammonia in a protein matrix. In order to fully evaluate and understand the 

processes in a biological matrix that may alter the device response to ammonia, 

measurements were assessed in serum.  

5.2.4.2. Ammonia analysis in serum 

Serum is often used as a sample matrix for analytical measurements. It is 

studied in order to understand the matrix effect of blood when developing a POC 

device. It is obtained from coagulated blood, by inducing a fibrin clot to form along 

with blood cells. Coagulation factors are then separated by centrifugation from the 

remaining serum (Yu et al., 2011). The remaining serum is a non-cellular fluid 

containing components such as proteins, electrolytes, lipids, and immune factors. 

The principal components of serum do not vary significantly between mammalian 

species (Spahr and Edsall, 1964). In this regard, bovine serum was used as a 

substitute for human serum for initial investigations of its effect on ammonia 

measurement. 

In order to assess the effect of serum on ammonia measurement, foetal 

bovine serum (FBS) was spiked with ammonia (25 to 200 µM). The ratiometric 

response of ammonia in serum is plotted in Fig. 5.8. There was no relationship 

between ammonia concentration and impedance response. The response range for 

the concentrations studied in serum was between approximately 2.6 and 3.5 and was 

inconsistent with concentration. This may be considered as background noise 

associated with the measurement in a complicated matrix such as serum. 
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Figure 5.8. Impedimetric response of the ammonia device to ammonia (0 to 200 

µM) in foetal bovine serum. 

It can be seen for serum the background signal (0 µM ammonia) displayed a 

significantly high Z/Zair response (3.03) when compared to those attained for 

ammonia concentrations studied in PBS and BSA (1.00 and 1.69, respectively). As 

discussed for the ammonia measurements conducted in BSA, there was a significant 

increase in background signal due to protein associated release of ammonia. This 

signal was higher for serum as it is a more complicated matrix. The fluctuated 

impedimetric response of the device with respect to ammonia in serum was not 

caused by a higher concentration of protein in the serum sample compared with the 

BSA sample. The protein content in the foetal bovine serum was 37.5 mg mL
-1

, this 

was 50 mg mL
-1

 in BSA.  

In an attempt to understand this issue, the effect of the serum sample matrix 

on the response of the device and the assay was monitored over time. Measurements 

were made at varied time intervals (0, 5, 10, 15, 30, 60 min). The spectrophotometric 

and impedimetric response to the serum can be seen in Fig. 5.9. The impedimetric 

response was seen to increase significantly by a factor of 2.25 (Z/Zair from 1.08 to 

2.43) over the 60 min period. Considering the total analysis time of the device was 

25 min (which included the time taken for the pH change and incubation time), the 
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impedimetric response in serum at this time point was 1.50, this increased to 2.43 

after 60 min. An impedance response level in the range of 2.6 to 3.5 was observed 

for experiment conducted on serum which was spiked with 25 to 200 µM ammonia 

(Fig. 5.8). It is reasonable to conclude that it was ammonia being measured and 

therefore, being released in the control serum sample. The spectrophotometric data 

showed no change with respect to time, and responses ranged from 0.3076 to 0.3035 

OD at 650 nm. The spectrophotometric data gathered was considered baseline levels 

for the typical spectrophotometric response of 0 µM ammonia with no ammonia 

associated colouration for the Berthelot reaction as previously observed in the PBS 

studies. 

 

Figure 5.9. The effect of the incubation time of the serum sample matrix on the 

spectrophotometric response of the assay and the impedimetric response of the 

device. 

The result of this study may be interpreted in two ways. Either the device was 

more sensitive than the assay to ammonia in serum or it was responding to 

something other than ammonia. Considering the latter, the PTFE membrane used in 

the device possessed a pore size of 0.2 µm, through which ammonia or any other 

constituents would have pass in order to interact with the polyaniline film. However, 

it is more probable that the device was reacting to ammonia produced during 

lipoprotein metabolism and/or degradation in the serum caused by the alkaline 
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measurement environment (Fountoulakis and Lahm, 1998). The spontaneous 

degradation of the proteins due to the alkaline environment has been discussed above 

in relation to the measurement of ammonia in a BSA protein matrix.  

5.2.4.3. Spectrophotometric assessment of protein and lipid assay interference  

Spectrophotometric measurement of ammonia in serum did not display the 

ammonia associated blue coloration of the Berthelot reaction. Therefore, an 

experiment was conducted to investigate the inhibition of the assay in serum. It is 

known that spectrophotometric assays such as the Abcam® assay are prone to 

protein interference. Abcam® recommends removing protein from biological 

samples with the use of a 10 kDa spin column when using this assay. Lipids are also 

known to interfere with spectrophotometric assays (Kroll and Elin, 1994). In the 

body, fatty acids are known to inhibit the urea cycle utilisation of ammonia. This 

inhibition is carried out on carbamoyl phosphate synthetase and glutamate 

dehydrogenase. Thus, the two main ammonia metabolism processes are inhibited by 

fatty acids contributing to a rise in systemic ammonia (Derr and Zieve, 1976). This 

rise in ammonia may be unpredictable and may result in false positive results in 

blood. It is possible that hyperlipidaemia may also interfere with the 

spectrophotometric measurement of ammonia. During a serum gas analysis study at 

the Academic Hospital of Verona, Italy, 11% out of a total of 478 serum samples 

were unsuitable for measurement due to hyperlipidaemia. This study denotes 

hyperlipidaemia as one of the most common interferences in blood analysis 

(Salvagno et al., 2012). It has been recommended that hyperlipidaemic serum or 

plasma samples should be ultra-centrifuged at 100,000 to 200,000 × g before 

analysis (Nikolac, 2014). However, it has also been shown that a centrifugal force of 

10,000 × g was just as efficient at removing lipid layer upon accumulation of large 

lipid particles (Dimeski and Jones, 2011). 

Trichloroethanoic acid (TCA) is known to denature and precipitate proteins 

(Link and LaBaer, 2011). TCA was therefore employed to precipitate proteins and/or 

lipids that may be active in serum and potentially affecting ammonia assay 

measurement in serum. The precipitated protein would be removed via 

centrifugation using a Vivaspin column with a MWCO of 3 kDa. Scipac Ltd. 

supplied delipidated human serum which contained virtually no lipids (1 mg dl
-1

).  
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TCA was added to both delipidated and lipidated sera at a concentration of 

15%. Samples were then centrifuged using the spin filter at 3°C at a speed of 3005 × 

g for 30 min in order to separate protein from the serum and measured using the 

assay (n = 3). The spectrophotometric results can be seen in Fig. 5.10. It can be seen 

that the only sample to show the typical Berthelot blue colouration indicating the 

presence of ammonia was the delipidated serum sample which had been centrifuged 

without the addition of TCA. The addition of TCA increased the turbidity of the 

samples which did not dissipate upon centrifugation at 3005 × g using the 3 kDa spin 

filter column, and perhaps a larger centrifugal force was required to pellet the TCA 

precipitate. Turbidity caused by TCA may have inhibited the spectrophotometric 

assay. Both delipidated and lipidated serums without TCA displayed no visible 

turbidity.  

 

Figure 5.10. Spectrophotometric results of the Abcam® assay for delipidated 

and lipidated sera which were centrifuged using a 3 kDa spin filter at 3°C at a 

speed of 3005 × g for 30 min with and without 15% (w/v) TCA (n = 3).  

The delipidated centrifuged serum sample was treated identically to the 

lipidated serum. However, only the delipidated serum was spectrophotometrically 

active. As mentioned previously, lipid content is known to impede 

spectrophotometric determination of ammonia (Kroll and Elin, 1994). In this case, 

lipids were shown to not only interfere with, but completely inhibit the Berthelot 

ammonia response of the Abcam® assay even if the serum was deproteinated. 

Therefore, delipidated serum was used for further studies. 

The centrifugation of delipidated serum was examined to ensure it was 

proteins that were removed during the process (Fig. 5.10). The Vivaspin column 

used during centrifugation had a MCWO of 3 kDa. High density lipoproteins and 

protein albumin have molecular weights of 435 and 69 kDa, respectively (Lodish et 

Delipidated

TCA + centrifuged

Centrifuged

Lipidated



Chapter 5 

 

141 

 

al., 2000). Therefore they were retained in the upper phase. In order to investigate 

this, the presence of proteins along with residual lipids and cell debris were 

examined. Oil Red O staining for cellular lipids and a Bradford protein assay were 

carried out on the delipidated serum (a) before, and after centrifugation (the (b) pellet 

and (c) supernatant). Results from the Oil Red O staining were examined under a 

light microscope and showed no staining for all three samples. Oil Red O stains 

cellular lipids and serum is a non-cellular matrix which in this case was also lipid 

free. After centrifugation, the Bradford protein assay (Fig. 5.11) revealed the 

supernatant contained no measurable protein. The BSA calibration curve had a 

coefficient of determination of 0.9601, a slope of 294.2262 and an intercept of 

38.0357. The equation of the line was used to calculate the concentration of protein 

in the delipidated serum (a) before and after ((b) pellet and (c) supernatant) 

centrifugation. These values were calculated to be (a) 4.17, (b) 4.19 and (c) -0.18 μg 

μL
-1

, respectively. This demonstrated that the centrifugation step with a 3 kDa cut 

off filter removed protein in delipidated serum.  

 

Figure 5.11. Bradford protein assay standard calibration using BSA (n = 3).   

 In conclusion, TCA was unsuccessful at permitting the spectrophotometric 

measurement of ammonia. Although it may have been successful in removing 

lipoprotein, the turbidity of the sample prevented the spectrophotometric 

measurement. Centrifugation of delipidated serum with a spin filter column was 
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successful in removing protein as confirmed by Bradford protein analysis. 

Spectrophotometric measurement of ammonia using the Abcam® assay kit was 

affected by protein and lipids. This can be compared to the ammonia device which 

was shown to be affected by protein and lipids.  

5.2.4.4. Delipidated and deproteinated serum as a matrix for ammonia 

determination using the ammonia device 

Protein appeared to passively affect the device via absorption or blocking 

diffusion of ammonia. However, measurements in lipids affected the device in a 

different way. They appeared to actively affect the measurement, changing the 

response over time caused by protein metabolism and/or degradation. The impact of 

protein on the device was assessed using delipidated serum. There was no 

relationship between the impedimetric response of the device and the concentration 

of ammonia in the delipidated serum, See Appendix VII. This proved that not only 

were lipids interfering with the device measurement but it was also the increasing 

number of complex proteins in a serum sample.     

Delipidated serum samples were deproteinated by centrifugation at 3°C for 

30 min at a speed of 3005 × g with the use of a 3 kDa cut off column. This 

delipidated protein free serum was then spiked with Abcam® ammonia calibrator 

stock in order to prepare a set of calibration standards (25 to 200 μM) at n = 3. 

Simultaneously, the same delipidated protein free serum was spiked with ammonia 

test samples prepared in-house at n = 3. These sets of standards were measured 

impedimetrically using the device and also spectroscopically with the Abcam® assay 

(Fig. 5.12). Excellent linearity (0.9984) was obtained for the ratiometric impedance 

response of the calibrator standards (Fig. 5.12 (a)). A slope of 0.0046 and an 

intercept of 1.1534 were attained. RSD values ranged from 4.03 to 6.61% for 25 - 

200 μM ammonia, respectively. The Abcam® calibration curve for the same 

calibration standards, seen in Fig. 5.12 (b), also showed excellent linearity (0.9780) 

with a slope and intercept of 0.0031 and 0.4162, respectively. RSD values ranged 

from 10.26 to 1.84% for 25 to 200 μM ammonia. This demonstrated inherent error 

across all concentrations of ammonia calibration standards unlike the device which 

displayed increasing irreproducibility with increasing concentration. Comparing the 

impedimetric and spectrophotometric calibrations obtained in delipidated serum with 
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those in PBS under the same conditions (Figs. 5.3 and 5.4), both sets of calibrations 

were in approximately the same response range (Z/Zair = 1.0 to 2.0 and OD = 0.4 to 

1.0). Full statistical information can be found in Tables 5.4 and 5.5.  

Fig. 5.12 (a and b) also show impedimetric and spectroscopic responses of 

ammonia test samples which were prepared in-house, sample size five at n = 3. Both 

the device and the assay kit overestimated the test samples.  

 

Figure 5.12. (a) Impedimetric and (b) spectrophotometric results of ammonia 

standards (25 to 200 µM) in delipidated serum calibration curves (n = 3) and 

test samples (n = 3). Equation of lines for the calibrations were as follows (a) R
2
 

= 0.9984, slope = 0.0046, intercept = 1.1534 and (b) R
2
 = 0.9780, slope = 0.0031, 

intercept = 0.4162.  

 The correlation of both methods for calibration standards (sample size 5 at n 

= 3) measured is shown in Fig. 5.13. This shows excellent correlation (0.9699, p < 

0.0001) between the device and the Abcam® assay, along with a slope and intercept 

of 0.5631 and 1.4472, respectively. The low p-value (< 0.0001) indicated there was 

little difference between both methods for measurements in serum. 
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Table 5.4. Detailed impedimetric analytical data of the device in response to calibrator standards and test samples in delipidated serum. 

NH3 

(μM) 

Calibrator 

1 

Calibrator 

2 

Calibrator 

3 

Calibrator 

Mean 

Calibrator 

SD 

Test 

1 

Test 

2 

Test 

3 

Test 

Mean 

Test 

SD 

200 2.14 2.18 1.93 2.08 0.14 2.29 2.61 2.39 2.43 0.16 

100 1.57 1.63 1.60 1.60 0.03 1.76 1.96 1.86 1.86 0.10 

50 1.42 1.41 1.30 1.38 0.07 1.46 1.55 1.50 1.50 0.05 

25 1.35 1.29 1.24 1.29 0.05 1.32 1.38 1.33 1.34 0.03 

0 1.14 1.15 1.14 1.15 5.2 × 10
-3

 1.18 1.22 1.19 1.20 0.02 

 

Table 5.5. Detailed spectroscopic analytical data of Abcam® assay in response to calibrator standards and test samples in delipidated 

serum. 

NH3 

(μM) 

Calibrator 

1 

Calibrator 

2 

Calibrator 

3 

Calibrator 

Mean 

Calibrator 

SD 

Test 

1 

Test 

2 

Test 

3 

Test 

Mean 

Test 

SD 

200 1.02 1.00 0.99 1.00 0.02 1.28 1.20 1.16 1.21 0.06 

100 0.82 0.77 0.73 0.77 0.05 0.92 0.89 0.85 0.89 0.04 

50 0.64 0.58 0.55 0.59 0.05 0.75 0.68 0.68 0.70 0.04 

25 0.54 0.51 0.44 0.49 0.05 0.64 0.58 0.54 0.59 0.05 

0 0.38 0.41 0.34 0.38 3.7 × 10
-2

 0.49 0.46 0.44 0.46 0.03 
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Figure 5.13. Correlation of the spectroscopic and impedimetric responses of 

ammonia calibration standards (sample size 5 at n = 3). R = 0.9699, intercept = 

0.5631 and slope = 1.4472, p < 0.0001. 

Full validation of the ammonia device with the Abcam® assay was then 

conducted in the same way as previously performed for ammonia in PBS. In brief, 

the linear regressions obtained from the calibration standards were used to determine 

ammonia concentrations for the test samples. These calculated concentrations of 

ammonia for both methods were plotted against each other for comparison with 95% 

confidence intervals (see Fig. 5.14 (a)). The correlation between both methods was 

good across the concentration range (R = 0.9642, p < 0.7312), with a slope and 

intercept of 1.1031 and -14.1310, respectively. This correlation was lower than that 

in PBS (0.9679) with five samples lying outside of the 95% confidence intervals. 

The statistical agreement between the ammonia device and the Abcam® assay in 

delipidated serum was then analysed using Bland-Altman analysis with 95% 

confidence intervals (Fig. 5.14 (b)). This shows a strong agreement at lower 

concentrations of ammonia, with results increasing in a sporadic pattern above 100 

µM along with one sample lying outside of the 95% confidence intervals.  
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Figure 5.14. Correlative and Bland-Altman analysis of ammonia measurement 

in the Abcam® assay kit and the device as represented by (a) scatter plot with 

an R of 0.9642, a slope of 1.1031, an intercept of -14.1310, p < 0.7312 and (b) 

Bland-Altman plot at 95% confidence intervals. 

 The response of the test samples as determined by both methods was 

compared with the calculated values of ammonia. The true experimental 

concentration for the test samples was known as they were prepared in-house and 

denoted as test samples for the sake of method validation. The difference between 

the experimental values and the calculated values is shown in Table 5.6 as 

percentage difference. The biggest difference of the assay was 119%, while the 

biggest difference for the device was 64%. The least difference for the assay was 

28%, while the best for the device was 39%. The mean difference for the assay and 

the device was 71% and 52%, respectively.  

Table 5.6. Percentage difference of ammonia in serum as measured using the 

Abcam® assay and the developed ammonia device for n = 3. 

 

Abcam® 

  

Device 

Calculated 

(µM) 

Found 

µM SD 

Difference 

(%) 

Found 

µM SD 

Difference 

(%) 

200 256.68 35.63 28.33 277.80 19.15 38.90 

100 151.52 22.06 51.52 153.90 10.49 53.90 

50 92.81 9.80 85.61 75.43 13.44 50.87 

25 54.63 6.46 118.53 41.00 15.72 64.00 

Mean 

 

18.49 71.00 

 

14.70 51.92 
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The assay was less accurate in the determination of ammonia test samples in 

serum (71.00 difference) than the device (51.92 difference). For n = 3, the spread of 

data measured with the assay was larger (18.49) than the device measurements 

(14.70). This data can be compared with Table 5.1 for a similar experiment in PBS. 

The accuracy and precision of both methods decrease significantly when measuring 

in serum. This is due to the nature of the serum which is a complex matrix.  

The ammonia device was successfully validated in delipidated centrifuged 

serum using the Abcam® assay. It was evident from the results that the ammonia 

device when measuring in un-processed serum suffered from poor accuracy and 

precision. This was overcome by an investigation of the matrix effects and thus, pre-

treating the serum sample in a way to prevent interferences. The device developed 

was just as good as the Abcam® assay at determining serum ammonia 

concentrations. It also competes with other kits and devices available on the market. 

Table 5.7 lists the detailed analytical specifications of these kits and devices. It can 

be seen that the LOD and range of the developed device was comparable with all 

listed. The sample volume and operating temperature was also comparable. The 

major limitations of the device were the need for sample preparation and analysis 

time. The analysis time is comparable to the Abcam® and Sigma Aldrich® kits. This 

time may be reduced with further studies and optimisations of the device.  
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Table 5.7. Analytical performance characteristics of a range of commercial kits and devices for ammonia  

Product Name Technique LOD (µM) Range 

(µM) 

Analysis 

Time 

(min) 

Sample 

Volume 

(µL) 

Operational 

Temperature 

(°C) 

Refs 

Device EIS 12 25-200 25 52 RT Current work 

PocketChem™ BA 

and ammonia test 

kit II 

Berthelot Not 

specified 

2-285 ~6 20 10-35 (Arkray, 2016) 

Vitros® Chemistry 

Products AMON 

Slides 

Berthelot Not 

specified 

8.7-500 5 10 37 (Ortho-Clinical 

Diagnostics 

Inc., 2015) 

Abcam® Ammonia 

Assay Kit - 

Modified Berthelot 

Berthelot >10 Not 

specified 

30 100 37 (Abcam Plc., 

2016) 

Sekisui Ammonia 

L3K® 

Enzymatic 4.1 8.8-1174 Not 

specified 

Not 

specified 

Not specified (Sekisui 

Diagnostics 

(UK) Ltd., 

2013) 

Sigma Aldrich® 

Ammonia Assay 

Kit 

Enzymatic 12 12-881 20 10-200 18-35 (Sigma-Aldrich 

Co. LLC., 2015) 
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5.2.5. Lifetime study of the blood ammonia device 

 To assess the lifetime of the device, twelve devices were stored each at (a) 

under ambient conditions, (b) in a desiccator and (c) in a vacuum desiccator for a 

five month period. Impedance baselines at 1 kHz in air were recorded every month 

(Fig. 5.15). It can be seen for devices stored under ambient conditions with an initial 

average baseline impedance of 826 Ω (RSD = 6.8%, n = 12), they remained 

relatively stable until month three from then on baselines began to increase from 

approximately 790 to 1300 Ω in month five. This pattern may relate to initial 

absorption of water vapour, followed by hydrolytic decomposition of the polymer, or 

as a result of absorption of atmospheric contaminants causing film deprotonation. 

The desiccator and vacuum desiccator retained devices near to their initial baselines. 

The total RSD over the five month period for the desiccators and vacuum desiccators 

was 0.64 and 0.77%, respectively.   

 

Figure 5.15. Lifetime study of the ammonia devices stored at (a) ambient 

conditions, in a (b) desiccator and (c) in a vacuum desiccator, each at n = 12. 

This study shows that moisture followed by oxygen had a significant impact 

on the device baseline. For storage purposes, the ammonia devices were then kept in 

vacuumed sealed bags with added desiccant. 
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To evaluate the impact of storage on the response of the device to ammonia, 

devices at n = 3 were stored in a desiccator and their impedance response to air or 

ammonia at 1 mM was impedimetrically measured every four days for 21 days at 1 

kHz. The response to ammonia grew upon day 0 from Z/Zair 1.04 to an average of 

3.33 for days 5 to 21 (Fig. 5.16 (b)). The response above day five was not 

reproducible with and overall RSD of 10.16%. After storage, the devices shifted to a 

new level of sensitivity. Beyond this shift there were fluctuations which remained 

within a range. This may have been a systematic bias due to the measurement 

procedure on day 0. However, a similar effect was seen during the development of 

the pre-calibration method chosen for device use (Chapter 4, Section 4.2.4). It may 

be that aging of the device shifts them to a higher sensitivity. The ratiometric 

response of PBS remained reproducible over the same time period with an overall 

RSD of 5.49% (Fig, 5.16 (a)).   

 

Figure 5.16. Ratiometric impedance response lifetime of the ammonia device to 

(a) 0 and (b) 1 mM ammonia exposure (n = 3) following storage in a desiccators 

for up to 21 days. 

 The response beyond day five was reproducibly above that of day 0. A larger 

sample size would need to be studied before a conclusive statement of ammonia 

determining behaviour on aging device could be made. These results show that 

waiting at least five days prior to impedimetrically determining ammonia with the 

device would result in higher response. A future study may be conducted to compare 

leaving the devices for five days in a desiccated storage prior to measurement with 

the current pre-calibration method used with the device.   
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5.3. CONCLUSIONS 

The work presented and discussed in this chapter has shown that ammonia 

can be reliably determined in a PBS matrix at the clinically relevant range of 11 to 

50 μM. This work has been validated using the Abcam® assay kit using calibrators 

(sample size 6 at n = 2) from the kit which resulted in a correlation of 0.9747, p < 

0.0001, and a slope of 1.1526. Test samples were then prepared in-house and 

compared to the calibrator results. This was presented as statistical correlation 

(0.9679, p < 0.0088 with a slope of 0.7017) and Bland-Altman agreement which 

demonstrated a close agreement at low concentrations which decreased with 

concentration. Mean difference of the device (~9%) was better than the assay (21%) 

when comparing test samples with the calibrator samples.  

Matrix studies showed ammonia could be successfully determined by the 

device in a simple protein matrix, albeit with associated errors and non-linearity. The 

assessment of ammonia in serum revealed that while common small molecule 

interferents present in serum did not affect the measurement, more complex protein 

and lipids did. The deterioration of the impedimetric ammonia response in increasing 

complex matrices was understood to be caused by the cleavage of protein due to the 

alkaline environment of the measurement and the lipid content. The Abcam® assay 

suffered from similar effects caused by proteins and lipids. It was necessary to 

remove both proteins and lipids in order to impedimetrically and 

spectrophotometrically measure ammonia. 

This was achieved by attaining delipidated serum which was centrifuged 

using a 3 kDa spin filter column which removed proteins from the lipid free serum. 

A good correlation (0.9699, p = 0.0001 with a slope of 1.4472) was attained between 

impedance of the device and the spectrophotometric absorbance of the assay in 

response to ammonia in delipidated, deproteinated human serum (sample size 5 at n 

= 3). Correlation and Bland-Altman analysis between both methods was carried out. 

This demonstrated a correlation of 0.9642, p < 0.7312 and a slope of 1.1031 with 

disagreement between the methods increasing with ammonia concentration. Mean 

accuracy of the assay (71%) was worse than the device (52%) for human serum 

analysis. This demonstrated the developed device out performed a commercial assay 

based on a robust spectrophotometric reaction for ammonia. The assay provided 
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acceptable standards required for a POC ammonia device. In order for the device to 

achieve these standards in whole serum, extensive matrix assessments and POC 

integrations are required. Microfluidic technologies have been exploited to integrate 

sample preparation on lab-on-a-chip systems (Labuz and Takayama, 2014). A blood 

based systems like the one developed in this study may be combined with a 

microvortex. The principles of microvortices are based on balanced sheer gradient 

and wall effect forces which creates vortices capable of trapping large particles in 

blood (Mach et al., 2011). This technology may be incorporated into a blood 

ammonia device to remove protein and lipids prior to the impedimetric measurement 

of ammonia.  

The lifetime of the devices did not change over a period of five months when 

stored in a desiccator. However, the response to ammonia was shown to change with 

aging devices. This study need to be repeated with increased number of devices over 

a longer period of time. It also indicated that devices should be stored in vacuum 

packed bags with added desiccant.  
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6.1. FURTHER DEVELOPMENTS OF THE BLOOD AMMONIA DEVICE 

The device developed in this work facilitated the impedimetric measurement 

of ammonia in human serum over the physiologically relevant range. The device 

incorporated an inkjet-printed modified polyaniline sensor. Reliable measurements 

required reproducible sensors. This was assessed as inter-sensor variance which was 

seen to be 6.9% for n =15. This was comparable with commercial sensors which 

typically possess 3 to 5% variation (DropSens, 2015). The sensor was used in 

conjunction with a gas-permeable membrane to aid the device in the determination 

of ammonia in an aqueous environment. The device included additional refinements 

to enhance its sensitivity. This included adjustment of the liquid sample pH to render 

it basic (pH > 9). Under such conditions, the equilibrium of ammonia and 

ammonium in liquid strongly favours the gaseous ammonia form. This increases the 

absolute mass of ammonia gas liberated from the liquid sample and so increases 

sensitivity. These characteristics, combined with careful optimisation of other 

aspects of the assay such as assay timings, have allowed for the effective detection of 

ammonia in a serum sample. Ammonia was determined in human serum across the 

clinically relevant levels of 25 to 200 µM with a calculated LOD of 12 µM, a 

coefficient of determination of 0.9984, slope of 0.0046 and an intercept of 1.1534 

was generated for n = 3. Impedimetric device measurements were validated using a 

commercially available spectrophotometric assay kit for ammonia which resulted in 

excellent correlation (0.9699, p < 0.0001) with a slope of 1.4472 and an intercept of 

0.5631 between both methods for n = 3.  

The device has been has been fabricated in a simple and cost effective 

manner by combining laminar sheet processing combined with printed techniques. 

This simple, inexpensive and mass producible way of device production can be 

compared to earlier laboratory-based techniques available for the determination of 

blood ammonia which are expensive and involve complex instrumentation. Mass 

production of the devices would significantly reduce production costs. A factor that 

may also decrease manufacturing costs and improve throughput is miniaturisation of 

the device. Preliminary work has shown that the device may be reduced by 30% 

without impedimetric deterioration. A 50% reduction in polyaniline deposition, from 

ten layers to five, did not significantly change the response of the devices to 
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ammonia. Reducing the number of inkjet-printed polyaniline layers deposited onto 

electrodes is also a viable processing change in order to reduce printing time which 

is currently the most significant production bottleneck.  

6.1.1. Reflections and lessons 

6.1.1.1. Limitations 

The main limitation of the developed ammonia device is matrix related 

interference. To compensate for this, the device incorporated an air purge to recover 

the sensor subsequent to sample exposure. Further work needs to be conducted to 

integrate this step as part of a simple device with a one-step-measurement. This may 

be carried by utilising a process called degas-driven flow. In this process, the air 

within a polymer sheet is removed by vacuum for storage. The device is brought to 

atmospheric conditions during use causing a pressure difference which drives the 

flow of air within the device (Dimov et al., 2011). As opposed to recovering the 

device, another option for integration is to completely prevent the sensors response 

to water vapour. To do this, an absorbent layer may be attached to the gas headspace 

side of the PTFE membrane. While this might solve issues around matrix related 

water vapour interference, it may expose sensitivity issues. It is probable that 

ammonia may be retained in the absorbent layer as part of the water vapour. To 

overcome this, the absorbent layer may be impregnated with an alkaline reagent to 

encourage gaseous ammonia permeation. This has been demonstrated in the 

literature by impregnating the PTFE membrane with an alkaline reagent (Dobler et 

al., 2006). The introduction of a means to change pH and prevent matrix related 

interferences in situ would reduce analysis time by 15 min. These concepts would 

aid complete integration of the device which is typically required for modern POC 

diagnostics.  

6.1.1.2. Sensitivity and reproducibility 

During the development of the printed polyaniline sensor it was evident that 

thinner inkjet-print films (< 5 layers) resulted in higher sensitivities. This is most 

apparent in Fig 3.18 insert, in which ten inkjet-print layers of polyaniline resulted in 

an increase of 1 kΩ upon exposure to 1 mM ammonia, whereas five layers increased 

by 2.5 kΩ upon exposure to the same concentration. Although thinner films resulted 

in higher sensitivities, they were also less reproducible. This is because the inkjet 
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printed films were not homogenous on the grainy silver electrode surface and 

therefore prone to variations in response. At the time of these studies, sensitivity was 

sacrificed for reproducibility. However, upon reflection, it is recommended to 

investigate smoothing of the silver electrode surface which would result in 

homogenous thin (< 5 layers) inkjet printed films with high sensitivity and 

reproducibility.  

Sensitivity and reproducibility were affected during the pre-calibration 

process of the devices. Pre-calibration resulted in a 3.2 fold increase in sensitivity. 

However, this was accompanied with a reduction in device baseline reproducibility. 

The reason for this is not understood and further studies are recommended to 

examine the process of pre-calibration.    

6.1.1.3. Optimisations 

For the device to be commercially viable, further analytical and technological 

improvements are recommended. Improvements to the synthesis protocol of 

polyaniline nanodispersions are required to up-scale the process. Currently batches 

are polymerised on a 40 mL scale, up-scale may cause changes to the rate of the 

reaction and the homogeneity of the synthesis. Also, on a large scale, the post-

synthesis processing of the dispersion such as centrifugation and dialysis may 

become unmanageable.  

The synthesis protocol is also inherently prone to deviations. Use of the same 

synthesis parameters throughout this work resulted in considerable size variations of 

the polyaniline nanoparticles produced. These variations can also be compared to the 

diverse size of polyaniline nanoparticles reported in the literature using the same 

synthesis methodology (Han et al., 2002, Moulton et al., 2004, Ngamna et al., 2007). 

These variations may have been caused during the centrifugation step of the 

synthesis. Subsequent to centrifugation, larger entities form a pellet. However, this 

pellet is not solid and leaks into the supernatant when decanting. This alters the 

average diameter of the nanoparticles and the overall concentration of the 

polyaniline nanodispersion. It remains unclear how this would be solved if 

commercialisation was to be realised. There are a number of alterations which could 

be implemented to improve the reproducibility of the devices. The use of a reaction 

chamber may be used to control the polymerisation process (temperature, pressure, 
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rate of the reaction). The ink may be optimisation with the use components such as 

surfactants, electrolytes, solvents and stabilisers. This would in turn improve the 

quality of the inkjet-print films deposited and reproducibility of the device. Further 

inkjet-print film assessments are recommended to examine rheology (surface tension 

and viscosity) and film formation (atomic force microscopy).  

Analytical improvements include inter-sheet variation analysis. An extensive 

impedimetric baseline study on sheet to sheet device variations is required if the 

device is to be mass produced. In doing this, the statistical variations between 

devices may be established. This work has demonstrated that these variations occur 

during ink synthesis and/or the inkjet-print process.  

A better understanding of the relevance of ζ-potential measurements for 

polyaniline-SDS colloidal suspension (DBSA/polyaniline nanoparticulate micelle is 

stabilised by a SDS micelle) is required. The issue of ζ-potential and stability may be 

more complex in a colloidal stabilised suspension, than in a single type of particle in 

a medium. Within the polyaniline dispersion, SDS micelles impart negative charges 

upon the DBSA/polyaniline micelles which create repulsion between the polyaniline 

nanoparticles and stabilises the dispersion. Further work is required in order to 

understand where the electrostatic surface potential (ζ-potential) of the micellar 

particles is being measured and what this value represents in this kind of system.  

6.1.3. Further matrix and interference assessments 

Proteins and lipids were seen to interfere with the impedimetric ammonia 

measurements using the devices. In order to fully evaluate this, higher concentrations 

of ammonia in serum should be analysed using the device. Although these higher 

concentrations may not be clinically relevant, they would allow assessment of the 

matrix effect of serum. It is possible that the device may be able to determine high 

concentration ammonia in serum.  

In order for the device to achieve acceptable POC standards in serum, 

extensive matrix assessments and POC integrations are required. Compounds such as 

bilirubin, pyruvate and lactate are known to interfere with ammonia measurements 

and should be impedimetrically assessed using the device. Microfluidic technologies 

have accelerated lab-on-a-chip innovations (Labuz and Takayama, 2014). They have 
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facilitated in situ sample preparation, separation and combination on a miniaturised, 

disposable chip. In the case of the blood ammonia device, they may be utilised to 

produce delipidated and deproteinated serum samples using microvortices which trap 

large particles based on balanced sheer gradient and wall effect forces (Mach et al., 

2011).  

6.2. INTEGRATED SENSING SYSTEMS 

Sensors have achieved both academic and commercial success due to their 

accessibility and flexibility which make them ideal for use at the point of care. As 

modern healthcare moves towards decentralisation and personalised medicine, the 

demand for integrated sensors is ever increasing. Ideally, a fully printed POC device 

should be integrated into a system which consists of the sensing device, display, 

battery, measurement chip, communications chip, and a push button (Beni et al., 

2015). This device should have the capacity to be interfaced with a miniaturised 

potentiostat. Miniaturised potentiostats are being developed in parallel with sensor 

technologies to produce truly localised patient testing. The integration of the 

ammonia device developed in this work into a POC system will surpass current 

state-of-the-art POC technologies which require wet chemistry reactions, complex 

laboratory equipment, and trained personnel.  

6.3. OTHER APPLICATIONS AND ALTERNATIVE TECHNIQUES 

6.3.1. Wearable sensors 

The next generation of POC sensing systems is targeting fully-integrated and 

wearable platforms. Wearable sensors provide real time non-invasive health 

information. There has been rising interest in fully integrated wearable sensors which 

combines textiles and electroanalysis (Windmiller and Wang, 2013). Fully printed 

smart patches may be fabricated utilising polyaniline for the determination of 

ammonia in sweat. Ammonia determination via a wearable sensor may be explored 

using polymers (Seesaard et al., 2015). 



Chapter 6 

 

163 

 

6.3.2. Clinical and environmental gas-based ammonia measurements 

The sensor technology developed in this work may be applied to gaseous 

ammonia determination for use in clinical and environmental testing. The clinical 

standard for measuring ammonia is through blood analysis. However, due to the 

challenges and complications associated with blood ammonia sampling, there has 

been a significant increase in interest in other sample matrices in which to measure 

ammonia. In particular, there has been major development in the field of breath 

ammonia measurement. Previous work in our group have applied a polyaniline 

sensor for breath ammonia measurements for the efficacy of haemodialysis and 

corrleated them with blood urea nitrogen levels (Hibbard et al., 2013). Ammonia gas 

based analysis also has application in the environment, these include farming 

emissions (Hristov et al., 2011), automotive exhaust emissions (Moos et al., 2002), 

refrigeration leaks (Lopes et al., 2015), along with gas (Erisman et al., 2001) and 

water (Costa and Guilhermino, 2015) pollution.  

6.3.3. Enzymatic biosensors 

 The developed ammonia device platform may be combined with enzymes for 

further application of diagnostic value. Pathological illnesses such as renal 

dysfunction and muscular dysfunction may be identified utilising ammonia 

generating enzymes such as creatinine deaminase, glutamate dehydrogenase and 

urease (Fig. 7.1 (a), (b) and (c), respectively). The ammonia released during these 

enzymatic reactions is proportional to substrate blood levels and may be quantified 

using the ammonia device. Normal blood levels of creatinine (44 - 106 µM), 

glutamate (150 µM) and urea (2.5 – 7.9 mM) are within the detection capabilities of 

the developed ammonia device (Tietz, 1987).  
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Figure 7.1. Enzymatic reactions which generate ammonia (a) creatinine 

deaminase, (b) glutamate dehydrogenase and (c) urease.  

Polyaniline has been combined with these enzymes to produce sensors for the 

aforementioned illnesses (Zhybak et al., 2016, Batra et al., 2014, Suman et al., 

2011). 

6.3.4. Alternative techniques to impedimetric ammonia analysis 

The measurement of ammonia using polyaniline is an indirect measurement 

of the analyte, whereby deprotonation of the polymer backbone is proportional to 

analyte concentration. The measurement of this interaction may be carried out using 

amperometry and has been demonstrated by Crowley et al., (2008) using an inkjet 

printed polyaniline sensor for aqueous ammonia in refrigerant waste water via an 

amperometric flow injection system. Combining the amperometric determination of 

ammonia demonstrated by Crowley et al. (2008) and the knowledge gained during 

the development of this thesis, an amperometric POC blood ammonia sensor may be 

realised using a gel electrolyte to regenerate the polyaniline sensor.  



Chapter 6 

 

165 

 

The Berthelot reaction has formed the basis of numerous POC ammonia 

technologies which utilise the spectrophotometric determination of ammonia 

(Arkray, 2016, Ortho-Clinical Diagnostics Inc., 2015, Abcam Plc., 2016). 

Spectrophotometric determinations of ammonia may also be conducted utilising the 

inherent colour change of polyaniline upon exposure to ammonia. This principle has 

been used by Florea et al., (2013), micro-capillaries were coated with polyaniline 

nanofibres which were monitored upon exposure to ammonia and recovered with 

hydrochloric acid.  

Polyaniline is an extremely versatile sensing material and its full capacity 

may be harnessed to produce an optical and electrochemical sensor. Frequency-

resolved periodic optical (transmission) and electrical (impedance) responses of 

polyaniline films grown electrochemically on indium tin oxide electrodes has been 

studied (Kalaji and Peter, 1991). The device developed in this work was fabricated 

upon a transparent PET substrate and so it may be combined with an LED optical 

monitoring system (Cogan et al., 2014).  
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7.1. CONCLUSIONS 

This thesis describes the development of a device for facilitating the 

measurement of ammonia in blood. It is based on an impedance sensing principle 

and works in conjunction with a polyaniline nanoparticle based sensing material 

which is sensitive and selective towards ammonia. The polyaniline nanoparticles 

were synthesised using micellar polymerisation of aniline in the presence of APS in 

a DBSA micellar solution. This solution was dialysed against a surfactant forming an 

aqueous co-colloidal printable ink. Polyaniline nanodispersions were then inkjet 

print deposited onto a silver screen printed IDEs to form an ammonia sensor. This 

sensor was encapsulated into a device which facilitated the measurement of aqueous 

ammonia. The device was pre-calibrated which improved the reproducibility of the 

responses from 8.65 to 2.98% at ambient conditions. However, when stored in a 

desiccator, the pre-calibration procedure resulted in a 3.2 fold increase of the 

ammonia response.  

Prior to ammonia sensing, characteristics of the polyaniline nanodispersions 

were analysed. Their impact on the sensing ability of the fabricated sensors was 

assessed. It was observed that nanoparticle size and ζ-potential varied between each 

batch. The variation in size has been demonstrated in literature with contradicting 

reports of size. This suggests that the micellar polymerisation method is prone to 

variations. Variations in ζ-potential may be explained by the nature of the 

polyaniline nanodispersion which is stabilised with surfactant micelles. Therefore, 

the measurement of the polyaniline nano-sized micelles may not be possible alone, 

rather the surfactant micelles may also be considered. The impact of size and ζ-

potential on sensor impedance was assessed and there were no significant 

relationships observed. Thus, the measurement of size and ζ-potential are irrelevant 

with respect to sensor performance.   

Early work of the thesis revealed water vapour from the matrix were 

interfering with the measurement, preventing the determination of the lowest levels 

of ammonia necessary for blood testing (11 to 50 µM). Therefore, additional means 

were introduced to remove the water vapour signal by forcing a controlled amount of 

air across the sensor. Ammonia gas has a high affinity for the sensor and so remained 

in contact. However, water vapour has only low affinity and is also liable to 
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evaporation from the surface and thus was quickly removed. This resulted in a final 

signal which was due to the presence of ammonia alone (R
2
 = 0.9868, n = 3).  

 Matrix interference studies were conducted with ammonia associated 

compounds and electroactive species at clinically relevant concentrations. There was 

no interference observed with the measurement of ammonia (30 µM). This 

demonstrated the capability of the device to determine ammonia in a biological 

matrix. Prior to serum analysis, a protein matrix was evaluated. Ammonia was 

determined in protein, amongst challenges of non-linearity and reproducibility. 

These challenges were further complicated when human serum matrix was assessed. 

It appeared that both proteins and lipids interfered with the impedimetric 

measurement of ammonia. The human serum required the removal of lipids and 

proteins. This was achieved by centrifuging delipidated serum with a spin filter 

column. 

Ammonia was determined in delipidated deproteinated human serum across 

the clinically relevant levels of 25 to 200 µM with a calculated limit of detection 

(LOD) of 12 µM, a coefficient of determination of 0.9984, slope of 0.0046 and an 

intercept of 1.1534 was generated for n = 3. Impedimetric device measurements were 

validated using a commercially available Abcam® spectrophotometric assay kit for 

ammonia which resulted in excellent correlation (0.9699, p < 0.0001) with a slope of 

1.4472 and an intercept of 0.5631 between both methods for n = 3. The Abcam® 

assay also suffered similar, if not worse, interferences and inhibition from proteins 

and lipids. Therefore, it can be concluded that the developed blood ammonia device 

achieved minimum commercial requirements as set by the Abcam® assay kit. The 

reproducibility of the device for n = 15 was 6.9%. They were seen to be stable for up 

to five months.   

7.2. CLOSING STATEMENT 

This thesis has demonstrated that fabrication techniques such as screen and 

inkjet printing technologies may be used in combination with advanced materials 

such as polymer nanoparticles to produce low cost, disposable devices suitable for 

the determination of blood ammonia at the point of care. While further developments 

are required to make them viable for clinical use, significant proof of concept has 
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been demonstrated, with routes to effective implementation identified. The 

inexpensive, low cost, printed and laminar nature of the devices make them highly 

compatible with existing commercial ammonia assays for the determination of blood 

ammonia.  
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Appendix I. Inter- and intra-sensor differences accompanied with statistical 

information for n = 15.  

Sensor Mean SD RSD% 

1 397.2 0.3 0.1 

2 423.0 0.5 0.1 

3 413.4 0.6 0.1 

4 400.5 0.5 0.1 

5 370.3 0.6 0.2 

6 386.4 0.7 0.2 

7 444.1 0.6 0.1 

8 403.5 0.5 0.1 

9 412.2 0.4 0.1 

10 400.4 0.3 0.1 

11 366.6 0.3 0.1 

12 355.9 0.3 0.1 

13 367.4 0.3 0.1 

14 357.8 0.3 0.1 

15 358.9 0.4 0.1 

Mean 390.5 0.4 0.1 
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Appendix II. Statistical impedimetric data for increased inkjet-printed layers of 

polyaniline during the measurement of 1 mM ammonia as ammonium chloride 

(n = 3). 

Inkjet-printed 

polyaniline layers 

Z/Zair Zair Z 

Mean    

1 4.81 23437.21 110746.91 

5 3.89 863.78 3361.10 

10 3.82 314.97 1198.25 

20 2.44 209.87 511.99 

40 1.00 269.50 269.13 

SD    

1 1.87 2007.32 34072.54 

5 0.39 30.80 412.36 

10 0.33 28.32 97.75 

20 0.19 3.56 32.10 

40 0.02 19.15 17.32 

%RSD    

1 38.82 8.56 30.77 

5 10.14 3.57 12.27 

10 8.65 8.99 8.16 

20 7.77 1.70 6.27 

40 1.85 7.11 6.43 
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Appendix III. The change in impedance of aqueous ammonia devices upon 

exposure to ammonia.  

Concentration 

of NH3 (mM) Z (Ω) Zair (Ω) Z-Zair (Ω) Z/Zair 

DI water 19909.74 20230.78 -321.04 0.98 

0 20329.3 21508.65 -1179.36 0.95 

0.1 30204.82 31046.05 -841.22 0.97 

1 25278.78 24335.45 943.32 1.04 

5 78871.15 64084.10 14787.05 1.23 
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Appendix IV. Impedance spectroscopic analysis of the preliminary devices 

firstly in air (●) and secondly in DI water, PBS and 0.1, 0.5, 1 mM ammonia in 

PBS (○). Data is represented as (a) Nyquist, (b) Bode modulus, and (c) phase 

angle from 0.1 Hz to 100 kHz. 
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Appendix V. Impedance response (Z/Zair) results of ammonia concentrations in 

PBS pH 11.0 as determined by ammonia devices at n = 3.  

Ammonia 

(µM) Average Z/Zair SD %RSD 

200 1.86 0.08 4.23 

150 1.59 0.06 3.89 

100 1.33 0.03 2.09 

50 1.16 0.01 0.94 

25 1.07 0.01 0.77 

0 1.00 0.01 1.17 
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Appendix VI. Statistical data of the ammonia device in response to ammonia in 

BSA (n = 3). 

NH3 (µM) 1 2 3 Mean SD %RSD 

200 3.11 2.43 2.34 2.37 0.06 2.67 

150 2.29 2.34 2.26 2.29 0.04 1.68 

100 2.10 2.29 2.17 2.19 0.09 4.30 

50 2.16 1.90 1.88 1.98 0.16 7.95 

25 2.00 1.86 1.83 1.90 0.09 4.76 

0 1.66 1.75 1.65 1.69 0.05 3.08 
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Appendix VII. Impedance response (Z/Zair) results of ammonia concentrations in 

delipidated human serum as determined by ammonia devices.  
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