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ABSTRACT
A Physarum machine is a programmable amorphous biological 
computer experimentally implemented in the vegetative state of 
true slime mould Physarum polycephalum. It comprises an amorphous 
yellowish mass with networks of protoplasmic veins, programmed by 
spatial configurations of attracting and repelling gradients. The goal 
of this paper to advance formalism of Physarum machines providing 
theoretical tools for exploration of possibilities of these machines and 
extension of their applications. To achieve this goal, we introduce 
structural machines and study their properties.

1.  Introduction

Research in unconventional, or nature-inspired, computing aims to uncover novel principles 
of efficient information processing and computation in physical, chemical and biological 
systems, to develop novel non-standard algorithms and computing architectures, and also 
to implement conventional algorithms in non-silicon, or wet, substrates. Despite the pro-
found potential offered by unconventional computing, only a handful of experimental pro-
totypes of chemical and biological computation are reported so far: gas-discharge analogue 
path finders (Reyes 2002); maze-solving micro-fluidic circuits (Fuesterman et al. 2003); 
geometrically constrained universal chemical computers (Motoike and Yoshikawa 2003; 
Gorecki, Gorecka, and Igarashi 2009); specialized and universal chemical reaction–diffusion 
processors (Adamatzky, Costello, and Asai 2005); universal extended analogue computers 
(Mills 2008); maze-solving chemo-tactic droplets (Lagzi et al. 2010); enzyme-based logical 
circuits (Privman et al. 2009; Katz and Privman 2010); spatially extended crystallization 
computers for optimization and computational geometry (Adamatzky, Costello, and Asai 
2005); molecular logical gates and circuits (Stojanovic, Mitchell, and Stefanovic 2002).

A weak representation of laboratory experiments in the field of unconventional com-
puters could be explained by technical difficulties, costs of prototyping of novel computing 
substrates and also psychological barriers. At the same time, physicists found that it is 
possible to substitute physical experiments by theoretical modelling and computer simu-
lation. Existence of adequate and efficient models of physical systems and processes is the 
necessary condition for the relevant theoretical modelling and computer simulation. That 
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is why, following the example of physicists, here we construct an efficient theoretical model 
for biological and chemical computers – structural machines, which encompass contempo-
rary models of computations providing, at the same time, powerful means for exploration 
of biological and chemical computations by theoretical tools and computer simulation.

The paper is organized as follows. In the second section, we describe Physarum machines. 
In the third section, we describe structural machines and study their properties. In the fourth 
section, we show how structural machines model Physarum machines. Discussions of the 
obtained results and future directions for research are in the fifth section.

2.  Slime mould and Physarum machines

Physarum polycephalum belongs to the species of order Physarales, subclass 
Myxogastromycetidae, class Myxomycetes, division Myxostelida. It is commonly known as a 
true, acellular or multi-headed slime mould. Plasmodium is a “vegetative” phase, a single cell 
with a myriad of diploid nuclei. The plasmodium is visible to the naked eye. The plasmodium 
looks like an amorphous yellowish mass with networks of protoplasmic tubes (Figure 1).

The plasmodium behaves and moves as a giant amoeba. It feeds on bacteria, spores and 
other microbial creatures and micro-particles (Stephenson and Stempen 2000). When for-
aging for its food the plasmodium propagates towards sources of food particles, surrounds 
them, secretes enzymes and digests the food. Typically, the plasmodium forms a network 
of protoplasmic tubes connecting the masses of protoplasm at the food sources, which has 
been shown to be efficient in terms of network length and resilience (Nakagaki et al. 2004). 
When several sources of nutrients are scattered in the plasmodium’s range, the plasmodium 
forms a network of protoplasmic tubes connecting the masses of protoplasm at the food 
sources (Figure 1). The plasmodium is a network of biochemical oscillators (Matsumoto, 
Ueda, and Kobatake 1988; Nakagaki et al. 1999). Waves of excitation or contraction orig-
inate from several sources, e.g. induced by external stimuli and perturbations. The waves 
travel along the plasmodium and interact one with another in collisions. The oscillatory 
cytoplasm of the plasmodium is a spatially extended non-linear excitable medium. Growing 

Figure 1. Slime mould Physarum polycephalum on an agar plate.
Notes: Oat flakes are seen as solid masses. They are spanned by protoplasmic networks.
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and feeding plasmodium exhibits characteristic rhythmic contractions with articulated 
sources. The contraction waves are associated with waves of electrical potential change. 
The plasmodium’s behaviour is determined by external stimuli and excitation waves trav-
elling and interacting inside the plasmodium (Nakagaki et al. 1999). The plasmodium can 
be considered as a reaction–diffusion (Adamatzky 2007a) or an excitable (Achenbach and 
Weisenseel 1981) medium encapsulated in an elastic growing membrane.

The large size of the plasmodium allows the single cell to be highly amorphous. The 
plasmodium shows synchronous oscillation of cytoplasm throughout its cell body, and 
oscillatory patterns control the behaviours of the cell. All the parts of the cell behave 
cooperatively in exploring the space, searching for nutrients and optimizing the network 
of streaming protoplasm. When plasmodium is placed on an appropriate substrate, the 
plasmodium propagates, searches for sources of nutrients and follows gradients of chemo-
attractants, humidity and illumination. When sources of nutrients are located and engulfed, 
the plasmodium forms veins of protoplasm or protoplasmic tubes. The veins can branch, and 
eventually the plasmodium spans the sources of nutrients with a dynamic proximity graph, 
resembling, but not perfectly matching graphs from the family of k-skeletons (Kirkpatrick 
and Radke 1985).

Due to its unique features and relative ease of experimentation with, the plasmodium 
has become a test biological substrate for implementation of various computational tasks. 
The problems solved by the plasmodium include maze-solving, calculation of efficient net-
works, construction of logical gates, sub-division of spatial configurations of data points 
and robot control (see e.g. Nakagaki, Yamada, and Tóth 2000; Tsuda, Aono, and Gunji 2004; 
Tero, Kobayashi, and Nakagaki 2007; Tsuda, Zauner, and Gunji 2007; Adamatzky 2010). A 
computation in the plasmodium is implemented by interacting biochemical and excitation 
waves, redistribution of electrical charges on plasmodium’s membrane and spatiotemporal 
dynamics of mechanical waves. Plasmodium of P. polycephalum performs complex computa-
tion by three general mechanisms: morphological adaptation of its body plan and transport 
network, wave propagation of information through its protoplasmic transport network 
and competition and entrainment of oscillations in partial bodies – relatively small frag-
ments of plasmodium connected via protoplasmic tubes. All three mechanisms are closely 
associated with one another (for example, morphological adaptation is dependent on local 
oscillatory activity and protoplasmic flux). In (Adamatzky 2007b), it is demonstrated how 
to simulate Kolmogorov algorithms with living slime mould in experimental laboratory 
conditions. A Kolmogorov algorithm (Kolmogorov 1953; Kolmogorov and Uspensky 1958) 
is an abstract machine defined on a dynamically changing graph-based structure, which is 
called a Kolmogorov complex. A Kolmogorov algorithm determines a computational process 
on a Kolmogorov complex – a finite undirected connected graph with distinctly labelled 
nodes. The nodes are labelled in such a manner that any two closest neighbours of any 
node have different labels. The graph is an analogue of a storage structure. A computational 
process propagates on the graph activating nodes, as well as removing and adding edges. 
There is only one active node at any step of the development, i.e. the neighbourhood of any 
active node is fixed for any particular algorithm.

A program for a Kolmogorov algorithm specifies how to replace the neighbourhood 
of an active node with a new neighbourhood, depending on the labels of edges connected 
to the active node and the labels of the nodes in proximity to the active node (Blass and 
Gurevich 2003). In the present paper, we advance theoretical constructs based on blending 
advances in the slime mould computing (Adamatzky 2010, 2016), conceptual approaches 
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to computing on graphs (Kolmogorov 1953; Kolmogorov and Uspensky 1958) and Burgin 
structural machines (Burgin 2012).

3.  Structural machines

Structural machines of the first-order work with first-order structures.
Definition 1.  A first-order structure is a triad of the form

Here,

• � A is the set of elements of the structure A called structure elements.
• � R is the set of relations in the structure A
• � r is the incidence relation that connects groups of elements from A with relations 

from R
• � Namely, if R is an n-ary relation from R and a1, a2, a3, … , an are elements from A, then 

Here, we denote by R the relation with the name R.
It is important to discern relations and their names because when a structural machine 

functions, relations, as a rule, are changing, while their names can remain the same. For 
instance, when a structure A on a set A has a binary relation R with the name R and in the 
process of computation, the machine connects two elements from A by a link assigning it 
to the relation R. As a result, R becomes larger but preserves the same name R.

Graphs, directed graphs, labelled graphs, words, texts, tapes of Turing machines and 
Kolmogorov complexes are particular cases of structures that have only unary and binary 
relations. Note that labels (types) are unary relations.

When R consists of one binary and several unary relations, then the first-order structure 
is a labelled (named) graph. When R contains only binary and unary relations, then the 
first-order structure is a labelled (named) multigraph.

Example 1.  Below is the graphical representation of a first-order structure A = (A, r, R), 
where A = {a, b, c, d, e, f, g} and R consists of one binary relation P and one ternary relation Q:

It is possible to interpret elements of the relation Q in Figure 2 as two clusters of nutri-
ents, colonized by a single slime mould (Figure 3). There are higher degrees of connections 
between growth zones and branches of the protoplasmic network inside clusters but there 
are only few links bringing these two clusters together.

A = (A, r,R)

r
(

R;a1, a2, a3,… , an
)

means
(

a1, a2, a3,… , an
)

∋R

Q

P b P

a P c P d Q

P g

P               f            P  

e

Figure 2. The graphical representation of a first-order structure.
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When the set R consists of a single binary relation R, it is possible to represent the 
structure A = (A, r, R) in a living slime mould in the following way. The structure elements 
from the set A are represented by active growing zones or blobs of slime mould occupying 
source of nutrients (Figure 4): the zone, or lamellipodium, consists of an acting network 
which polymerization is triggered by signals from receptors distributed in the membrane. 
The receptors themselves respond to environmental stimuli, mainly chemo-attractants and 
chemo-repellents. The blobs of slime mould and active zones are connected by protoplasmic 
tubes. The tubes represent elements from the binary relation R in A.

Figure 3. Tightly connected sub-components of the Physarum graph.

Figure 4. Active growing zone (a) and branching of two active zones (b).
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On the other hand, first-order structure A = (A, r, R), in which the set R consists of a single 
binary relation R can faithfully represent the structure of a living slime mould established by blobs 
of slime mould and active zones. Namely, elements from the set A represent blobs of slime mould 
and active zones, while elements from the relation R represent connecting tubes (Figure 5).

However, a slime mould often has a more sophisticated structure. Despite being a single 
cell, the slime mould can colonize substantial areas, up to hundreds of centimetres. The 
network of blobs, active zones and protoplasmic tubes is not uniform but forms clusters 
(Figure 3). These clusters are also connected by thick protoplasmic tubes, which represent 
the incidence relation that connects groups of elements from A. To model a slime mould 
with clusters, we need second-order structures.
Definition 2.  (Burgin 2012). A second-order structure is a triad of the form

A = (A, r,R)

Figure 5.  Scheme of structural representation of Physarum machines: (a) a snapshot of a Physarum 
protoplasmic network; (b) a network abstraction. Blobs of slime mould, which are occupying sources of 
nutrients, are solid black shapes in (a) and black discs in (b). Protoplasmic tubes are clearly visible in (a) 
and they shown as arcs (b). Grey discs are here to indicate influences between blobs, which is determined 
by direction of cytoplasm shuffling in the Physarum cell (Adamatzky and Schubert 2014).
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Here,

• � A is the set of elements of the structure A called structure elements.
• � R is the set of relations in the structure A
• � r is the incidence relation that connects groups of elements from A with relations 

from R
• � R = R1 ∪ R2
• � R1 in the set A
• � R2 is the set of relations in the set R1, i.e. elements from R2 are relations between 

relations from R1

Second-order structures are processed by structural machines of the second order.
Relations from the set R determine the intrinsic structure of the structure A = (A, r, R). 

However, efficient operation with, utilization of and modelling first-order and higher order 
structures demands additional (extrinsic) structures (Burgin 2012). One of these extrinsic 
structures is pretopology (Čech 1966) determined by neighbourhoods in the set A.
Definition 3.  If R is an n–ary relation from R, then:

(α) the substantial R–neighbourhood of a structure element a in a structure A = (A, r, R)  
is a set of the form

(β) the link R–neighbourhood of a structure element a in a structure A = (A, r, R) is a set 
of the form

(χ) the full R–neighbourhood of a structure element a in a structure A = (A, r, R) is the set

Informally, the substantial R–neighbourhood of a structure element a consists of all 
structure elements connected to a by the relation R.

The link R–neighbourhood of a structure element a consists of all elements from the 
relation R that contain a.

The full R–neighbourhood of a structure element a is the union of the substantial 
R–neighbourhood d and link R–neighbourhood d of a.

Examples

(1) � �  Taking the structure presented in Figure 2, we see that {a, b, c, f} is the substantial 
P–neighbourhood of the structure element a determined by the relation P from 
the structure in Figure 2.

(2) � �  Taking the structure presented in Figure 2, we see that {a, b, c} is the substantial 
Q–neighbourhood of the structure element a determined by the relation Q from 
the structure in Figure 2.

ORSa = {a} ∪ {d; ∃i, k∃a2,… , an ∈ A((1 ≤ k ≤ n) &
(

a1, a2,… , ai = a,… , ak = d,… , an
)

∈ R)}

ORLa = {
(

a1, a2,… , an
)

∈ R; a1, a2,… , an ∈ ORa}

ORFa = ORSa ∪ ORLa
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(3) � �  Taking the structure presented in Figure 2, we see that {a, f} is the substantial 
P-neighbourhood of the structure element f determined by the relation P from 
the structure in Figure 2.

(4) � �  Taking the structure presented in Figure 2, we see that {f, g, e} is the substantial 
Q–neighbourhood of the structure element f determined by the relation Q from 
the structure in Figure 2.

(5) � �  Taking the structure presented in Figure 2, we see that {(a, b), (a, c), (a, f) } is the 
link P–neighbourhood of the structure element a determined by the relation Q 
from the structure in Figure 2.

(6) � �  Taking the structure presented in Figure 2, we see that {(a, b, c)} is the link 
Q-neighbourhood of the structure element a determined by the relation Q from 
the structure in Figure 2.

Definition 3 implies the following result.
Lemma 1.  The substantial R–neighbourhood of a structure element a in a structure A = 
(A, r, R) is uniquely defined.

Relations between relations from R imply relations between neighbourhoods.
Proposition 1.  If R, Q ∈ R and R ⊆ Q, then ORSa ⊆ OQSa, ORLa ⊆ OQLa and ORFa ⊆ OQFa for any 
structure element a.

Neighbourhoods of elements allow us to build neighbourhoods of sets of elements.
Definition 4.  If R is an n–ary relation from R and Z ⊆ A, then:

(α) the substantial R–neighbourhood of the set Z in a structure A = (A, r, R) is the set

(β) the link R–neighbourhood of a structure element a in a structure A = (A, r, R) is a set 
of the form

(χ) the full R–neighbourhood of a structure element a in a structure A = (A, r, R) is the set

Lemma 1 implies the following result.
Lemma 2.  The substantial (link or full) R–neighbourhood of any set Z of structure ele-
ments is uniquely defined.

Proposition 1 implies the following result.
Proposition 2.  If R, Q ∈ R and R ⊆ Q, then ORSZ ⊆ OQSZ, ORLZ ⊆ OQLZ and ORFZ ⊆ OQFZ for any set 
Z of structure elements.

Substantial neighbourhood of sets of structure elements determine pretopology in the 
set A of all structure elements.

We remind that a pretopological space is defined as a set X with a preclosure operator 
(Čech closure operator) cl. Let 2X be the power set of X.

A preclosure operator on a set X is a mapping cl: 2X → 2X that satisfies the following axi-
oms (Čech 1966):

ORSX =
⋃

a∈X
ORSa

ORLa = {
(

a1, a2,… , an
)

∈ R; a1, a2,… , an ∈ ORa}

ORFa = ORSa ∪ ORLa
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(1) � �  cl(Ø) = Ø
(2) � �  Z ⊆ cl(Z) for any Z ⊆ X
(3) � �  cl(Z∪Y) ⊆ cl(Z) ∪ cl(Y) for any Z, Y ⊆ X
(4) � �  Y ⊆ Z implies cl(Y) ⊆ cl(Z) for any Z, Y ⊆ X

Properties of substantial R–neighbourhoods allow us to prove the following result.
Proposition 3.  Substantial R–neighbourhoods define a pretopology in the set A.

Proof. Let us define the closure cl(Z) of a set Z ⊆ A equal to its substantial R-neighbourhood 
ORSX and check the axioms of pretopological spaces.

Axioms 1 and 2 are true by definition as cl(Ø) = Ø and Z ⊆ cl(Z) for any Z ⊆ A.
In addition,

This gives us Axiom 3.
Axiom 4 is implied by Proposition 2.
Proposition 3 is proved.

Definition 5.  (a) the substantial R–neighbourhood of the set Z in a structure A = (A, r, 
R) is the set

(b) the link R–neighbourhood of a structure element a in a structure A = (A, r, R) is a set 
of the form

(c) the full R–neighbourhood of a structure element a in a structure A = (A, r, R) is the set

Definition 4 implies the following result.
Lemma 3.  The substantial (link or full) R–neighbourhood of a structure element a in a 
structure A = (A, r, R) is uniquely defined.

Proposition 3 and Definition 4 imply the following result.
Corollary 1.  Substantial R–neighbourhoods define a pretopology in the set A.

Definition 6.  If R is an n-ary relation from R, then the substantial R–neighbourhood 
of a structure element a in a structure A = (A, r, R) is symmetric if for any elements a1, a2, 
a3, …, an from A and any permutation i1, i2, i3, …, in of the numbers 1, 2, 3, …, n, we have

cl(Z ∪ Y ) = O
RS
(Z ∪ Y )

=
⋃

a∈Z∪Y
O

RS
a =

(

⋃

a∈Z
O

RS
a

)

∪

(

⋃

a∈Y
O

RS
a

)

= O
RS
Z ∪ O

RS
Y = cl(Z) ∪ cl(Y )

O
RS
a =

⋃

R
∈ RORSa

O
RL
a =

⋃

R∈R
ORLa

O
RF
a =

⋃

R∈R
ORFa

(

a1, a2, a3,… , an
)

∈ R if and only if
(

ai1 , ai2 , ai3 ,… , ain

)

∈ R
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Lemma 4.  If the substantial R–neighbourhood ORSa of a structure element a is symmetric, 
then a structure element b belongs to the R–neighbourhood ORSa if and only if a belongs 
to the substantial R–neighbourhood ORSb of b.

Definition 7.  If R is an n-ary relation from R, then the R–neighbourhood of a structure 
element a in a structure A = (A, r, R) is transitive if for any elements a1, a2, a3, …, an, d1, d2, 
d3, …, dn from A and any numbers i and j from the set {1, 2, 3, …, n }, we have

If (a1, a2, a3, …, an) ∈ R and (d1, …, ai, …, dn) ∈ R, then there are elements b1, b2, b3, …, 
bn from A such that (b1, …, ai, …, dj, …, bn) ∈ R
Proposition 4.  If a relation R ∈ R is symmetric and transitive, then substantial R–neighbour-
hoods of two structure elements either coincide or do not intersect.

Corollary 2.  If all relations in R are symmetric and transitive, then substantial R–neigh-
bourhoods of two structure elements either coincide or do not intersect.

Corollary 3.  If R consists of one symmetric binary relation R, i.e. A is a graph and R is also 
transitive, then any substantial R–neighbourhood (R–neighbourhood) is a complete graph

Proposition 5.  If a relation R ∈ R is symmetric and transitive, then the system of substantial 
R–neighbourhoods forms a base of a topology in A.

Corollary 4.  If all relations in R are symmetric and transitive, then the system of substan-
tial R–neighbourhoods forms a base of a topology in A.

Definition 8.  The type T(A) of a first-order structure A = (A, r, R) is the set {(R, α(R)); R 
∈ R } of pairs (R, α(R)) where α(R) is the arity of the relation R with the name R.

We assume that two first-order structures A = (A, r, R) and B = (B, p, P) have the same 
type if there is a one-to-one mapping f: T(A) → T(B) such that if f(R, α(R)) = (P, α(P)), then 
α(R) = α(P).

For instance, all binary relations have the same type.
A structural machine M works with structures of a given type and has three components:

• � The control device CM regulates the state of the machine M
• � The processor PM performs transformation of the processed structures and its actions 

(operations) depend on the state of the machine M and the state of the processed 
structures

• � The functional space SpM consists of three components:

• � The input space InM, which contains the input structure.
• � The output space OutM, which contains the output structure.
• � The processing space PSM, in which the input structure(s) is transformed into the output 

structure(s).

We assume that all structures – the input structure, the output structure and the processed 
structures – have the same type.

Computation of a structural machine M determines the trajectory of computation, which 
is a tree in general case and a sequence in the deterministic case.

There are two forms functional spaces SpM :
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• � SpM is the set of all structures that can be processed by the structural machine M and 
is called a categorical functional space

• � SpM is a structure for which all structures that can be processed by the structural 
machine M are substructures and is called a universal functional space

There are two basic types of processors:

• � A localized processor is a single abstract device
• � A distributed processor consists of a system of unit processors or processor units

In turn, there are two basic types of distributed processors:

• � A homogeneous distributed processor consists of a system of identical unit processors, 
i.e. all these unit processors are copies of one processor

• � A heterogeneous distributed processor consists of a system of different unit processors

As a result, we have three structural types of processors.
It is natural to suppose that each unit processor performs only local operations. In a 

general case, each unit processor moves from one structure element to another, performing 
operations in their neighbourhoods (Figure 6). This makes it possible to consider a localized 
processor as a special type of a distributed processor with one unit processor.

An example of a localized processor is the head of a Turing machine with one head or 
a finite automaton. One head of TM correspond to one growth zone of the slime mould.

An example of a homogeneous distributed processor is the system of all heads of a Turing 
machine with several heads. It is possible to perceive a Physarum machine as multiproces-
sor structural machine because typically there are several active growth zones exploring 
concurrently the physical space around the slime mould.

Figure 6. A ring like architecture of Physarum machine.
Notes: Large yellow blobs of the slime mould colonize irregularly shaped oat flakes. The Physarum blobs are elementary 
processors. Each elementary processor establishes the local communication interface with other elementary processors via 
protoplasmic tubes.
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Examples of heterogeneous distributed processors are processing devices in evolutionary 
automata such as evolutionary finite automata, evolutionary Turing machines or evolution-
ary inductive Turing machines (Burgin and Eberbach 2009).

Note that not all heterogeneous distributed processors are the same and to discern 
their properties it is possible to use measures of homogeneity constructed in (Burgin and 
Bratalskii 1986).

There are three types of localized processors:

• � Localized to one structure element (e.g. node)
• � Localized to an R–neighbourhood of one structure element (e.g. node) where R is a 

relation from R
• � Localized to an R–neighbourhood of one structure element (e.g. node)

In what follows, localization of a processor is formalized by the concept of the processor 
topos.

There are three sorts of distributed processors:

• � A constant distributed processor has a fixed number of localized unit processors.
• � A variable distributed processor can change the number of localized unit processors.
• � A growing distributed processor can increase the number of localized unit processors.

Growing distributed processors are special kinds of variable distributed processors.
There are three types of variable (growing) distributed processors:

• � In a bounded variable (growing) distributed processor, the quantity of localized unit 
processors is always between two numbers, e.g. between 1 and 10, (is bounded by 
some number).

• � An unbounded variable distributed processor can use any finite number of localized 
unit processors in its functioning.

• � An infinite distributed processor can use any (even infinite) number of localized unit 
processors.

Cellular automata give examples of structural machines with infinite distributed pro-
cessors. One-dimensional cellular automata work with such structures as words. Two-
dimensional cellular automata work with such structures as two-dimensional arrays.

Now let us consider characteristics of unit processors in structural machines.
Each unit processor p of a structural machine M has its topos, observation zone and 

operation zone.
Definition 9.  The topos Tp of the processor p is the part of the structure occupied by this 
processor. When we take into account time of processing, the topos Tp of the processor p 
is denoted by Tp(t).

It is natural to assume the following condition.
Axiom T. Topoi of different unit processors do not intersect.

Localization of unit processors implies restrictions on their topoi. Namely, the topos of 
a unit processor localized to one structure element consists of this structure element, the 
topos of a unit processor localized to an R–neighbourhood of one structure element is a part 
of this neighbourhood and the topos of a unit processor localized to an R–neighbourhood 
of one structure element is a part of that neighbourhood.
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Definition 10.  The observation zone Obp of the processor p is the part of the structure SpM 
observed by this processor from its topos. When we take into account time of processing, 
the observation zone Obp of the processor p is denoted by observation zone Obp(t).
Axiom Z. It is assumed that operations performed by processors depend only on their 
observation zone.
Definition 11.  The operation zone Opp of the processor p is the part of the structure SpM 
that can be changed by this processor from its topos. When we take into account time of 
processing, the operation zone Opp of the processor p is denoted by observation zone Opp(t).

For instance, the head of a Turing machine with one linear tape is unit processor. The 
topos of the head is one cell in the tape. Its observation zone is the same cell and the sym-
bol written in it. Its operation zone is the symbol written in the cell occupied by the head.

Usually, these parts of the functional space PSM satisfy the following conditions:

and

Informally, it means that the topos of a processor is inside its operation zone, while it is 
possible to perform operations only inside the observation zone.

These conditions are true, for example, for Turing machines, but they are not satisfied 
for pushdown automata (Hopcroft, Motwani, and Ullman 2001).

Often we have Opp = Obp and Tp consists of a single node (element from A).
Definition 12.  The transition zone Trp of the processor p consists of all topoi where p can 
move in one step from its present topos.

For instance, the transition zone Trh of the head h of a Turing machine with one linear 
tape consists of three adjacent cells with h is situated in the middle cell.

In some cases, it is useful to assume that the transition zone of a unit processor is included 
in its observation zone.
Definition 13.  A processor unit p is called:

• � topologically uniform if all its topoi are isomorphic
• � operationally uniform if all its operation zones are isomorphic
• � transitionally uniform if all its transition zones are isomorphic
• � observationally uniform if all its observation zones are isomorphic
• � topologically standardized if all its topoi have the same type, e.g. are R-neighbourhoods
• � operationally standardized if all its operation zones have the same type, e.g. are 

R-neighbourhoods
• � transitionally standardized if all its transition zones have the same type, e.g. are 

R-neighbourhoods
• � observationally standardized if all its observation zones have the same type, e.g. are 

R-neighbourhoods

For instance, processor unit p is topologically uniform if all its topoi consist of a single node.

Tp ⊆ Opp ⊆ Obp

Tp(t) ⊆ Opp(t) ⊆ Obp(t)
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Lemma 5.  Any topologically (operationally, transitionally or observationally) uniform 
processor unit p is topologically (correspondingly, operationally, transitionally or obser-
vationally) standardized.

Usually, processors of abstract and physical automata (machines) are topologically 
operationally, transitionally and observationally uniform. At the same time, processors 
in chemical and biological automata (machines) can be non-uniform. An example of a 
non-uniform processor is a processor that can read from or write to up to five cells in the 
memory. Thus, when this processor writes to one cell, its topos consists of one cell, while 
when this processor writes to three cell, its topos consists of these three cells.

Topoi, observation zones and operation zones of unit processors allow us to define topoi, 
observation zones and operation zones of distributed processors.

There are different types of processor units.
A processor unit can be:

• � Controlled (by the central control device of the structural machine).
• � Autonomous, when it has its own control device.
• � Cooperative, when it has its own control device but the functioning of this processor 

unit depends on the states both of its own control device and of the central control 
device of the structural machine.

For instance, in a multi-head Turing machine T, all heads are controlled processor units. 
The control device of T controls them. At the same time, all finite automata in a cellular 
automaton are autonomous processor units.

We remind that a finite state machine also called a finite state automaton is an abstract 
system that can be in a finite number of different finite states and functioning of which is 
described as changes of its states.
Proposition 6.  A structural machine M is a finite state machine if and only if:

• � Its structural space SpM is finite, i.e. in the case of universal structural space, it is a finite 
structure, or in the case of categorical structural space, it consists of a finite number 
of finite structures.

• � The number of unit processors is finite and each of them can be in a finite number of 
different finite states.

For instance, a finite automaton is a finite state machine, while a Turing machine is not 
a finite state machine.
Definition 14.  A temporally finite state machine is an abstract system that can be in a 
finite number of different finite states at any moment of time and functioning of which is 
described as changes of its states.

Proposition 7.  A structural machine M is a temporally finite state machine if and only if:

• � At any moment of time, its structural space SpM is finite, i.e. in the case of universal 
structural space, it is a finite structure, or in the case of categorical structural space, it 
consists of a finite number of finite structures.

• � At any moment of time, the number of unit processors is finite and each of them can 
be in a finite number of different finite states.
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• � Any operation of each unit processor involves only a finite number of structure ele-
ments and relations

For instance, a Turing machine is a temporally finite state machine, while finite dimen-
sional and general machines of Blum, Shub, and Smale (1989) are not temporally finite 
state machines.
Definition 15.  An operation of a processor is local or more exactly, unilocal if it is per-
formed with one structural element (e.g. node) and some (all) of its relations (a pointed oper-
ation), e.g. deleting a structural element (e.g. a node) and all its binary connections (links 
or edges), adding a link to a structural element or changing a label of a structural element.

For instance, the head h of a Turing machine performs only local operations, while the 
head of a pushdown automaton can perform nonlocal operations (Hopcroft, Motwani, 
and Ullman 2001). Processors of automata that perform operations of unrestricted formal 
grammars are mostly nonlocal (Hopcroft, Motwani, and Ullman 2001).
Definition 16.  (a) An operation of a processor P is R–local if it is performed with elements 
(e.g. nodes) from the R–neighbourhood of a definite element (e.g. node) and with some 
(all) of their relations (a singularly local operation).

(b) An operation of a processor P is topologically R–local if it is performed with elements 
(e.g. nodes) from the R–neighbourhood of a topos of P (e.g. node) and with some (all) of 
their relations (a singularly local operation).
Lemma 6.  If R contains only one binary relation, a topos of a topologically uniform pro-
cessor P is one structural element and an operation O of P is totally local, then O is local.

Definition 17.  (a) An operation of a processor is R–local or totally local if it is performed 
with elements (e.g. nodes) from the R–neighbourhood of a definite element (e.g. node) and 
with some (all) of their relations.

(b) An operation of a processor P is topologically R–local if it is performed with elements 
(e.g. nodes) from the R–neighbourhood of a topos of P (e.g. node) and with some (all) of 
their relations (a singularly local operation).
Lemma 7.  If a topos of a topologically uniform processor P is one structural element and 
an operation O of P is local, then O is totally local.

Definitions imply the following result.
Proposition 8.  If R belongs to R, then any R–local operation is R–local.

Let us consider operations performed by processors of structural machines.
The first group of operations consists of the transition operations:

(1) � �  Moving the processor from one topos, e.g. a structure element, to another topos. 
This operation is local when both elements belong to some relation from R.

(2) � �  Changing the operation zone of the processor
(3) � �  Changing the observation zone of the processor

The second group of operations consists of the substantial transforming operations:

(1) � �  Adding a structure element, e.g. a node.
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(2) � �  Deleting (removing) a structure element, e.g. a node, from a neighbourhood of the 
element where the processor is situated and all relations that include this element.

(3) � �  Deleting (removing) a link from a relation R that connects some structure elements 
with the element where the processor is situated.

(4) � �  Adding a link to a relation R that connects some structure elements with the 
element where the processor is situated.

(5) � �  Deleting (removing) a relation R from R.
(6) � �  Adding a new relation to R.

The third group of operations consists of the symbolic transforming operations:

(1) � �  Renaming a node
(2) � �  Naming a node
(3) � �  Denaming a node, i.e. deleting the name of a node
(4) � �  Renaming a link
(5) � �  Naming a link
(6) � �  Denaming a link, i.e. deleting the name of a link

Example 2.  Operation of deleting the element f from first-order structure A = (A, 
r, R) where (A) shows the structure before operation and (B) shows the structure after 
operation. Besides, the processor (processor unit) moves from the place (position) f to the 
place (position) g (see Figure 7). This operation is performed according to the instruction 
(q, f, f) → (q, g, ~f), in which q is the state of the processor (processor unit), f is the place 
(position) of the processor (processor unit) before the operation, g is the place (position) 
of the processor (processor unit) after the operation and ~f means elimination of f.

Example 3.  Operation of adding the relation P for elements g and f in the first-order 
structure A = (A, r, R) where (A) shows the structure before operation and (B) shows the 
structure after operation (see Figure 8). Besides, the processor (processor unit) moves from 
the place (position) g to the place (position) e. This operation is performed according to 
the instruction (p, g, f) → (p, e, P(g, f)), in which p is the state of the processor (processor 
unit), g is the place (position) of the processor (processor unit) before the operation, e is 
the place (position) of the processor (processor unit) after the operation, f is an observed 
element and means addition of the pair (g, f) to the relation P.

 (A) 
Q

P b P

a P c P d Q

P g

P               f            P  

e
(B) 

Q

P b P

a P c P d g 

P P

e

Figure 7. Deleting element. The graphical representation of an operation on first-order structures.
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Structural machines can simulate Turing machines, Kolmogorov algorithms (machines), 
storage modification machines and cellular automata (cf. Section 5).

Structural machines also can simulate processes generated by logical calculi, λ-calculus 
and formal grammars being able to perform operations used in various databases.

Structural machines can compute partial recursive functions and limit partial recursive 
functions.

Note that there are structural machines that can work not only with discrete but also with 
continuous data because structures can be continuous and there are no restrictions on rela-
tions in processed structures. As a result, artificial neural networks, finite dimensional and 
general machines of Blum, Shub, and Smale (1989) are particular cases of structural machines.

Thus, we can discern discrete structural machines, which work with discrete struc-
tures, have discrete systems of states and operations and continuous structural machines. 
In continuous structural machines one two or all three of the following components can 
be continuous, i.e. continuous processed structures, continuous system of states and/or 
continuous operations.

Thus, it is natural to use structural machines for a theoretical study of natural com-
putations performed by biological, chemical and physical systems. Here, we use struc-
tural machines as abstract automata modelling functioning of such biological automata as 
Physarum machines based on slime mould computations.

4.  Structural machine as a model of the slime mould computations

To model a Physarum machine by a structural machine, we have to interpret components 
of a slime mould as components of a structural machine and behaviour of the slime mould 
as computations of the structural machine.

A Physarum machine PM is realized by a multi-headed slime mould, which is a single 
cell with a myriad of diploid nuclei. It is possible to treat this cell as a primitive object SM 
with a set of inner states. Examples of such states are “to be alive” or “not to be alive”. In a 
context of physical measurements it would be more correct to use

In this context, we represent the object SM by the control device CM of the structural 
machine M, which models the Physarum machine. The control device CM can be assigned 
to be an active growing zone (Figure 4(a)).

(A) Q

P b P

a P c P d Q

P g

e(B) Q

P b P

a P c P d Q

P P g

P f P

P f P

e

Figure 8. Adding element. The graphical representation of an operation on first-order structures.
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A multi-headed slime mould has several active growth zones exploring concurrently 
the physical space around the slime mould, e.g. two active growth zones are shown in 
Figure 4(b). Thus, it is natural to treat a Physarum machine as a structural machine with 
a distributed processor P (see Figures 5 and 6) and to interpret each active growth zone as 
the operation zone of a unit processor p.

As it was already demonstrated, a first-order structure A = (A, r, R), in which the set 
R consists of a single binary relation R naturally represents the structure of a living slime 
mould established by blobs of slime mould and active zones where structural elements 
(e.g. nodes) from the set A represent blobs of slime mould and active zones, while elements 
from the relation R (e.g. edges) represent connecting tubes A Physarum machine has two 
types of nodes: stationary nodes presented by sources of nutrient (oat flakes), and dynamic 
nodes, which are sites where two or more protoplasmic tubes originate (Adamatzky 2007b).

However, a slime mould often has a more sophisticated structure. Despite being a single 
cell, the slime mould can colonize substantial areas, up to hundreds of neighbourhoods. 
The network of blobs, active zones and protoplasmic tubes is not uniform but forms clusters 
(Figure 3). These clusters are also connected by thick protoplasmic tubes, which represent 
the incidence relation that connects groups of elements from A (Figure 4). Therefore, we use 
second-order structures to model a slime mould with clusters. Thus, taking a second-order 
structure A = (A, r, R), in which the set R consists of a binary relation R, a system of binary 
relations C1, C2, C3, …, Cn, and a binary relation Q, we represent the structure of a living 
slime with clusters in the following way:

• � elements from the set A represent blobs of slime mould and active zones,
• � elements from the relation R represent tubes connecting blobs of the slime mould 

and active zones,
• � each relation Ci represents one cluster of the slime mould, namely, if the cluster with 

the number I consists of blobs and active zones a1, a2, a3, …, am, then Ci = {(a1, a2, a3, 
…, am)} ⊆ Am

• � elements from the relation Q represent tubes connecting clusters

This allows us to consider the sensorial space of the slime mould as the input space InM of 
the machine M because the slime mould sees the world as a configuration of gradient fields.

The output space Out, which contains the output structure. The output space is the 
morphology of the slime mould, i.e. the configuration of growth zones, blobs occupying 
nutrients and network protoplasmic tubes connecting them, is moulded by the output space 
OutM of the machine M.

In a similar way, the cyto-skeletal network inside the slime mould body forms the pro-
cessing space of the Physarum machine and is naturally modelled by the processing space 
PSM of the structural machine M (Figure 9).

In slime mould, oscillatory patterns control the behaviours of the cell. In structural 
machines, oscillatory patterns are represented by the names of the nodes (structural ele-
ments) and links between these elements.

In its interpretation as a Physarum machine, Plasmodium of P. Polycephalum performs 
complex computation by three general mechanisms: (1) morphological adaptation of its 
body plan and transport network; (2) wave propagation of information through its proto-
plasmic transport network; and (3) competition and entrainment of oscillations in partial 
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bodies – relatively small fragments of plasmodium connected via protoplasmic tubes 
(Adamatzky 2010).

In the context of structural machines, morphological adaptation of the slime mould body 
plan and transport network is performed by transformation of, e.g. adding new, nodes and 
links in the structural space Sp.

A structural machine performs wave propagation of information in the slime mould 
protoplasmic transport network by renaming of nodes and links in the structural space Sp.

A structural machine simulates competition and entrainment of oscillations in partial 
bodies by transformation of nodes and links in the structural space Sp.

The basic instruction of Physarum machines are: ADD NODE, REMOVE NODE, ADD 
EDGE and REMOVE EDGE (Adamatzky 2007b). All these operations are modelled by 
substantial transforming operations of structural machines (see Section 3).

An important issue of any automaton/computer is how this machine gives the result. 
Different schemas of the computational result give different modes of computation by the 
same computing device (Burgin 2015).

To model Physarum machines, we utilize the indication mode of the structural machine 
functioning, which is based on an indication function.

Let us consider a class of structures STR that contains from all structures from the 
functional space SpM of a structural machine M.
Definition 18.  A partial mapping find : STR → {0, 1} is called an indication function.

There are different types of indication functions:

(1) � �  An observational indication function is defined by an observer, who (which) deter-
mines its values.

Figure 9. Fine structure of an elementary processing unit, the active growth zone or lamellipodium. The 
zone grows up. Cytoskeletal structure is shown as a tree-like network of actin filaments. The polymerization 
of the filaments is responsible for the directional growth of the zone.
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(2) � �  A fitness indication function is defined by a fitness function, which is often used 
in optimization processes and evolutionary computations (Burgin and Eberbach 
2009).

(3) � �  A listings indication function is defined by a list of possible (admissible) results.
(4) � �  An analytic indication function is defined by a formula.
(5) � �  An algorithmic indication function is defined by an algorithm.

Indication functions are used to select results of structural machine computations in 
general and Physarum machine computations, in particular.
Definition 19.  A structural machine M functions in the indication mode with respect 
to an indication function find if the result of computation is determined by applying the 
indication function find to the trajectory of computation. Namely, when Q belongs to the 
trajectory of computation and find (Q) = 1, then the structure Q is the result of computation.

For instance, the formula

defines the inductive mode of computation as a particular case of the indication mode of 
computation with an analytic indication function.

In the Physarum machine, an observational indication function is used for selecting the 
result. Namely, outputs of Physarum machines are recorded optically (Adamatzky 2007b).

This shows that the Physarum machine can work in the recursive mode but the natural 
functioning of this biological computer is the super-recursive mode when slime mould is 
functioning in the continuous fashion and its outputs are recorded from time to time by 
observation (Burgin 2005).

5.  Discussions

We formalized behaviour, and computing potential, of slime mould P. polycephalum as 
abstract structural machines demonstrating their potential. Further work can go in two 
directions: implementation of practical algorithms on structural machines and development 
of structural machines models for ultra-cellular computing based on cytoskeleton.

The development of practical algorithms is necessary to allow the structural machines 
to “enter the real world” and not just remain one of the many formal accomplishments 
of theoretical computer science. Physarum machines can solve dozens of problems from 
computational geometry, graph optimization and control. They also can be used as organic 
electronic elements (Adamatzky 2015, 2016). The structural machine might form a plat-
form for developing Physarum programming languages, compilers and interface between 
human operators and the slime mould (Schumann et al. 2014; Siccardi and Adamatzky 
2015; Pancerz and Schumann 2016).

The development of structural machine models of ultra-cellular computing is neces-
sary because the behaviour of the slime mould, as of most other cells, is governed by actin 
and tubuline networks inside the cells. Here we mention actin because it is a dominating 
cytoskeleton protein in P. polycephalum. Actin is a filament-forming protein forming a 
communication and information processing cytoskeletal network of eukaryotic cells. Actin 
filaments play a key role in developing synaptic structure, memory and learning of ani-
mals and humans. This is why it is important to develop abstractions of the information 

∃m ∀n > m (Qn,Qm ∈ Out ⇒ Qn = Qm)
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processing on the actin filaments. While designing experimental laboratory prototypes 
of computing devices from living slime mould P. polycephalum (Adamatzky 2015, 2016), 
we found that actin networks might play a key role in distributed sensing, decentralized 
information processing and parallel decision-making in a living cell (Adamatzky et al. 2014; 
Adamatzky and Mayne 2015; Mayne, Adamatzky, and Jones 2015). The actin-automata 
exhibit a wide a range of mobile and stationary patterns, which were later used to design 
computational models of quantum (Siccardi and Adamatzky 2015) and Boolean (Siccardi, 
Tuszynski, and Adamatzky 2016) gates implementable on actin fibre, as well as realization of 
universal computation with cyclic tag systems (Martinez, Adamatzky, and Mclntosh 2015). 
The previously proposed model of an actin filament in a form of a finite-state machine, or 
automaton network, (Adamatzky and Mayne 2015) constitutes a very special case of studied 
in this paper structural machines, which provide much more powerful tools for exploration 
of possibilities of biologically based computation. Detailed formalization of the information 
processing capabilities of the actin networks, including their polymerization and growths, 
and interaction with other intra-cellular proteins would immensely advance nano-com-
puting and theoretical computer science making an imperative impact on development of 
future and emergent computing architectures.
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