
International Journal of General Systems, 2017
http://dx.doi.org/10.1080/03081079.2017.1300585

Structural machines and slime mould computation

Mark Burgina and Andy Adamatzkyb

aDepartment of Mathematics, UCLA, Los Angeles, CA, USA; bUnconventional Computing Centre and
Department of Computer Science, UWE, Bristol, UK

ABSTRACT
A Physarum machine is a programmable amorphous biological
computer experimentally implemented in the vegetative state of
true slime mould Physarum polycephalum. It comprises an amorphous
yellowish mass with networks of protoplasmic veins, programmed by
spatial configurations of attracting and repelling gradients. The goal
of this paper to advance formalism of Physarum machines providing
theoretical tools for exploration of possibilities of these machines and
extension of their applications. To achieve this goal, we introduce
structural machines and study their properties.

1.  Introduction

Research in unconventional, or nature-inspired, computing aims to uncover novel principles
of efficient information processing and computation in physical, chemical and biological
systems, to develop novel non-standard algorithms and computing architectures, and also
to implement conventional algorithms in non-silicon, or wet, substrates. Despite the pro-
found potential offered by unconventional computing, only a handful of experimental pro-
totypes of chemical and biological computation are reported so far: gas-discharge analogue
path finders (Reyes 2002); maze-solving micro-fluidic circuits (Fuesterman et al. 2003);
geometrically constrained universal chemical computers (Motoike and Yoshikawa 2003;
Gorecki, Gorecka, and Igarashi 2009); specialized and universal chemical reaction–diffusion
processors (Adamatzky, Costello, and Asai 2005); universal extended analogue computers
(Mills 2008); maze-solving chemo-tactic droplets (Lagzi et al. 2010); enzyme-based logical
circuits (Privman et al. 2009; Katz and Privman 2010); spatially extended crystallization
computers for optimization and computational geometry (Adamatzky, Costello, and Asai
2005); molecular logical gates and circuits (Stojanovic, Mitchell, and Stefanovic 2002).

A weak representation of laboratory experiments in the field of unconventional com-
puters could be explained by technical difficulties, costs of prototyping of novel computing
substrates and also psychological barriers. At the same time, physicists found that it is
possible to substitute physical experiments by theoretical modelling and computer simu-
lation. Existence of adequate and efficient models of physical systems and processes is the
necessary condition for the relevant theoretical modelling and computer simulation. That

KEYWORDS
Structural machine; slime
mould; Physarum machine;
unconventional computing;
bio-inspired computing;
computing automaton;
computational efficiency

ARTICLE HISTORY
Received 17 January 2016
Accepted 29 January 2017

© 2017 Informa UK Limited, trading as Taylor & Francis Group

CONTACT  Mark Burgin  mburgin@math.ucla.edu

mailto: mburgin@math.ucla.edu
http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/03081079.2017.1300585&domain=pdf

2   ﻿ M. BURGIN AND A. ADAMATZKY

is why, following the example of physicists, here we construct an efficient theoretical model
for biological and chemical computers – structural machines, which encompass contempo-
rary models of computations providing, at the same time, powerful means for exploration
of biological and chemical computations by theoretical tools and computer simulation.

The paper is organized as follows. In the second section, we describe Physarum machines.
In the third section, we describe structural machines and study their properties. In the fourth
section, we show how structural machines model Physarum machines. Discussions of the
obtained results and future directions for research are in the fifth section.

2.  Slime mould and Physarum machines

Physarum polycephalum belongs to the species of order Physarales, subclass
Myxogastromycetidae, class Myxomycetes, division Myxostelida. It is commonly known as a
true, acellular or multi-headed slime mould. Plasmodium is a “vegetative” phase, a single cell
with a myriad of diploid nuclei. The plasmodium is visible to the naked eye. The plasmodium
looks like an amorphous yellowish mass with networks of protoplasmic tubes (Figure 1).

The plasmodium behaves and moves as a giant amoeba. It feeds on bacteria, spores and
other microbial creatures and micro-particles (Stephenson and Stempen 2000). When for-
aging for its food the plasmodium propagates towards sources of food particles, surrounds
them, secretes enzymes and digests the food. Typically, the plasmodium forms a network
of protoplasmic tubes connecting the masses of protoplasm at the food sources, which has
been shown to be efficient in terms of network length and resilience (Nakagaki et al. 2004).
When several sources of nutrients are scattered in the plasmodium’s range, the plasmodium
forms a network of protoplasmic tubes connecting the masses of protoplasm at the food
sources (Figure 1). The plasmodium is a network of biochemical oscillators (Matsumoto,
Ueda, and Kobatake 1988; Nakagaki et al. 1999). Waves of excitation or contraction orig-
inate from several sources, e.g. induced by external stimuli and perturbations. The waves
travel along the plasmodium and interact one with another in collisions. The oscillatory
cytoplasm of the plasmodium is a spatially extended non-linear excitable medium. Growing

Figure 1. Slime mould Physarum polycephalum on an agar plate.
Notes: Oat flakes are seen as solid masses. They are spanned by protoplasmic networks.

INTERNATIONAL JOURNAL OF GENERAL SYSTEMS﻿    3

and feeding plasmodium exhibits characteristic rhythmic contractions with articulated
sources. The contraction waves are associated with waves of electrical potential change.
The plasmodium’s behaviour is determined by external stimuli and excitation waves trav-
elling and interacting inside the plasmodium (Nakagaki et al. 1999). The plasmodium can
be considered as a reaction–diffusion (Adamatzky 2007a) or an excitable (Achenbach and
Weisenseel 1981) medium encapsulated in an elastic growing membrane.

The large size of the plasmodium allows the single cell to be highly amorphous. The
plasmodium shows synchronous oscillation of cytoplasm throughout its cell body, and
oscillatory patterns control the behaviours of the cell. All the parts of the cell behave
cooperatively in exploring the space, searching for nutrients and optimizing the network
of streaming protoplasm. When plasmodium is placed on an appropriate substrate, the
plasmodium propagates, searches for sources of nutrients and follows gradients of chemo-
attractants, humidity and illumination. When sources of nutrients are located and engulfed,
the plasmodium forms veins of protoplasm or protoplasmic tubes. The veins can branch, and
eventually the plasmodium spans the sources of nutrients with a dynamic proximity graph,
resembling, but not perfectly matching graphs from the family of k-skeletons (Kirkpatrick
and Radke 1985).

Due to its unique features and relative ease of experimentation with, the plasmodium
has become a test biological substrate for implementation of various computational tasks.
The problems solved by the plasmodium include maze-solving, calculation of efficient net-
works, construction of logical gates, sub-division of spatial configurations of data points
and robot control (see e.g. Nakagaki, Yamada, and Tóth 2000; Tsuda, Aono, and Gunji 2004;
Tero, Kobayashi, and Nakagaki 2007; Tsuda, Zauner, and Gunji 2007; Adamatzky 2010). A
computation in the plasmodium is implemented by interacting biochemical and excitation
waves, redistribution of electrical charges on plasmodium’s membrane and spatiotemporal
dynamics of mechanical waves. Plasmodium of P. polycephalum performs complex computa-
tion by three general mechanisms: morphological adaptation of its body plan and transport
network, wave propagation of information through its protoplasmic transport network
and competition and entrainment of oscillations in partial bodies – relatively small frag-
ments of plasmodium connected via protoplasmic tubes. All three mechanisms are closely
associated with one another (for example, morphological adaptation is dependent on local
oscillatory activity and protoplasmic flux). In (Adamatzky 2007b), it is demonstrated how
to simulate Kolmogorov algorithms with living slime mould in experimental laboratory
conditions. A Kolmogorov algorithm (Kolmogorov 1953; Kolmogorov and Uspensky 1958)
is an abstract machine defined on a dynamically changing graph-based structure, which is
called a Kolmogorov complex. A Kolmogorov algorithm determines a computational process
on a Kolmogorov complex – a finite undirected connected graph with distinctly labelled
nodes. The nodes are labelled in such a manner that any two closest neighbours of any
node have different labels. The graph is an analogue of a storage structure. A computational
process propagates on the graph activating nodes, as well as removing and adding edges.
There is only one active node at any step of the development, i.e. the neighbourhood of any
active node is fixed for any particular algorithm.

A program for a Kolmogorov algorithm specifies how to replace the neighbourhood
of an active node with a new neighbourhood, depending on the labels of edges connected
to the active node and the labels of the nodes in proximity to the active node (Blass and
Gurevich 2003). In the present paper, we advance theoretical constructs based on blending
advances in the slime mould computing (Adamatzky 2010, 2016), conceptual approaches

4   ﻿ M. BURGIN AND A. ADAMATZKY

to computing on graphs (Kolmogorov 1953; Kolmogorov and Uspensky 1958) and Burgin
structural machines (Burgin 2012).

3.  Structural machines

Structural machines of the first-order work with first-order structures.
Definition 1.  A first-order structure is a triad of the form

Here,

• � A is the set of elements of the structure A called structure elements.
• � R is the set of relations in the structure A
• � r is the incidence relation that connects groups of elements from A with relations

from R
• � Namely, if R is an n-ary relation from R and a1, a2, a3, … , an are elements from A, then

Here, we denote by R the relation with the name R.
It is important to discern relations and their names because when a structural machine

functions, relations, as a rule, are changing, while their names can remain the same. For
instance, when a structure A on a set A has a binary relation R with the name R and in the
process of computation, the machine connects two elements from A by a link assigning it
to the relation R. As a result, R becomes larger but preserves the same name R.

Graphs, directed graphs, labelled graphs, words, texts, tapes of Turing machines and
Kolmogorov complexes are particular cases of structures that have only unary and binary
relations. Note that labels (types) are unary relations.

When R consists of one binary and several unary relations, then the first-order structure
is a labelled (named) graph. When R contains only binary and unary relations, then the
first-order structure is a labelled (named) multigraph.

Example 1.  Below is the graphical representation of a first-order structure A = (A, r, R),
where A = {a, b, c, d, e, f, g} and R consists of one binary relation P and one ternary relation Q:

It is possible to interpret elements of the relation Q in Figure 2 as two clusters of nutri-
ents, colonized by a single slime mould (Figure 3). There are higher degrees of connections
between growth zones and branches of the protoplasmic network inside clusters but there
are only few links bringing these two clusters together.

A = (A, r,R)

r
(

R;a1, a2, a3,… , an
)

means
(

a1, a2, a3,… , an
)

∋R

Q

P b P

a P c P d Q

P g

P f P

e

Figure 2. The graphical representation of a first-order structure.

INTERNATIONAL JOURNAL OF GENERAL SYSTEMS﻿    5

When the set R consists of a single binary relation R, it is possible to represent the
structure A = (A, r, R) in a living slime mould in the following way. The structure elements
from the set A are represented by active growing zones or blobs of slime mould occupying
source of nutrients (Figure 4): the zone, or lamellipodium, consists of an acting network
which polymerization is triggered by signals from receptors distributed in the membrane.
The receptors themselves respond to environmental stimuli, mainly chemo-attractants and
chemo-repellents. The blobs of slime mould and active zones are connected by protoplasmic
tubes. The tubes represent elements from the binary relation R in A.

Figure 3. Tightly connected sub-components of the Physarum graph.

Figure 4. Active growing zone (a) and branching of two active zones (b).

6   ﻿ M. BURGIN AND A. ADAMATZKY

On the other hand, first-order structure A = (A, r, R), in which the set R consists of a single
binary relation R can faithfully represent the structure of a living slime mould established by blobs
of slime mould and active zones. Namely, elements from the set A represent blobs of slime mould
and active zones, while elements from the relation R represent connecting tubes (Figure 5).

However, a slime mould often has a more sophisticated structure. Despite being a single
cell, the slime mould can colonize substantial areas, up to hundreds of centimetres. The
network of blobs, active zones and protoplasmic tubes is not uniform but forms clusters
(Figure 3). These clusters are also connected by thick protoplasmic tubes, which represent
the incidence relation that connects groups of elements from A. To model a slime mould
with clusters, we need second-order structures.
Definition 2.  (Burgin 2012). A second-order structure is a triad of the form

A = (A, r,R)

Figure 5. Scheme of structural representation of Physarum machines: (a) a snapshot of a Physarum
protoplasmic network; (b) a network abstraction. Blobs of slime mould, which are occupying sources of
nutrients, are solid black shapes in (a) and black discs in (b). Protoplasmic tubes are clearly visible in (a)
and they shown as arcs (b). Grey discs are here to indicate influences between blobs, which is determined
by direction of cytoplasm shuffling in the Physarum cell (Adamatzky and Schubert 2014).

INTERNATIONAL JOURNAL OF GENERAL SYSTEMS﻿    7

Here,

• � A is the set of elements of the structure A called structure elements.
• � R is the set of relations in the structure A
• � r is the incidence relation that connects groups of elements from A with relations

from R
• � R = R1 ∪ R2
• � R1 in the set A
• � R2 is the set of relations in the set R1, i.e. elements from R2 are relations between

relations from R1

Second-order structures are processed by structural machines of the second order.
Relations from the set R determine the intrinsic structure of the structure A = (A, r, R).

However, efficient operation with, utilization of and modelling first-order and higher order
structures demands additional (extrinsic) structures (Burgin 2012). One of these extrinsic
structures is pretopology (Čech 1966) determined by neighbourhoods in the set A.
Definition 3.  If R is an n–ary relation from R, then:

(α) the substantial R–neighbourhood of a structure element a in a structure A = (A, r, R)
is a set of the form

(β) the link R–neighbourhood of a structure element a in a structure A = (A, r, R) is a set
of the form

(χ) the full R–neighbourhood of a structure element a in a structure A = (A, r, R) is the set

Informally, the substantial R–neighbourhood of a structure element a consists of all
structure elements connected to a by the relation R.

The link R–neighbourhood of a structure element a consists of all elements from the
relation R that contain a.

The full R–neighbourhood of a structure element a is the union of the substantial
R–neighbourhood d and link R–neighbourhood d of a.

Examples

(1) � � Taking the structure presented in Figure 2, we see that {a, b, c, f} is the substantial
P–neighbourhood of the structure element a determined by the relation P from
the structure in Figure 2.

(2) � � Taking the structure presented in Figure 2, we see that {a, b, c} is the substantial
Q–neighbourhood of the structure element a determined by the relation Q from
the structure in Figure 2.

ORSa = {a} ∪ {d; ∃i, k∃a2,… , an ∈ A((1 ≤ k ≤ n) &
(

a1, a2,… , ai = a,… , ak = d,… , an
)

∈ R)}

ORLa = {
(

a1, a2,… , an
)

∈ R; a1, a2,… , an ∈ ORa}

ORFa = ORSa ∪ ORLa

8   ﻿ M. BURGIN AND A. ADAMATZKY

(3) � � Taking the structure presented in Figure 2, we see that {a, f} is the substantial
P-neighbourhood of the structure element f determined by the relation P from
the structure in Figure 2.

(4) � � Taking the structure presented in Figure 2, we see that {f, g, e} is the substantial
Q–neighbourhood of the structure element f determined by the relation Q from
the structure in Figure 2.

(5) � � Taking the structure presented in Figure 2, we see that {(a, b), (a, c), (a, f) } is the
link P–neighbourhood of the structure element a determined by the relation Q
from the structure in Figure 2.

(6) � � Taking the structure presented in Figure 2, we see that {(a, b, c)} is the link
Q-neighbourhood of the structure element a determined by the relation Q from
the structure in Figure 2.

Definition 3 implies the following result.
Lemma 1.  The substantial R–neighbourhood of a structure element a in a structure A =
(A, r, R) is uniquely defined.

Relations between relations from R imply relations between neighbourhoods.
Proposition 1.  If R, Q ∈ R and R ⊆ Q, then ORSa ⊆ OQSa, ORLa ⊆ OQLa and ORFa ⊆ OQFa for any
structure element a.

Neighbourhoods of elements allow us to build neighbourhoods of sets of elements.
Definition 4.  If R is an n–ary relation from R and Z ⊆ A, then:

(α) the substantial R–neighbourhood of the set Z in a structure A = (A, r, R) is the set

(β) the link R–neighbourhood of a structure element a in a structure A = (A, r, R) is a set
of the form

(χ) the full R–neighbourhood of a structure element a in a structure A = (A, r, R) is the set

Lemma 1 implies the following result.
Lemma 2.  The substantial (link or full) R–neighbourhood of any set Z of structure ele-
ments is uniquely defined.

Proposition 1 implies the following result.
Proposition 2.  If R, Q ∈ R and R ⊆ Q, then ORSZ ⊆ OQSZ, ORLZ ⊆ OQLZ and ORFZ ⊆ OQFZ for any set
Z of structure elements.

Substantial neighbourhood of sets of structure elements determine pretopology in the
set A of all structure elements.

We remind that a pretopological space is defined as a set X with a preclosure operator
(Čech closure operator) cl. Let 2X be the power set of X.

A preclosure operator on a set X is a mapping cl: 2X → 2X that satisfies the following axi-
oms (Čech 1966):

ORSX =
⋃

a∈X
ORSa

ORLa = {
(

a1, a2,… , an
)

∈ R; a1, a2,… , an ∈ ORa}

ORFa = ORSa ∪ ORLa

INTERNATIONAL JOURNAL OF GENERAL SYSTEMS﻿    9

(1) � � cl(Ø) = Ø
(2) � � Z ⊆ cl(Z) for any Z ⊆ X
(3) � � cl(Z∪Y) ⊆ cl(Z) ∪ cl(Y) for any Z, Y ⊆ X
(4) � � Y ⊆ Z implies cl(Y) ⊆ cl(Z) for any Z, Y ⊆ X

Properties of substantial R–neighbourhoods allow us to prove the following result.
Proposition 3.  Substantial R–neighbourhoods define a pretopology in the set A.

Proof. Let us define the closure cl(Z) of a set Z ⊆ A equal to its substantial R-neighbourhood
ORSX and check the axioms of pretopological spaces.

Axioms 1 and 2 are true by definition as cl(Ø) = Ø and Z ⊆ cl(Z) for any Z ⊆ A.
In addition,

This gives us Axiom 3.
Axiom 4 is implied by Proposition 2.
Proposition 3 is proved.

Definition 5.  (a) the substantial R–neighbourhood of the set Z in a structure A = (A, r,
R) is the set

(b) the link R–neighbourhood of a structure element a in a structure A = (A, r, R) is a set
of the form

(c) the full R–neighbourhood of a structure element a in a structure A = (A, r, R) is the set

Definition 4 implies the following result.
Lemma 3.  The substantial (link or full) R–neighbourhood of a structure element a in a
structure A = (A, r, R) is uniquely defined.

Proposition 3 and Definition 4 imply the following result.
Corollary 1.  Substantial R–neighbourhoods define a pretopology in the set A.

Definition 6.  If R is an n-ary relation from R, then the substantial R–neighbourhood
of a structure element a in a structure A = (A, r, R) is symmetric if for any elements a1, a2,
a3, …, an from A and any permutation i1, i2, i3, …, in of the numbers 1, 2, 3, …, n, we have

cl(Z ∪ Y) = O
RS
(Z ∪ Y)

=
⋃

a∈Z∪Y
O

RS
a =

(

⋃

a∈Z
O

RS
a

)

∪

(

⋃

a∈Y
O

RS
a

)

= O
RS
Z ∪ O

RS
Y = cl(Z) ∪ cl(Y)

O
RS
a =

⋃

R
∈ RORSa

O
RL
a =

⋃

R∈R
ORLa

O
RF
a =

⋃

R∈R
ORFa

(

a1, a2, a3,… , an
)

∈ R if and only if
(

ai1 , ai2 , ai3 ,… , ain

)

∈ R

10   ﻿ M. BURGIN AND A. ADAMATZKY

Lemma 4.  If the substantial R–neighbourhood ORSa of a structure element a is symmetric,
then a structure element b belongs to the R–neighbourhood ORSa if and only if a belongs
to the substantial R–neighbourhood ORSb of b.

Definition 7.  If R is an n-ary relation from R, then the R–neighbourhood of a structure
element a in a structure A = (A, r, R) is transitive if for any elements a1, a2, a3, …, an, d1, d2,
d3, …, dn from A and any numbers i and j from the set {1, 2, 3, …, n }, we have

If (a1, a2, a3, …, an) ∈ R and (d1, …, ai, …, dn) ∈ R, then there are elements b1, b2, b3, …,
bn from A such that (b1, …, ai, …, dj, …, bn) ∈ R
Proposition 4.  If a relation R ∈ R is symmetric and transitive, then substantial R–neighbour-
hoods of two structure elements either coincide or do not intersect.

Corollary 2.  If all relations in R are symmetric and transitive, then substantial R–neigh-
bourhoods of two structure elements either coincide or do not intersect.

Corollary 3.  If R consists of one symmetric binary relation R, i.e. A is a graph and R is also
transitive, then any substantial R–neighbourhood (R–neighbourhood) is a complete graph

Proposition 5.  If a relation R ∈ R is symmetric and transitive, then the system of substantial
R–neighbourhoods forms a base of a topology in A.

Corollary 4.  If all relations in R are symmetric and transitive, then the system of substan-
tial R–neighbourhoods forms a base of a topology in A.

Definition 8.  The type T(A) of a first-order structure A = (A, r, R) is the set {(R, α(R)); R
∈ R } of pairs (R, α(R)) where α(R) is the arity of the relation R with the name R.

We assume that two first-order structures A = (A, r, R) and B = (B, p, P) have the same
type if there is a one-to-one mapping f: T(A) → T(B) such that if f(R, α(R)) = (P, α(P)), then
α(R) = α(P).

For instance, all binary relations have the same type.
A structural machine M works with structures of a given type and has three components:

• � The control device CM regulates the state of the machine M
• � The processor PM performs transformation of the processed structures and its actions

(operations) depend on the state of the machine M and the state of the processed
structures

• � The functional space SpM consists of three components:

• � The input space InM, which contains the input structure.
• � The output space OutM, which contains the output structure.
• � The processing space PSM, in which the input structure(s) is transformed into the output

structure(s).

We assume that all structures – the input structure, the output structure and the processed
structures – have the same type.

Computation of a structural machine M determines the trajectory of computation, which
is a tree in general case and a sequence in the deterministic case.

There are two forms functional spaces SpM :

INTERNATIONAL JOURNAL OF GENERAL SYSTEMS﻿    11

• � SpM is the set of all structures that can be processed by the structural machine M and
is called a categorical functional space

• � SpM is a structure for which all structures that can be processed by the structural
machine M are substructures and is called a universal functional space

There are two basic types of processors:

• � A localized processor is a single abstract device
• � A distributed processor consists of a system of unit processors or processor units

In turn, there are two basic types of distributed processors:

• � A homogeneous distributed processor consists of a system of identical unit processors,
i.e. all these unit processors are copies of one processor

• � A heterogeneous distributed processor consists of a system of different unit processors

As a result, we have three structural types of processors.
It is natural to suppose that each unit processor performs only local operations. In a

general case, each unit processor moves from one structure element to another, performing
operations in their neighbourhoods (Figure 6). This makes it possible to consider a localized
processor as a special type of a distributed processor with one unit processor.

An example of a localized processor is the head of a Turing machine with one head or
a finite automaton. One head of TM correspond to one growth zone of the slime mould.

An example of a homogeneous distributed processor is the system of all heads of a Turing
machine with several heads. It is possible to perceive a Physarum machine as multiproces-
sor structural machine because typically there are several active growth zones exploring
concurrently the physical space around the slime mould.

Figure 6. A ring like architecture of Physarum machine.
Notes: Large yellow blobs of the slime mould colonize irregularly shaped oat flakes. The Physarum blobs are elementary
processors. Each elementary processor establishes the local communication interface with other elementary processors via
protoplasmic tubes.

12   ﻿ M. BURGIN AND A. ADAMATZKY

Examples of heterogeneous distributed processors are processing devices in evolutionary
automata such as evolutionary finite automata, evolutionary Turing machines or evolution-
ary inductive Turing machines (Burgin and Eberbach 2009).

Note that not all heterogeneous distributed processors are the same and to discern
their properties it is possible to use measures of homogeneity constructed in (Burgin and
Bratalskii 1986).

There are three types of localized processors:

• � Localized to one structure element (e.g. node)
• � Localized to an R–neighbourhood of one structure element (e.g. node) where R is a

relation from R
• � Localized to an R–neighbourhood of one structure element (e.g. node)

In what follows, localization of a processor is formalized by the concept of the processor
topos.

There are three sorts of distributed processors:

• � A constant distributed processor has a fixed number of localized unit processors.
• � A variable distributed processor can change the number of localized unit processors.
• � A growing distributed processor can increase the number of localized unit processors.

Growing distributed processors are special kinds of variable distributed processors.
There are three types of variable (growing) distributed processors:

• � In a bounded variable (growing) distributed processor, the quantity of localized unit
processors is always between two numbers, e.g. between 1 and 10, (is bounded by
some number).

• � An unbounded variable distributed processor can use any finite number of localized
unit processors in its functioning.

• � An infinite distributed processor can use any (even infinite) number of localized unit
processors.

Cellular automata give examples of structural machines with infinite distributed pro-
cessors. One-dimensional cellular automata work with such structures as words. Two-
dimensional cellular automata work with such structures as two-dimensional arrays.

Now let us consider characteristics of unit processors in structural machines.
Each unit processor p of a structural machine M has its topos, observation zone and

operation zone.
Definition 9.  The topos Tp of the processor p is the part of the structure occupied by this
processor. When we take into account time of processing, the topos Tp of the processor p
is denoted by Tp(t).

It is natural to assume the following condition.
Axiom T. Topoi of different unit processors do not intersect.

Localization of unit processors implies restrictions on their topoi. Namely, the topos of
a unit processor localized to one structure element consists of this structure element, the
topos of a unit processor localized to an R–neighbourhood of one structure element is a part
of this neighbourhood and the topos of a unit processor localized to an R–neighbourhood
of one structure element is a part of that neighbourhood.

INTERNATIONAL JOURNAL OF GENERAL SYSTEMS﻿    13

Definition 10.  The observation zone Obp of the processor p is the part of the structure SpM
observed by this processor from its topos. When we take into account time of processing,
the observation zone Obp of the processor p is denoted by observation zone Obp(t).
Axiom Z. It is assumed that operations performed by processors depend only on their
observation zone.
Definition 11.  The operation zone Opp of the processor p is the part of the structure SpM
that can be changed by this processor from its topos. When we take into account time of
processing, the operation zone Opp of the processor p is denoted by observation zone Opp(t).

For instance, the head of a Turing machine with one linear tape is unit processor. The
topos of the head is one cell in the tape. Its observation zone is the same cell and the sym-
bol written in it. Its operation zone is the symbol written in the cell occupied by the head.

Usually, these parts of the functional space PSM satisfy the following conditions:

and

Informally, it means that the topos of a processor is inside its operation zone, while it is
possible to perform operations only inside the observation zone.

These conditions are true, for example, for Turing machines, but they are not satisfied
for pushdown automata (Hopcroft, Motwani, and Ullman 2001).

Often we have Opp = Obp and Tp consists of a single node (element from A).
Definition 12.  The transition zone Trp of the processor p consists of all topoi where p can
move in one step from its present topos.

For instance, the transition zone Trh of the head h of a Turing machine with one linear
tape consists of three adjacent cells with h is situated in the middle cell.

In some cases, it is useful to assume that the transition zone of a unit processor is included
in its observation zone.
Definition 13.  A processor unit p is called:

• � topologically uniform if all its topoi are isomorphic
• � operationally uniform if all its operation zones are isomorphic
• � transitionally uniform if all its transition zones are isomorphic
• � observationally uniform if all its observation zones are isomorphic
• � topologically standardized if all its topoi have the same type, e.g. are R-neighbourhoods
• � operationally standardized if all its operation zones have the same type, e.g. are

R-neighbourhoods
• � transitionally standardized if all its transition zones have the same type, e.g. are

R-neighbourhoods
• � observationally standardized if all its observation zones have the same type, e.g. are

R-neighbourhoods

For instance, processor unit p is topologically uniform if all its topoi consist of a single node.

Tp ⊆ Opp ⊆ Obp

Tp(t) ⊆ Opp(t) ⊆ Obp(t)

14   ﻿ M. BURGIN AND A. ADAMATZKY

Lemma 5.  Any topologically (operationally, transitionally or observationally) uniform
processor unit p is topologically (correspondingly, operationally, transitionally or obser-
vationally) standardized.

Usually, processors of abstract and physical automata (machines) are topologically
operationally, transitionally and observationally uniform. At the same time, processors
in chemical and biological automata (machines) can be non-uniform. An example of a
non-uniform processor is a processor that can read from or write to up to five cells in the
memory. Thus, when this processor writes to one cell, its topos consists of one cell, while
when this processor writes to three cell, its topos consists of these three cells.

Topoi, observation zones and operation zones of unit processors allow us to define topoi,
observation zones and operation zones of distributed processors.

There are different types of processor units.
A processor unit can be:

• � Controlled (by the central control device of the structural machine).
• � Autonomous, when it has its own control device.
• � Cooperative, when it has its own control device but the functioning of this processor

unit depends on the states both of its own control device and of the central control
device of the structural machine.

For instance, in a multi-head Turing machine T, all heads are controlled processor units.
The control device of T controls them. At the same time, all finite automata in a cellular
automaton are autonomous processor units.

We remind that a finite state machine also called a finite state automaton is an abstract
system that can be in a finite number of different finite states and functioning of which is
described as changes of its states.
Proposition 6.  A structural machine M is a finite state machine if and only if:

• � Its structural space SpM is finite, i.e. in the case of universal structural space, it is a finite
structure, or in the case of categorical structural space, it consists of a finite number
of finite structures.

• � The number of unit processors is finite and each of them can be in a finite number of
different finite states.

For instance, a finite automaton is a finite state machine, while a Turing machine is not
a finite state machine.
Definition 14.  A temporally finite state machine is an abstract system that can be in a
finite number of different finite states at any moment of time and functioning of which is
described as changes of its states.

Proposition 7.  A structural machine M is a temporally finite state machine if and only if:

• � At any moment of time, its structural space SpM is finite, i.e. in the case of universal
structural space, it is a finite structure, or in the case of categorical structural space, it
consists of a finite number of finite structures.

• � At any moment of time, the number of unit processors is finite and each of them can
be in a finite number of different finite states.

INTERNATIONAL JOURNAL OF GENERAL SYSTEMS﻿    15

• � Any operation of each unit processor involves only a finite number of structure ele-
ments and relations

For instance, a Turing machine is a temporally finite state machine, while finite dimen-
sional and general machines of Blum, Shub, and Smale (1989) are not temporally finite
state machines.
Definition 15.  An operation of a processor is local or more exactly, unilocal if it is per-
formed with one structural element (e.g. node) and some (all) of its relations (a pointed oper-
ation), e.g. deleting a structural element (e.g. a node) and all its binary connections (links
or edges), adding a link to a structural element or changing a label of a structural element.

For instance, the head h of a Turing machine performs only local operations, while the
head of a pushdown automaton can perform nonlocal operations (Hopcroft, Motwani,
and Ullman 2001). Processors of automata that perform operations of unrestricted formal
grammars are mostly nonlocal (Hopcroft, Motwani, and Ullman 2001).
Definition 16.  (a) An operation of a processor P is R–local if it is performed with elements
(e.g. nodes) from the R–neighbourhood of a definite element (e.g. node) and with some
(all) of their relations (a singularly local operation).

(b) An operation of a processor P is topologically R–local if it is performed with elements
(e.g. nodes) from the R–neighbourhood of a topos of P (e.g. node) and with some (all) of
their relations (a singularly local operation).
Lemma 6.  If R contains only one binary relation, a topos of a topologically uniform pro-
cessor P is one structural element and an operation O of P is totally local, then O is local.

Definition 17.  (a) An operation of a processor is R–local or totally local if it is performed
with elements (e.g. nodes) from the R–neighbourhood of a definite element (e.g. node) and
with some (all) of their relations.

(b) An operation of a processor P is topologically R–local if it is performed with elements
(e.g. nodes) from the R–neighbourhood of a topos of P (e.g. node) and with some (all) of
their relations (a singularly local operation).
Lemma 7.  If a topos of a topologically uniform processor P is one structural element and
an operation O of P is local, then O is totally local.

Definitions imply the following result.
Proposition 8.  If R belongs to R, then any R–local operation is R–local.

Let us consider operations performed by processors of structural machines.
The first group of operations consists of the transition operations:

(1) � � Moving the processor from one topos, e.g. a structure element, to another topos.
This operation is local when both elements belong to some relation from R.

(2) � � Changing the operation zone of the processor
(3) � � Changing the observation zone of the processor

The second group of operations consists of the substantial transforming operations:

(1) � � Adding a structure element, e.g. a node.

16   ﻿ M. BURGIN AND A. ADAMATZKY

(2) � � Deleting (removing) a structure element, e.g. a node, from a neighbourhood of the
element where the processor is situated and all relations that include this element.

(3) � � Deleting (removing) a link from a relation R that connects some structure elements
with the element where the processor is situated.

(4) � � Adding a link to a relation R that connects some structure elements with the
element where the processor is situated.

(5) � � Deleting (removing) a relation R from R.
(6) � � Adding a new relation to R.

The third group of operations consists of the symbolic transforming operations:

(1) � � Renaming a node
(2) � � Naming a node
(3) � � Denaming a node, i.e. deleting the name of a node
(4) � � Renaming a link
(5) � � Naming a link
(6) � � Denaming a link, i.e. deleting the name of a link

Example 2.  Operation of deleting the element f from first-order structure A = (A,
r, R) where (A) shows the structure before operation and (B) shows the structure after
operation. Besides, the processor (processor unit) moves from the place (position) f to the
place (position) g (see Figure 7). This operation is performed according to the instruction
(q, f, f) → (q, g, ~f), in which q is the state of the processor (processor unit), f is the place
(position) of the processor (processor unit) before the operation, g is the place (position)
of the processor (processor unit) after the operation and ~f means elimination of f.

Example 3.  Operation of adding the relation P for elements g and f in the first-order
structure A = (A, r, R) where (A) shows the structure before operation and (B) shows the
structure after operation (see Figure 8). Besides, the processor (processor unit) moves from
the place (position) g to the place (position) e. This operation is performed according to
the instruction (p, g, f) → (p, e, P(g, f)), in which p is the state of the processor (processor
unit), g is the place (position) of the processor (processor unit) before the operation, e is
the place (position) of the processor (processor unit) after the operation, f is an observed
element and means addition of the pair (g, f) to the relation P.

 (A)
Q

P b P

a P c P d Q

P g

P f P

e
(B)

Q

P b P

a P c P d g

P P

e

Figure 7. Deleting element. The graphical representation of an operation on first-order structures.

INTERNATIONAL JOURNAL OF GENERAL SYSTEMS﻿    17

Structural machines can simulate Turing machines, Kolmogorov algorithms (machines),
storage modification machines and cellular automata (cf. Section 5).

Structural machines also can simulate processes generated by logical calculi, λ-calculus
and formal grammars being able to perform operations used in various databases.

Structural machines can compute partial recursive functions and limit partial recursive
functions.

Note that there are structural machines that can work not only with discrete but also with
continuous data because structures can be continuous and there are no restrictions on rela-
tions in processed structures. As a result, artificial neural networks, finite dimensional and
general machines of Blum, Shub, and Smale (1989) are particular cases of structural machines.

Thus, we can discern discrete structural machines, which work with discrete struc-
tures, have discrete systems of states and operations and continuous structural machines.
In continuous structural machines one two or all three of the following components can
be continuous, i.e. continuous processed structures, continuous system of states and/or
continuous operations.

Thus, it is natural to use structural machines for a theoretical study of natural com-
putations performed by biological, chemical and physical systems. Here, we use struc-
tural machines as abstract automata modelling functioning of such biological automata as
Physarum machines based on slime mould computations.

4.  Structural machine as a model of the slime mould computations

To model a Physarum machine by a structural machine, we have to interpret components
of a slime mould as components of a structural machine and behaviour of the slime mould
as computations of the structural machine.

A Physarum machine PM is realized by a multi-headed slime mould, which is a single
cell with a myriad of diploid nuclei. It is possible to treat this cell as a primitive object SM
with a set of inner states. Examples of such states are “to be alive” or “not to be alive”. In a
context of physical measurements it would be more correct to use

In this context, we represent the object SM by the control device CM of the structural
machine M, which models the Physarum machine. The control device CM can be assigned
to be an active growing zone (Figure 4(a)).

(A) Q

P b P

a P c P d Q

P g

e(B) Q

P b P

a P c P d Q

P P g

P f P

P f P

e

Figure 8. Adding element. The graphical representation of an operation on first-order structures.

18   ﻿ M. BURGIN AND A. ADAMATZKY

A multi-headed slime mould has several active growth zones exploring concurrently
the physical space around the slime mould, e.g. two active growth zones are shown in
Figure 4(b). Thus, it is natural to treat a Physarum machine as a structural machine with
a distributed processor P (see Figures 5 and 6) and to interpret each active growth zone as
the operation zone of a unit processor p.

As it was already demonstrated, a first-order structure A = (A, r, R), in which the set
R consists of a single binary relation R naturally represents the structure of a living slime
mould established by blobs of slime mould and active zones where structural elements
(e.g. nodes) from the set A represent blobs of slime mould and active zones, while elements
from the relation R (e.g. edges) represent connecting tubes A Physarum machine has two
types of nodes: stationary nodes presented by sources of nutrient (oat flakes), and dynamic
nodes, which are sites where two or more protoplasmic tubes originate (Adamatzky 2007b).

However, a slime mould often has a more sophisticated structure. Despite being a single
cell, the slime mould can colonize substantial areas, up to hundreds of neighbourhoods.
The network of blobs, active zones and protoplasmic tubes is not uniform but forms clusters
(Figure 3). These clusters are also connected by thick protoplasmic tubes, which represent
the incidence relation that connects groups of elements from A (Figure 4). Therefore, we use
second-order structures to model a slime mould with clusters. Thus, taking a second-order
structure A = (A, r, R), in which the set R consists of a binary relation R, a system of binary
relations C1, C2, C3, …, Cn, and a binary relation Q, we represent the structure of a living
slime with clusters in the following way:

• � elements from the set A represent blobs of slime mould and active zones,
• � elements from the relation R represent tubes connecting blobs of the slime mould

and active zones,
• � each relation Ci represents one cluster of the slime mould, namely, if the cluster with

the number I consists of blobs and active zones a1, a2, a3, …, am, then Ci = {(a1, a2, a3,
…, am)} ⊆ Am

• � elements from the relation Q represent tubes connecting clusters

This allows us to consider the sensorial space of the slime mould as the input space InM of
the machine M because the slime mould sees the world as a configuration of gradient fields.

The output space Out, which contains the output structure. The output space is the
morphology of the slime mould, i.e. the configuration of growth zones, blobs occupying
nutrients and network protoplasmic tubes connecting them, is moulded by the output space
OutM of the machine M.

In a similar way, the cyto-skeletal network inside the slime mould body forms the pro-
cessing space of the Physarum machine and is naturally modelled by the processing space
PSM of the structural machine M (Figure 9).

In slime mould, oscillatory patterns control the behaviours of the cell. In structural
machines, oscillatory patterns are represented by the names of the nodes (structural ele-
ments) and links between these elements.

In its interpretation as a Physarum machine, Plasmodium of P. Polycephalum performs
complex computation by three general mechanisms: (1) morphological adaptation of its
body plan and transport network; (2) wave propagation of information through its proto-
plasmic transport network; and (3) competition and entrainment of oscillations in partial

INTERNATIONAL JOURNAL OF GENERAL SYSTEMS﻿    19

bodies – relatively small fragments of plasmodium connected via protoplasmic tubes
(Adamatzky 2010).

In the context of structural machines, morphological adaptation of the slime mould body
plan and transport network is performed by transformation of, e.g. adding new, nodes and
links in the structural space Sp.

A structural machine performs wave propagation of information in the slime mould
protoplasmic transport network by renaming of nodes and links in the structural space Sp.

A structural machine simulates competition and entrainment of oscillations in partial
bodies by transformation of nodes and links in the structural space Sp.

The basic instruction of Physarum machines are: ADD NODE, REMOVE NODE, ADD
EDGE and REMOVE EDGE (Adamatzky 2007b). All these operations are modelled by
substantial transforming operations of structural machines (see Section 3).

An important issue of any automaton/computer is how this machine gives the result.
Different schemas of the computational result give different modes of computation by the
same computing device (Burgin 2015).

To model Physarum machines, we utilize the indication mode of the structural machine
functioning, which is based on an indication function.

Let us consider a class of structures STR that contains from all structures from the
functional space SpM of a structural machine M.
Definition 18.  A partial mapping find : STR → {0, 1} is called an indication function.

There are different types of indication functions:

(1) � � An observational indication function is defined by an observer, who (which) deter-
mines its values.

Figure 9. Fine structure of an elementary processing unit, the active growth zone or lamellipodium. The
zone grows up. Cytoskeletal structure is shown as a tree-like network of actin filaments. The polymerization
of the filaments is responsible for the directional growth of the zone.

20   ﻿ M. BURGIN AND A. ADAMATZKY

(2) � � A fitness indication function is defined by a fitness function, which is often used
in optimization processes and evolutionary computations (Burgin and Eberbach
2009).

(3) � � A listings indication function is defined by a list of possible (admissible) results.
(4) � � An analytic indication function is defined by a formula.
(5) � � An algorithmic indication function is defined by an algorithm.

Indication functions are used to select results of structural machine computations in
general and Physarum machine computations, in particular.
Definition 19.  A structural machine M functions in the indication mode with respect
to an indication function find if the result of computation is determined by applying the
indication function find to the trajectory of computation. Namely, when Q belongs to the
trajectory of computation and find (Q) = 1, then the structure Q is the result of computation.

For instance, the formula

defines the inductive mode of computation as a particular case of the indication mode of
computation with an analytic indication function.

In the Physarum machine, an observational indication function is used for selecting the
result. Namely, outputs of Physarum machines are recorded optically (Adamatzky 2007b).

This shows that the Physarum machine can work in the recursive mode but the natural
functioning of this biological computer is the super-recursive mode when slime mould is
functioning in the continuous fashion and its outputs are recorded from time to time by
observation (Burgin 2005).

5.  Discussions

We formalized behaviour, and computing potential, of slime mould P. polycephalum as
abstract structural machines demonstrating their potential. Further work can go in two
directions: implementation of practical algorithms on structural machines and development
of structural machines models for ultra-cellular computing based on cytoskeleton.

The development of practical algorithms is necessary to allow the structural machines
to “enter the real world” and not just remain one of the many formal accomplishments
of theoretical computer science. Physarum machines can solve dozens of problems from
computational geometry, graph optimization and control. They also can be used as organic
electronic elements (Adamatzky 2015, 2016). The structural machine might form a plat-
form for developing Physarum programming languages, compilers and interface between
human operators and the slime mould (Schumann et al. 2014; Siccardi and Adamatzky
2015; Pancerz and Schumann 2016).

The development of structural machine models of ultra-cellular computing is neces-
sary because the behaviour of the slime mould, as of most other cells, is governed by actin
and tubuline networks inside the cells. Here we mention actin because it is a dominating
cytoskeleton protein in P. polycephalum. Actin is a filament-forming protein forming a
communication and information processing cytoskeletal network of eukaryotic cells. Actin
filaments play a key role in developing synaptic structure, memory and learning of ani-
mals and humans. This is why it is important to develop abstractions of the information

∃m ∀n > m (Qn,Qm ∈ Out ⇒ Qn = Qm)

INTERNATIONAL JOURNAL OF GENERAL SYSTEMS﻿    21

processing on the actin filaments. While designing experimental laboratory prototypes
of computing devices from living slime mould P. polycephalum (Adamatzky 2015, 2016),
we found that actin networks might play a key role in distributed sensing, decentralized
information processing and parallel decision-making in a living cell (Adamatzky et al. 2014;
Adamatzky and Mayne 2015; Mayne, Adamatzky, and Jones 2015). The actin-automata
exhibit a wide a range of mobile and stationary patterns, which were later used to design
computational models of quantum (Siccardi and Adamatzky 2015) and Boolean (Siccardi,
Tuszynski, and Adamatzky 2016) gates implementable on actin fibre, as well as realization of
universal computation with cyclic tag systems (Martinez, Adamatzky, and Mclntosh 2015).
The previously proposed model of an actin filament in a form of a finite-state machine, or
automaton network, (Adamatzky and Mayne 2015) constitutes a very special case of studied
in this paper structural machines, which provide much more powerful tools for exploration
of possibilities of biologically based computation. Detailed formalization of the information
processing capabilities of the actin networks, including their polymerization and growths,
and interaction with other intra-cellular proteins would immensely advance nano-com-
puting and theoretical computer science making an imperative impact on development of
future and emergent computing architectures.

Disclosure statement

No potential conflict of interest was reported by the authors.

Notes on contributors

Mark Burgin received his MA and PhD in Mathematics from Moscow State University and doctor
of Science in Logic and Philosophy from the National Academy of Sciences of Ukraine. He was a
professor at the Institute of Education, Kiev; at International Solomon University, Kiev; at Kiev State
University, Ukraine; and the director of the Assessment Laboratory in the Research Center of Science
at the National Academy of Sciences of Ukraine. Currently, he is working at UCLA, USA. Burgin is a
member of New York Academy of Sciences and an honorary professor of the Aerospace Academy of
Ukraine. Burgin is a member of the Science Advisory Committee at Science of Information Institute,
Washington. He was the editor-in-chief of the international journals Integration and Information, and
is an associate editor of the International Journal on Computers and their Applications and International
Journal of Swarm Intelligence & Evolutionary Computation and a member of the Editorial Board of the
Journal of Mathematical and Computational Science and TrippleC. Burgin was a member of organizing
and programme committees of more than 80 conferences. He also organized and directed several
ongoing research seminars in mathematics and computer science, such as Theoretical Computer
Science (UCLA) and Foundations of Mathematics and Information Sciences (National Academy of
Sciences of Ukraine). Burgin is doing research, has publications and taught courses in various areas of
mathematics, computer science, information sciences, system theory, artificial intelligence, software
engineering, logic, psychology, education, social sciences and methodology of science. He originated
such theories as the mathematical theory of technology, system theory of time, general information
theory, theory of named sets, hyperprobability theory and neoclassical analysis (in mathematics)
and made essential contributions to such fields as foundations of mathematics, theory of algorithms,
theory of knowledge, theory of intellectual activity and complexity studies. His practical experience
includes design of operating systems for supercomputers, CAD systems for electrical engineering and
problem-oriented languages for such systems, databases for biological information and general expert
systems, as well as mathematical modelling of databases and expert systems. Burgin has authorized
and co-authorized more than 500 papers and 21 books, including “Theory of Knowledge” (2016),
“Structural Reality” (2012), “Hypernumbers and Extrafuctions” (2012), “Theory of Named Sets” (2011),

22   ﻿ M. BURGIN AND A. ADAMATZKY

“Theory of Information” (2010), “Measuring Power of Algorithms, Computer Programs, and Information
Automata” (2010), “Neoclassical Analysis: Calculus Closer to the Real World” (2008), “Super-recursive
Algorithms” (2005), “On the Nature and Essence of Mathematics” (1998), “Intellectual Components of
Creativity” (1998), “Fundamental Structures of Knowledge and Information” (1997), “Introduction to
the Modern Exact Methodology of Science” (1994), The Structure-Nominative Analysis of Theoretical
Knowledge (1992), and “The World of Theories and Power of Mind (1992).

Andy Adamatzky is a professor in the Department of Computer Science and the director of the
Unconventional Computing Centre, University of the West of England, Bristol, UK. He does research
in reaction–diffusion computing, cellular automata, physarum computing, massive parallel compu-
tation, applied mathematics, collective intelligence and robotics, bionics, computational psychology,
non-linear science, novel hardware and future and emergent computation.

References

Achenbach, F., and M. H. Weisenseel. 1981. “Ionic Currents Traverse the Slime Mould Physarum.”
Cell Biology International Reports 5 (4): 375–379.

Adamatzky, A. 2007a. “Encapsulating Reaction-diffusion Computers.” In Machines, Computations,
and Universality, LNCS v. 4664, 1–11. New York: Springer-Verlag.

Adamatzky, A. 2007b. “Physarum Machine: Implementation of a Kolmogorov–Uspensky Machine
on a Biological Substrate.” Parallel Processing Letters 17 (4): 455–467.

Adamatzky, A. 2010. Physarum Machines: Computers from Slime Mould. London: World Scientific.
Adamatzky, A. 2015. “Thirty-nine Things to Do with Live Slime Mould.” ArXiv:1512.08230 [Cs.ET].
Adamatzky, A. 2016. Advances in Physarum machines. Sensing and computing with slime mould.

London: Springer.
Adamatzky, A., and R. Mayne. 2015. “Actin Automata: Phenomenology and Localizations.”

International Journal of Bifurcation and Chaos 25 (02): 1550030.
Adamatzky, A., and T. Schubert. 2014. “Slime Mold Microfluidic Logical Gates.” Materials Today 17

(2): 86–91.
Adamatzky, A., B. D. Costello, and T. Asai. 2005. Reaction-diffusion Computers. New York: Elsevier.
Adamatzky, A., R. Armstrong, B. De Lacy Costello, Y. Deng, J. Jones, R. Mayne, T. Schubert, G. Ch

Sirakoulis, and X. Zhang. 2014. “Slime Mould Analogue Models of Space Exploration and Planet
Colonisation.” Journal of the British Interplanetary Society 67: 290–304.

Blass, A., and Y. Gurevich. 2003. “Algorithms: A Quest for Absolute Definitions.” Bulletin of the
EATCS. 81: 195–225.

Blum, L., M. Shub, and S. Smale. 1989. “On a Theory of Computation and Complexity over the Real
Numbers: NP- Completeness, Recursive Functions and Universal Machines.” Bulletin of the
American Mathematical Society 21 (1): 1–47.

Burgin, M. 2005. Super-recursive Algorithms. New York, NY: Springer.
Burgin, M. 2012. Structural Reality. New York: Nova Science.
Burgin, M. 2015. “Super-recursive Algorithms and Modes of Computation.” Proceedings of the 2015

European Conference on Software Architecture Workshops, 10:1–10:5. Dubrovnik/Cavtat, Croatia.
Burgin, M., and E. A. Bratalskii. 1986 “The Principle of Asymptotic Uniformity in Complex System

Modelling”, In Operation Research and Automated Control Systems, 115–122. Kiev: Institute of
Cybernetics. [in Russian].

Burgin, M., and E. Eberbach. 2009. “On Foundations of Evolutionary Computation: An Evolutionary
Automata Approach.” In Handbook of Research on Artificial Immune Systems and Natural
Computing, edited by Hongwei Mo, 342–360. Hershey, PA: IGI Global.

Čech, E. 1966. Topological Spaces. London: John Wiley.
Fuerstman, M. J., P. Deschatelets, R. Kane, A. Schwartz, P. J. Kenis, J. M. Deutch, and G. M. Whitesides.

2003. “Solving Mazes Using Microfluidic Networks.” Langmuir 19: 4714–4722.
Gorecki, J., J. N. Gorecka, and Y. Igarashi. 2009. “Information Processing with Structured Excitable

Medium.” Natural Computing 8 (3): 473–492.

INTERNATIONAL JOURNAL OF GENERAL SYSTEMS﻿    23

Hopcroft, J. E., R. Motwani, and J. D. Ullman. 2001. Introduction to Automata Theory, Languages,
and Computation. New York: Addison Wesley.

Katz, E., and V. Privman. 2010. “Enzyme-based Logic Systems for Information Processing.” Chemical
Society Reviews 39 (5): 1835–1857.

Kirkpatrick, D. G., and J. D. Radke. 1985. Computational Geometry. North-Holland: Elsevier.
Kolmogorov, A. N. 1953. “On the Concept of Algorithm.” Uspekhi Matematicheskikh Nauk 8 (4):

175–176.
Kolmogorov, A. N., and V. A. Uspensky. 1958/1963. “On the Definition of an Algorithm.” Uspekhi

Matematicheskikh Nauk 13 (Russian). English Translation in: AMS Translations 2 (21): 217–245.
Lagzi, I., S. Soh, P. J. Wesson, K. P. Browne, and B. A. Grzybowski. 2010. “Maze Solving by Chemotactic

Droplets.” Journal of the American Chemical Society. 132 (4): 1198–1199.
Martinez, G. J., A. Adamatzky, and H. V. Mclntosh. 2015. “Computing with Virtual Cellular Automata

Collider.” Science and Information Conference (SAI), 62–68. London: IEEE.
Matsumoto, K., T. Ueda, and Y. Kobatake. 1988. “Reversal of Thermotaxis with Oscillatory Stimulation

in the Plasmodium of Physarum Polycephalum.” Journal of Theoretical Biology 131 (2): 175–182.
Mayne, R., A. Adamatzky, and J. Jones. 2015. “On the Role of the Plasmodial Cytoskeleton in

Facilitating Intelligent Behaviour in Slime Mould Physarum Polycephalum.” ArXiv Preprint
ArXiv:1503.03012.

Mills, J. W. 2008. “The Nature of the Extended Analog Computer.” Physica D: Nonlinear Phenomena
237 (9): 1235–1256.

Motoike, I. N., and K. Yoshikawa. 2003. “Information Operations with Multiple Pulses on an Excitable
Field.” Chaos, Solitons & Fractals 17 (2–3): 455–461.

Nakagaki, T., H. Yamada, and Á. Tóth. 2000. “Intelligence: Maze-Solving by an Amoeboid Organism.”
Nature 407 (6803): 470–470.

Nakagaki, Toshiyuki, H. Yamada, and T. Ueda. 1999. “Modulation of Cellular Rhythm and
Photoavoidance by Oscillatory Irradiation in the Physarum Plasmodium.” Biophysical chemistry
82 (1): 23–28.

Nakagaki, Toshiyuki, R. Kobayashi, Y. Nishiura, and T. Ueda. 2004. “Obtaining Multiple Separate
Food Sources: Behavioural Intelligence in the Physarum Plasmodium.” Proceedings of the Royal
Society of London B: Biological Sciences 271 (1554): 2305–2310.

Pancerz, K., and A. Schumann. 2016. “Some Issues on an Object-oriented Programming Language
for Physarum Machines.” In edited by Radim Bris, Jaroslav Majernik, Krzysztof Pancerz, and
Elena Zaitseva, Applications of Computational Intelligence in Biomedical Technology, 185–199. New
York: Springer.

Privman, V., V. Pedrosa, D. Melnikov, M. Pita, A. Simonian, and E. Katz. 2009. “Enzymatic AND-
Gate Based on Electrode-immobilized Glucose-6-Phosphate Dehydrogenase: Towards Digital
Biosensors and Biochemical Logic Systems with Low Noise.” Biosensors and Bioelectronics 25 (4):
695–701.

Reyes, D. R., M. M. Ghanem, G. M. Whitesides, and A. Manz. 2002. “Glow Discharge in Microfluidic
Chips for Visible Analog Computing.” Lab on a Chip 2: 113–116.

Schumann, A., and A. Adamatzky. 2015. “Physarum Polycephalum Diagrams for Syllogistic Systems.”
Journal of Logics 2 (1): 35.

Schumann, A., K. Pancerz, A. Adamatzky, and M. Grube. 2014. “Bio-inspired Game Theory: The
Case of Physarum Polycephalum.” Proceedings of the 8th International Conference on Bioinspired
Information and Communications Technologies, 9–16. Lodz: ICST (Institute for Computer Sciences,
Social-informatics and Telecommunications Engineering), December 1.

Siccardi, S., and A. Adamatzky. 2015. “Actin Quantum Automata: Communication and Computation
in Molecular Networks.” Nano Communication Networks 6 (1): 15–27.

Siccardi, S., J. A. Tuszynski, and A. Adamatzky. 2016. “Boolean Gates on Actin Filaments.” Physics
Letters A 380 (1–2): 88–97.

Stephenson, S., and H. Stempen. 2000. Myxomycetes: A Handbook of Slime Moulds. Portland: Timber
Press.

Stojanovic, M. N., T. E. Mitchell, and D. Stefanovic. 2002. “Deoxyribozyme-based Logic Gates.”
Journal of the American Chemical Society. 124 (14): 3555–3561.

24   ﻿ M. BURGIN AND A. ADAMATZKY

Tero, Atsushi, R. Kobayashi, and T. Nakagaki. 2007. “A Mathematical Model for Adaptive Transport
Network in Path Finding by True Slime Mold.” Journal of theoretical biology 244 (4): 553–564.

Tsuda, S., M. Aono, and Y. P. Gunji. 2004. “Robust and Emergent Physarum Logical-computing.”
Biosystems. 73 (1): 45–55.

Tsuda, S., K. P. Zauner, and Y. P. Gunji. 2007. “Robot Control with Biological Cells.” Biosystems. 87
(2–3): 215–223.

	Abstract
	1. Introduction
	2. Slime mould and Physarum machines
	3. Structural machines
	Examples
	4. Structural machine as a model of the slime mould computations
	5. Discussions
	Disclosure statement
	Notes on contributors
	References

