
Noname manuscript No.
(will be inserted by the editor)

A framework for implementing formally verified resource-bounded
smart space systems

Ijaz Uddin · Abdur Rakib · Hafiz Mahfooz Ul Haque

Received: date / Accepted: date

Abstract Context-aware computing is a mobile computing
paradigm that helps designing and implementing next gen-
eration smart applications, where personalized devices in-
teract with users in smart environments. Development of
such applications is inherently complex due to these appli-
cations adapt to changing contextual information and they
often run on resource-bounded devices. Most of the exist-
ing context-aware development frameworks are centralized,
adopt client–server architecture, and do not consider resource
limitations of context-aware devices. This paper presents a
systematic framework to modelling and implementation of
resource-bounded multi-agent context-aware systems on An-
droid devices. The proposed framework makes use of se-
mantic technologies for context modelling and reasoning about
resource-bounded context-aware agents, Android powered
smartphones as development platform, a suitable communi-
cation model and declarative rule-based programming as a
preferred development language.

Keywords Context-awareness · Resource-bounded agents ·
Rule-based reasoning · Non-monotonic reasoning · Android
SDK

1 Introduction

The last few decades have seen an exponential growth and
change in computing technologies. Computers have evolved
from big bulky mechanical machines into lightweight light-
ning fast laptops and tablets. While computers were suc-
cessfully prospering, there was the beginning of the mobile
phones. In 1973 Motorola first introduced hand held tele-
phone device [1]. It was not until 1980 that the use was

Ijaz Uddin, Abdur Rakib, and Hafiz Mahfooz Ul Haque
School of Computer Science, The University of Nottingham, Malaysia
Campus
E-mail: {khyx4iui,Abdur.Rakib,khyx2hma}@nottingham.edu.my

slowly transferring to public use. The late 20th century has
witnessed the transfer of mobile phone into smartphone. Smart-
phones are now capable to carry out our daily routine tasks,
which were earlier possible on computers or other similar
devices only, such as browsing Internet, social networking,
taking photos or making videos and so on [2]. With the ad-
vancements of the smartphone combined with feature-rich
softwares, applications and Internet connectivity make it more
easier for people to share their experiences using social net-
working applications, including VoIP services, free messag-
ing and call applications, to name some [3]. Along with
variuos high-tech features, a smartphone is also equipped
with a wide range of sensors, including global positioning
system (GPS), shake sensors, accelerometers, and proxim-
ity sensors [4]. These sensors that accommodate a user in
his daily life can further be used in a large variety of ap-
plications, which can provide user related and surrounding
information as contexts. These sensors can be integrated in
a way to provide enough user information, including user’s
location, time, movement, and surrounding environmental
information. When provided with a suitable communication
mechanism, it can also enhance interaction between the user,
application and other devices [5]. The smartphones or other
devices that are used to implement such applications may
act as intelligent agents for a particular scenario of an appli-
cation. Thus smartphones and agent-based technology can
provide tremendous benefits for the development of context-
aware mobile applications.

In the literature various definitions of context exist (see
e.g., [6,7]). Dey et al. define context as any information that
can be used to identify the status of an entity. An entity
can be a person, a place, a physical or a computing object.
This context is relevant to a user and application, and re-
flects the relationship among themselves. A context-aware
system is a system which uses context to provide relevant
information and/or services to its user based on the user’s

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UWE Bristol Research Repository

https://core.ac.uk/display/323894065?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 I. Uddin et al.

tasks [7]. The context-aware computing paradigm emerged
in early 1990s with the introduction of small mobile devices.
In 1992, Olivetti Labs active badges used the infrared badger
assigned to staff members for tracing their locations in of-
fice and according to the locations calls were forwarded [8].
Further developments in the field lead to the development of
various context-aware frameworks such as Georgia Tech’s
Context Toolkit [9]. In recent years, more research has been
carried out and advanced context-aware systems exist [10],
and the contributions to research and development over the
years promise a bright future of such systems. Generally,
context-aware systems interact with human users, they of-
ten exhibit complex adaptive behaviours, they are highly de-
centralised and can naturally be implemented as multi-agent
systems. An agent is a piece of software that requires to be
reactive, pro-active, and that is capable of autonomous ac-
tion in its environment to meet its design objectives [11].
Non-human agents in such a system may be running a very
simple program, however they are increasingly designed to
exhibit flexible, adaptable and intelligent behaviour. A com-
mon methodology for implementing these non-human agents
is implementing them as rule-based reasoning agents. Rule-
based reasoning and traditional rule engines have found sig-
nificant applications in practice, though mostly for desktop
environment where the resources (computational and com-
munication) are abundantly available compared to smart-
phone devices. The main issue with those rule engines is
that they cannot be easily used on smartphones or resource
bounded devices due to platform differences and different
hardware profiles. Some rule engines, which are discussed
in Section 2, have already been tested for porting into mo-
bile environment but the results were either not satisfac-
tory or the porting were only partially successful. In view
of the above, there is a need to develop a decentralized for-
mal context-aware computing model that makes use of the
smartphone platform, a suitable communication model and
declarative rule-based programming as a preferred develop-
ment language. This paper addresses some of these issues
by exploring the practical implementation of the framework
presented in [12]. By developing a pure smartphone com-
patible context-aware systems development framework, any
kind of domain specific context-aware applications can be
developed, e.g., elder care system, hospital critical situation,
traffic control and office security, among others.

The remainder of the paper is organized as follows. In
Section 2, we briefly introduce context-aware computing and
its limitations and challenges in resource-constrained set-
tings, followed by a discussion of a formal context mod-
elling and reasoning framework [12]. Section 3 presents rule-
based context-aware system specification and how we im-
plement the logical framework developed by [12]. Section 4
discusses detailed implementation and internal working mech-
anisms of the rule-based context-aware systems. Section 5

presents implementation of a prototype example system con-
sidering three agents in a smart environment. Section 6 con-
cludes and discusses some suggestions for future work.

2 Background Study

The rapid development of mobile technologies and new re-
search in pervasive computing have sparked a renewed in-
terest in context-aware applications. A large part of research
on context-aware systems and applications studies formal
approaches to modelling context and reasoning techniques
for contextual information. Reasoning techniques help to re-
alise the adaptation of an application to the changing envi-
ronment and also to infer higher level contextual informa-
tion from sensed or available low level contextual informa-
tion. In the literature, various context modelling and reason-
ing approaches have been proposed, including ontology and
rule-based approach [13–17,12]. The work by [14] proposes
ontology based context management (GCoM) model to ad-
dress context modelling and reasoning. Where the rules used
in the reasoning process can be user defined and/or ontolog-
ical. It shows the methodology from context acquisition till
expression in resource saving manner and the model has the
capacity for re-usability. The work by [15] on the other hand
focuses on the rapid prototyping of context-aware applica-
tion development. The emphasis is given to the shared con-
ceptualization of the domain being a collaborative environ-
ment. The users are divided into three wide categories based
on their skill set into high, middle and low level. Based
on the user skills, the user is provided some privileges in
its environment. The framework, besides other components,
uses resource sharing server which suggests limitation on
distributed approach towards the framework. In our previ-
ous work [12,17], we have shown that ontological and logic
based approach is a good way for modelling context-aware
systems, and it allows us to model context-aware systems as
rule-based reasoning agents. A logic defines the conditions
in which a concluding fact may be derived. In [12], we de-
veloped a logical framework for resource-bounded context-
aware multi-agent systems which handles inconsistent con-
text information using non-monotonic reasoning, however,
the framework was not implemented using smart devices.
To the best of our knowledge and the study backed by the
work of [18] there does not exist any concrete framework
for mobile platform that addresses the issues of context-
aware system development considering mobile device re-
source constraints. A framework that may cover all the as-
pects of context-aware applications in mobile platforms, in-
cluding methodology, language, inference engine and com-
munication mechanisms. Development of such a framework
may be beneficial both to the developers and researchers [18].
Some attempts have already been made to port the exist-
ing desktop frameworks into the mobile platform but the re-

A framework for implementing formally verified resource-bounded smart space systems 3

sults were not satisfactory, mainly due to the platform and
hardware differences [19,20], where the task was to port
the JADE framework into Android environment. Similarly
the work by [21], which is based on Android, uses context
expressions. A context expression is a Boolean expression,
in which axioms are the context condition on the context
entities. Although the work is based on Android, the frame-
work doesn’t have its own language. Furthermore, instead of
reasoning, various scenarios are monitored using the evalu-
ators (==, >=, >,<,<==, regular expression, distance).
The authors intend to provide distributed environment com-
patibility in their future work. From the programming lan-
guages perspective, there are some tools like Kivy frame-
work that can be used for programming Android Applica-
tions. However, when we need the latest updates and espe-
cially as in our case access to the sensors and their support,
using these tools may not be a good option [22].

Therefore, although various context-aware frameworks
have been developed over the years, their functions remain
primitive. This is because these systems are more complex
due to the mechanism to sense and reason about contex-
tual information and their changes over time. Furthermore,
such systems often run on tiny resource-bounded devices
in highly dynamic environments. Many challenges might
arise when these context-aware devices perform computa-
tion to infer implicit contexts from a set of given explicit
contexts and reasoning rules, and perhaps exchange infor-
mation via messages. In the following section, we list some
constraints that often arise while designing and developing
context-aware mobile applications.

2.1 Limitations and Challenges in Resource Bounded
Devices

The insight study of the resource-bounded devices suggests
that most of the widely used platforms, such as iOS, An-
droid, Windows mobile, and blackberryOS, share common
limitations. Some major limitations are listed below which a
developer faces when developing context-aware mobile ap-
plications.

– Processing power The processing power of a standard
computer is very adequate to run multiple programs si-
multaneously. It has multiple processors, cores and a
variety of supporting hardware that can be further in-
stalled to make the processing faster and smoother. On
the other hand, a smartphone is limited to what is offered
by the manufacturer and there is no possibility to add
or enhance it by adding any hardware. So, practically
the processing power of a smartphone is comparatively
much weaker than a desktop computer. Also, a developer
should keep in mind that the application should not en-
gage the processor more than required. Excessive use of

a processor may slow down the overall performance of
the smartphone and can cause the battery to drain faster.

– Memory limitations Contrary to the desktop computers
which offer a huge amount of storage in TeraBytes and
RAM in GigaBytes, the smartphones still use GigaBytes
of storage space which are normally ranges from 8GB to
128GB. While the RAM is 4GB on various latest smart-
phones, perhaps more RAM expected in coming years,
which is still less than desktop systems. The applications
for desktop has vast amount of memory available both in
terms of storage and RAM to operate at optimum pace
even when other softwares are running simultaneously.
However, resource-bounded devices need more memory
optimization to make the application run smoothly, the
scenario can get worse when there are multiple applica-
tions running.

– Device size In smartphones, the size is a factor, com-
promises are made on certain hardware to keep the size
comfortable and not bulky. As stated earlier, that in smaprt-
phones a user is bound to use what is offered by a man-
ufacturing company. A user can not add more RAM or
Internal memory. Developers have to design the appli-
cations keeping in view of the hardware resources avail-
able, as there is no option to make hardware changes.
Unlike desktop computers, in smartphones almost every
thing comes embedded, besides few options such as bat-
tery, SD-card etc.

– Battery power The smartphones are made for mobility.
This mobility is powered by the battery. A smartphone
when connected with a power source has virtually un-
limited battery life but no mobility at all [23]. To keep
the balance between mobility and power, it is very cru-
cial to use the resources in energy saving manner to max-
imize the battery operating time. This includes applica-
tion development in such a way that it should not en-
gage the resources continuously. As doing so may cause
the draining of the battery. Moreover, the communica-
tion between devices or agents also consumes energy.
Keeping the communication optimized ultimately helps
in prolonging the battery life.

– Programming language Using desktop computers a de-
veloper can choose any language to program application
softwares, including C, C++, C#, PHP, Java, Python and
many more. However, on smartphones a developer is re-
stricted to the use of the programming language which
is compatible with the platform of a smartphone and the
developer has very little choice in this regard.

Due to the above mentioned issues it is not desirable to
directly port any software to the smartphone platforms, in-
stead it has to be recoded according to a chosen platform.
Furthermore, the constraints mentioned above can have a
great impact on the development, specifically due to the bounded
resources and limitations of the smartphone platforms.

4 I. Uddin et al.

2.2 A Context Modelling and Reasoning Framework

In our study, we realize under the term context any informa-
tion that can be used to identify the status of an entity. An
entity can be a person, a place, a physical or a computing ob-
ject. This context is relevant to a user and application, and
reflects the relationship among themselves [7]. A context
can be formally defined as a subject, predicate, and object
triple 〈subject, predicate, object〉 that states a fact about
the subject where — the subject is an entity in the environ-
ment, the object is a value or another entity, and the predicate
is a relationship between the subject and object. For exam-
ple, we can characterize user’s current status of a context-
aware system based on the contexts “Mary has blood pres-
sure categorized as High” as 〈Mary, hasBloodPressure,

High〉 or using first order logic term as hasBloodPressure(

Mary, High). In [12], we studied ontology-based context
modelling approach and for that purpose we use OWL 2
RL, a profile of the new standardization OWL 2, and based
on pD∗ [24] and the description logic program (DLP) [25].
We choose OWL 2 RL because it is more expressive than
the RDFS and suitable for the design and development of
rule-based systems. An OWL 2 RL ontology can be trans-
lated into a set of Horn clause rules based on the DLP tech-
nique [25]. Furthermore, we express more complex rule-
based concepts using SWRL [26] which allow us to write
rules using OWL concepts.

In our conceptual and logical framework [12], we con-
sider context-aware agents having constraint on various re-
sources, namely time, memory, and communication. Each
agent’s memory usage is modelled as the maximal num-
ber of contexts to be stored in the agent’s working mem-
ory at any given time. That is, we assume that each agent
in a system has bounded memory size which allows max-
imal number of contexts to be stored at any given time.
Similarly, each agent has a communication counter, which
starts with value 0 and incremented by 1 each time while
interacting (sending/receiving a message) with other agents,
and is not allowed to exceed a preassigned threshold value.
Here, we briefly describe the notion of contexts and context-
aware reasoning that is used in the logical model. Each agent
i ∈ Ag in a multi-agent reasoning system has a program,
consisting of a finite set of strict and defeasible rules (these
are essentially Horn clause rules), and a working memory,
which contains facts (current contexts). If an agent i has a
rule:

Patient(?p), hasBloodPressure(?p,High), hasGPSLoca-
tion(?p, ?loc)→ hasAlarmingSituation(?p, ?loc)

and the contexts Patient(Mary), hasBloodPressure(Mary,
High) and hasGPSLocation(Mary, UNMC) are in the agent’s
working memory and hasAlarmingSituation(Mary, UNMC)

is not in the agent’s working memory in state s, then the
agent can fire the rule which adds the context hasAlarm-
ingSituation(Mary, UNMC) to the agent’s working memory
in the successor state s′. While deriving this new context,
an existing context in the agent’s working memory may get
overwritten, and this happens if agent i’s memory is full or a
contradictory context arrives in the working memory (even
if the working memory is not full). We say that two contexts
are contradictory iff they are complementary with respect to
∼, for example, hasAlarmingSituation(Mary, UNMC) and
∼hasAlarmingSituation(Mary, UNMC) are contradictory con-
texts. As we use defeasible reasoning to model a system,
conflicting context can be represented using ∼ in the work-
ing memory of an agent i. However, in practice conflicting
contexts can be manipulated in different ways. During exe-
cution of the system, conflicting contexts can have different
notions in the working memory of an agent i, for example,
a conflicting context can be represented using the following
notion: hasAlarmingSituation(Mary, UNMC) conflicts both
with ∼hasAlarmingSituation(Mary, UNMC) and hasAlarm-
ingSituation(Mary, TTS), where UNMC and TTS represent
distinct locations. Similarly, a conflicting context can also be
of the form: hasTemperature(Livingroom, High) and hasTem-
perature(Livingroom, Cool). Whenever a newly derived con-
text arrives in the agent’s memory, it is compared with the
existing contexts to see if any conflict arises. If so then the
corresponding contradictory context will be replaced with
the newly derived context, otherwise an arbitrary context
will be removed if the memory is full. For example, in the
above case hasAlarmingSituation(Mary, UNMC) will be a
contradictory context if∼hasAlarmingSituation(Mary, UNMC)
is present in the agent’s working memory, so ∼ hasAlarm-
ingSituation(Mary, UNMC) will be replaced by the newly
inferred context hasAlarmingSituation(Mary, UNMC). In ad-
dition to firing rules, agents can exchange messages regard-
ing their current contexts. A more detailed explanation can
be found in [12,27]. In this paper, we extend our theoretical
work presented in [12] by implementing the ontology and
logic based framework using the Google Android SDK and
smartphones, where smart devices (and hence agents) sense
the surrounding environments to acquire low level contexts
and infer high level contexts based on the rules that are de-
rived from smart environment ontologies, communicate with
each other, and adapt their behaviour accordingly.

2.3 Implementation Platform

To implement the above discussed framework first we need
to select a suitable platform. Existing rule-based program-
ming environments, such as JADE, JARE, JESS [28] and
many more are written in Java. Java adds platform inde-
pendence besides other rich libraries implementation. Since

A framework for implementing formally verified resource-bounded smart space systems 5

Java is platform independent, in principle the systems de-
veloped in Java for one platform should work fine on any
other platforms. However, this is not the case when we talk
about implementation in resource-bounded environment es-
pecially for Android platform. The Java language that is
used for the desktop programming, now known as Oracle
Java is wide and a vast language. The point where the Java
for Android differs from the Oracle Java is the less num-
ber of libraries support e.g., Swing is not supported in An-
droid platform. The Android mainly supports Java core pro-
gramming. Another big difference lies in the low level ma-
chine translation mechanism. In Java JVM or Java Virtual
Machine is used to translate the code into platform specific
code, while in Android instead of JVM, DVM or Dalvik Vir-
tual Machine is used. The DVM of Android is a compact
Virtual Machine that is used to run programs on resource-
bounded devices [29]. The package of the Android appli-
cation is installed from the apk file format which has inter-
nal difference with the jar file format as used in the typical
Java programs. In terms of the usage Android has the ma-
jor user base as of 2014, and in latest 2015 report [30]. In
this work, we chose the Google Android SDK to implement
resource-bounded context-aware applications, however this
choice does not restrict the research objective to Android
only, and in the future we aim to develop a context-aware
implementation framework that can be used to run applica-
tion programs on multiple platforms seamlessly.

3 Rule-Based Context-Aware System Specification

In this section, we explain different aspects of a rule-based
reasoning system and its various components (see Figure 1).
Where necessary, we have provided the flow charts and al-
gorithms for better understanding of the system.

3.1 Architecture and Basic Hardware Usage

For the development of an example resource-bounded context-
aware system, rule-based agents being developed in this pa-
per are composed of multiple Android smartphones. For this
purpose we used three different Android phones having dif-
ferent specifications. One phone has been rooted, formatted
and installed with the custom ROM with Nokia x2 Hard-
ware profile. Other two phones are Lenovo 1000 and 6600
respectively, having different specifications to check the ap-
plication behaviour. A brief comparison is provided in Ta-
ble 1.

3.2 Application Interface

The interface for our applications is provided in two differ-
ent versions. While one is web based desktop environment,

the other one is Android application based. In general the
interface serves the purpose to add rules to the rule-base
along with their priorities, initial facts (i.e., existing high-
level contexts), and associated flags. The rules are checked
for its validity before adding into the rule-base. Similarly
the facts are also checked for their validity as to whether
they follow the intended format. The priority as the name
indicates for a rule give it preference over other rules. That
is, a higher priority for a rule give it preference over other
matching rules. The flag associated with every rule is used
to specify the type of the rule. For instance, the charac-
ter ’G’ is used to represent a rule containing a Goal state-
ment, which indicates that a certain rule execution results in
goal achievement. The character ’C’ represents the commu-
nication rules, which can trigger a communication between
agents (devices). The character ’D’ represents the deduction
rules. The communication between agents are explained in
more detail in Section 4.8.

3.2.1 Desktop Interface

The desktop interface is a web based application, which uses
Apache web server, MySQL Database, Jquery and PHP lan-
guage as its main components besides HTML for the in-
terface design. The application is platform independent and
runs in any standard browser on different platforms e.g Win-
dows, Linux, Macintosh with a minimum setup. This inter-
face can be made online to be accessed from any computer
with Internet connection. The user can add rules from this
interface, it allows validating both the Left Hand Side(LHS)
or body and Right Hand Side(RHS) or head (or consequent)
of any rule provided. If the rule qualifies the format spec-
ified, it will be returned as valid, otherwise user will be
prompted to enter a rule according to the intended format.
A rule has the following format:

m : P1, P2, . . . , Pn → P0 where n ≥ 0.

where m is the rule priority. Each Pi is an atomic formula of
the form p(t1, t2), Ask(i, j, p(t1, t2)) or Tell(i, j, p(t1, t2)),
where i and j (i 6= j) represent agents, p is a predicate
symbol and the tk are terms. Where Ask and Tell are spe-
cial atoms used for communication between the agents [12].
Each term is either a constant symbol or a variable. Every
variable occurring in a rule is universally quantified, and its
scope is the clause in which the variable occurs. Every vari-
able appearing in the head must also appear in the body of
a rule. The “→” is read as if and “,” as and. The atom P0 is
called consequent (or head) of the rule and the conjunction
P1, P2, . . . , Pn is the body of the rule. If n = 0, then the
body is equivalent to TRUE and is called a fact otherwise its
a rule.

The interface allows to create an agent program by re-
ceiving a set of rules and initial working memory facts. The
various phases of the desktop interface are provided in Fig-

6 I. Uddin et al.

Fig. 1: System overview from an individual agent’s perspective

Device RAM Processor Internal OS Embedded
Memory Sensors

Nokia X2 1 GB Dual-core 1.2 GHz 4 GB Custom ROM Accelerometer, proximity,
Cortex-A7 and GPS

Lenovo A1000 1 GB Quad-core 1.3 GHz 8 GB Android OS Accelerometer and GPS
Cortex-A7

Lenovo 6600 1 GB Quad-Core 1.5 GHz 8 GB Android OS Accelerometer, proximity,
and GPS

Table 1: Smartphone comparison sheet

ures 2, 3, and 4. In Figure 2 (a), a system developer can
create a rule-base. Once a rule-base is created the next inter-
face shown in Figure 2(b), is ready to receive input a set of
rules. Figure 3 shows the validation of the rule and allowing
the system developer to save it if the rule entered is accord-
ing to the correct format. Figure 4 shows the phase where
the system developer wants to enter the facts, it auto sug-
gest the rules as a developer starts typing so that the chances
for adding irrelevant or erroneous facts are minimized. The
Desktop interface produces its output in the form of a JSON
1 file. JSON is a light weight data interchange format. The
JSON file is then further provided as an input to the Android
Application.

3.2.2 Android Interface

Figure 5 depicts Android interface to store the rules in case
a developer wants to use the Android interface. We have
options to insert rule priority, rule body, consequent of the
rule, and the flag. The inserted rules are stored in the An-
droid SQLite database. In the Android environment, SQLite

1 JSON-http://www.json.org/

Fig. 2: Rule-base initialization

is used for database operation without the need of any ex-
ternal application installation. The SAVE button saves the
rule into the rule-base. The INITIALIZE RULE-BASE button
takes the set of rules for processing to the next stage. The
CLEAR RULE-BASE button is used to erase all the rules and
related data from its rule-base. Figure 6 depicts how a de-

A framework for implementing formally verified resource-bounded smart space systems 7

Fig. 3: Validation of Horn-clause rules

Fig. 4: Facts interface with auto suggestion

Fig. 5: Rule manipulation activity interface

veloper can use Android interface to enter the initial facts to
start the rule-base. It is pertinent to enter the initial facts with
care to make the system process them as intended. Alterna-
tively user can also provide the initial facts from the JSON
file generated from the desktop interface. In the next section,
we will discuss in more detail how the backend works.

Fig. 6: Initial working memory facts

4 Internal Working Mechanism

The proposed system, as stated before, has different mod-
ules which are integrated with each other to perform the
whole task. In this section, we explain the internal working
mechanism of the rule-based agents. We explain each pro-
cess from inserting the rules into the knowledge base till a
Goal is achieved. We would also like to mention that unlike
many other systems, our inference engine do not uses RETE
algorithm [31]. The reason for not using the RETE algo-
rithm is that it is very memory consuming algorithm due to
its heavy use of beta memory and in resource-bounded envi-
ronment memory is one of the bounded resources. Also our
system design is based on decentralised approach, so rules
of a smart space system are distributed among the agents,
and often fewer rules are required to design most agents’
behaviours. Therefore, instead of using RETE algorithm we
developed our own pattern matching mechanism which is
tailored to fit our requirements and resources.

4.1 Usage of Key Terms

In this paper, we use some general terminologies which are
defined and summarised here for better understanding. Agent
refers to any device which is able to exhibit goal-directed in-
telligent behaviour and communicate with other agents and
human users. Working memory is a short term memory where
newly derived facts are stored, in our system it is limited and
the agents are designed in a manner to work within the limi-
tations provided. Rule-base is a knowledge-base of an agent.
Flag refers to a characters associated with a rule with its own
meaning e.g., ‘G’ for goal, ‘C’ for communication rule and

8 I. Uddin et al.

‘D’ for deduction. Priority is defined with each rule to give
it priority over other rules, it is a positive numeric value. Ac-
tivity is a term used to define the Android active screen on
the display. For the rest of the paper we use the JSON files
generated by the desktop interface, and all the subsequent
operations are carried out accordingly.

4.2 System Architecture and Sensor Data Acquisition

The architecture of our system consists of three layers. In the
first layer, environmental data is sensed either from the mo-
bile device embedded sensors or independent sensors con-
nected to a mobile device. In the second layer, the low-level
contexts are generated from sensed data and then high-level
contexts are inferred by the reasoning techniques. In the
third layer, the context-aware application provides services
based on the available contexts. Sensors are an important
part of context-aware systems. They are used to collect envi-
ronmental data as low-level contexts and forward those data
to the intended device or agent, the agent then inferences
high-level contexts through reasoning. In our system design
we consider two types of sensors, first type which are em-
bedded directly to the agent and the second type when the
sensors are independent and are attached to different parts
of a human body or in the surrounding environment. In the
case where the sensors are embedded to an agent, for ex-
ample, GPS on Android device, the data can be acquired
using the GPS sensor API provided by the Android SDK.
The figures 7 and 8 show how a sensed location is converted
into human readable format (high level context) from lati-
tude and longitude (low level context), further clicking on
the map address pin points the location of a user. In the later
case, independent sensors such as medical sensors for col-
lecting a patient’s physiological health information are sim-
ulated using a Android device, which can send for example
a high blood pressure message to another agent representing
a patient.

4.3 System Startup and Initialization

If we use the desktop interface to validate a set of rules and
facts (or initial contexts) while implementing an agent, the
resulting JSON file could be used in the Android device for
further processing. The JSON files can be copied to Android
device via a sync cable, as an email, via bluetooth or as an
web service to fetch the files. Rules are stored in a rule-base
and facts are stored in the working memory. Since in our sys-
tem a context-aware rule-based agent uses forward chaining
algorithm, it starts with the initial facts stored in the agent’s
working memory. Although a set of initial facts is provided
by the programmer while creating an agent, it is not always
necessary because an agent may use messages received from

Fig. 7: Reverse geo-coded address

Fig. 8: Address tracked on map

other agents or sensed data from the environment as initial
facts. In our system, an agent’s working memory contains a
set of current contexts (facts) and it changes over time by ex-
ecuting matching rule instances. If any update is discovered
in the agent’s working memory, the match-select-act cycle
is invoked to infer new high-level context(s) from the avail-
able contexts, and context-aware services are then provided
based on the updated contexts. In the following, we discuss
match-select-act cycle.

A framework for implementing formally verified resource-bounded smart space systems 9

4.4 Match: Conflict set generation

The rule matching or conflict set generation algorithm gen-
erates a set of applicable rule instances according to current
contexts or working memory facts. A forward chaining al-
gorithm unifies all antecedents of all rules with a subset of
relevant working memory facts. That is, for each rule, the
algorithm matches all its antecedents to the facts from the
working memory, if all antecedents of a rule are matched
then it will check if the consequent is already in the working
memory or not, if not then the corresponding rule instance
will be added to the conflict set. This will be repeated un-
til no more rule matches. The conflict set may contain more
than one rule instance with different priorities. The Algo-
rithm 1 describes the steps involved in conflict set genera-
tion.

4.5 Select: Conflict resolution

In this phase the conflict between rule instances residing in
the conflict set is resolved. Conflict resolution is the order
that a rule instance is removed from the agenda or conflict
set and its actions executed. In this implementation, we only
use rule ordering strategy using the rule priority, which is an
integer, determines which rule should be executed before the
others. The Algorithm 2 describes the steps involved in con-
flict resolution, which is selecting one rule instance from the
conflict set that has the highest priority. If there are multiple
rule instances with the same priority exist, the rule instance
to be executed is selected randomly.

4.6 Act: Execution of the selected rule instance

Execution of a rule instance is straight forward. When the
rule instance selected from the conflict set is forwarded for
execution, its consequent is added to the working memory
as well as processed for further actions depending on the
nature of the rule. Consequent of the rule instance can be in
a form of communication directive, a fact as a newly derived
context simply to be added to the working memory or taking
any other action. In order to achieve this, as we have already
mentioned, the flag plays an indicator. If the flag is ‘G’, then
a goal has been achieved, consequent will be added to the
working memory and the system needs to be halt. Similarly
the flag ‘C’ indicates that the consequent will be added to
the working memory and at the same time the communica-
tion part needs to be invoked for this specific execution of
rule instance. On the other hand, the flag ‘D’ indicates that
the consequent will only be added to the working memory.
The communication between the agents are achieved using
communication rules. If a rule has either an Ask or a Tell as

Input: R: Rule-Base,WM: Working Memory
[Rs: A single rule, Ri:A rule instance, Rb: Rule
body, Rib: Rule instance body, Rc: Rule consequent,
Ra: Rule atoms in the body, Rap: Rule atom
predicate, Rat: Rule atom terms, Fc: Current fact,
Fcp: Current fact predicate, Fct: Current fact terms,
PM: Pattern matching, Pra: Patterns in rule body,
VAR: Arraylist to hold KEY and VALUE]
Result: CS: Conflict set

1 START
2 for r = 0 to size of R do
3 do
4 Clear VAR
5 Rs =R[r]
6 Find patterns in Rb of Rs

7 Add to Array Pra

8 Flag:Array of size equal to | Pra |
9 for ra = 0 to size of Ra do

10 Select Ra[ra]
11 Seperate Rap from Rat

12 for f=0 to size of WM do
13 Fc= WM[f]
14 Seperate Fcp from Fct

15 if Rap==Fcp then
16 if Rat==Fct ||

pattern(Rat==Fct) then
17 Add 1 to Flag
18 KEY=Rat

19 VALUE=Fct

20 if (VAR does not contian
KEY) then

21 Add KEY to VAR
22 Add VALUE to VAR
23 end
24 end
25 else
26 Add 0 to Flag
27 end
28 end
29 end
30 end
31 if Flag does not contain 0 then
32 for var= 0 to size of VAR do
33 Key=VAR[var]
34 Value=VAR[var+1]
35 Ri= Replace Key with Value in Rs

36 Rc=consequent(Ri)
37 var← var+2
38 end
39 if WM does not contain Rc && CS does

not contain Ri then
40 Add Ri to CS
41 end
42 end
43 while (new matching rule instance found);
44 end
45 END

Algorithm 1: Conflict set generation

10 I. Uddin et al.

Input: CS:Conflict set [Po: Priority Operator, SPR:
Same priority rules, Cics: An element of CS,
Rip: Rule instance priority]

Result: to fire= A selected rule instance to be fired
1 START
2 Po=0
3 for cs = 0 to size of CS do
4 Cics = CS[cs]
5 get Rip for Cics

6 if Rip > Po then
7 Po=Rip

8 to fire = Cics

9 end
10 else if Po == Rip then
11 Add Cics to SPR
12 end
13 end
14 if | SPR | >0 then
15 Add to fire to SPR
16 to fire = select a random instance from SPR
17 end
18 END

Algorithm 2: Conflict resolution

its consequent, we call it a communication rule. Communi-
cation rules are handled differently than deduction rules. We
discuss agent communication in more detail in Section 4.8.
When a rule instance is fired how its consequent is added to
the working memory as a newly derived context is discussed
in the following section.

4.7 Working Memory Updating

The working memory of an agent carries facts which can
be initial facts, the newly inferred facts as a result of exe-
cution of any rule, or the communicated facts received as
messages from other agents. In any case it provides a holder
for the available current contexts and to perform context
reasoning. In the whole system design and implementation
processes where the emphasis is given on the resource con-
strains, memory is one of the key resources we aim to save.
The limit on the size of the working memory is to ensure
it does not exceed the maximum number of contexts it can
store at any given time, but the facts are generated at almost
every iteration and keeping the facts that are more vital to
the execution is a crucial task. In our implementation, the
working memory is basically a fixed size array. Initially it
is empty and once the initial facts are provided, an agent
starts context-aware reasoning. The working memory of an
agent is divided into static memory and dynamic memory.
The dynamic memory is bounded in size, where one unit
of memory corresponds to the ability to store an arbitrary

Input: to fire: A selected rule instance to be fired
[Rc: A communication rule instance, Rg: A
rule instance contains a goal context, Rd: A
deduction rule instance, Rf : Rule Flag, Rcons:
Consequent, MAX SIZE: memory size]

Output: Rule instance executed, consequent added to
WM and corresponding action performed.

1 START
2 to fire from conflict resolution and Rcons is the

consequent
3 if Rg then
4 if Rcons is a conflicting context then
5 Overwrite the contradictory context with

Rcons

6 end
7 else if |WM| < MAX SIZE then
8 Add Rcons to WM
9 end

10 else
11 Overwrire an existing context with Rcons

12 end
13 Goal Reached
14 Execution Halts
15 end
16 else
17 if Rcons is a conflicting context then
18 Overwrite the contradictory context with

Rcons

19 if Rc then
20 initiate communication module
21 end
22 end
23 else if |WM| < MAX SIZE then
24 Add Rcons to WM
25 if Rc then
26 initiate communication module
27 end
28 end
29 else
30 Overwrire an existing context with Rcons

31 if Rc then
32 initiate communication module
33 end
34 end
35 end
36 END

Algorithm 3: Execution of a rule

A framework for implementing formally verified resource-bounded smart space systems 11

context. The static part contains initial facts to start up the
system, thus it’s size is determined by the number of initial
facts. The dynamic part contains newly derived facts as the
agent performs context-aware reasoning. Only facts stored
in the dynamic memory may get overwritten, and this hap-
pens if an agent’s memory is full or a contradictory context
arrives in the working memory (even if the memory is not
full). Whenever newly derived context arrives in the mem-
ory, it is compared with the existing contexts to see if any
conflict arises. If so then the corresponding contradictory
context will be replaced with the newly derived context, oth-
erwise an arbitrary context will be removed if the dynamic
memory is full. Because of the bounded dynamic memory,
there might be the case when the system can go into an in-
finite execution if there is no forceful stop, and the goal is
not achievable. To overcome this issue we set the number
of iteration equal to the number of rules we have to ensure
that every rule is checked and in case of no matches are
found, instead of abrupt behaviour it will halt itself, saving
resources of the host system. The Algorithm 3 describes the
steps involved in execution of the selected rule instance and
the updating of the working memory.

4.8 Communication and Subroutine Handling

Besides the conventional rule firing and updating the work-
ing memory facts, the application is also capable of han-
dling different behaviours which are the outcomes of the
consequent of a rule instance. For instance, agents can ex-
change messages regarding their current contexts. In order
to achieve this, an agent has to invoke the communication
subroutine. Where the communication subroutine is respon-
sible for exchanging the information from one device to an-
other. In [12], Ask and Tell primitives have been defined
to achieve communication between agents (e.g., two smart
devices), Ask is used when one device asks for some con-
textual information, similarly Tell is used to answer the ask
or simply conveying some contextual information without
being asked. However, in practice how the contextual infor-
mation is sent or received is a matter of question. In our
implementation, the devices can communicate in a variety
of ways, including Bluetooth, Infrared, Wireless, and SMS.
These different modes give these devices diversity in com-
munication. We proposed that in order to achieve an efficient
communication, a table has to be maintained and distributed
among all the connected devices. This table contains a list
of available communication modes supported in the domain.
Each device is assigned with a numeric ID, and this ID can
be used in the Ask(i, j, p(t1, t2)) and Tell(i, j, p(t1, t2)),
which will also keep the logical structure of the rule intact.
The i and j specify the FROM and TO respectively. If we
assign them numbers from the table, it can specify which
devices are communicating with each other. For example,

Agent ID Bluetooth IP address ICCID
(Cell number)

1 BP monitor x.y.z.a 111222333
2 Patient care x.y.z.b 111222444
3 Caregiver x.y.z.c 111222555

Table 2: Agent ID table

when i = 2 and j = 3, the Ask primitive becomes Ask(2, 3,

p(t1, t2)), where p(t1, t2) is an atomic context which nei-
ther contains an Ask nor a Tell, and according to the Ta-
ble 2 where the ID 3 is associated with a caregiver device
(as agent 3) and 2 is associated with a patient care device
(as agent 2). In case if the patient care agent wants to com-
municate with the blood pressure monitor agent, it can use
the same format by specifying the ID of the blood pressure
monitor device. The rest of the columns specify the different
available modes of communication and their respective ad-
dresses. In case of Bluetooth communication, these devices
have to be paired with each other. Once paired names are
added to a pair list, they can be specified in the table in order
to initiate communication. Once the agents’ IDs are speci-
fied, the communication mode can be specified explicitly by
adding the communication mode at the beginning of the Ask
and Tell rule, e.g., Bluetooth(Ask(i, j, p(t1, t2))), which
will be taken as agent i wants to communicate with agent j
using Bluetooth only. In case if no pre-rule communication
method is defined then any of the available communication
modes can be used. While this is so far handling commu-
nication using the rules, but in order to make it work every
communication method has to be attached with its respective
handler and a method has to be specified which can under-
stand the rule and interpret it into Android specific format.
These rules before triggering will be checked with the Ask

and Tell rules. If any of them is found, a subroutine will be
called to handle the rule, which will extract its FROM and
TO from the agent ID table along with the communication
addresses and perform the action. The communicated con-
texts when received by a receiver agent are stored in a buffer
before putting them into it’s working memory. If the receiv-
ing agent is in the middle of the execution it will first com-
plete its current execution and in the next iteration it will add
the received contexts from the buffer to it’s working memory
and will continue further processing.

5 A Smart Home Environment Example System

In [27], we have shown how we develop a multi-agent non-
monotonic context-aware system whose rules are derived
from a smart environment domain ontology. The application
is intended to provide care to the patients in smart home en-
vironment. Its main design goal is to gather raw data or low

12 I. Uddin et al.

Fig. 9: A fragment of the smart space ontology

Agent 1: Blood Pressure Agent
Initial facts:
Case High: Person(Mary), SystolicBP (140), DiastolicBP (95), hasSystolicBP (Mary, 140), hasDiastolicBP (Mary, 95), greaterThan(140, 120), greaterThan(95, 80)

Case Normal: Person(Mary), SystolicBP (118), DiastolicBP (78), hasSystolicBP (Mary, 118), hasDiastolicBP (Mary, 78), greaterThan(118, 90), lessThan(118, 120),
greaterThan(78, 60), lessThan(78, 80)
1 : Person(?p), SystolicBP (?sbp), DiastolicBP (?dbp), hasSystolicBP (?p, ?sbp), hasDiastolicBP (?p, ?dbp), greaterThan(?sbp, 120), greaterThan(?dbp, 80)→ hasBlood-
Pressure(?p, High)
1 : Person(?p), SystolicBP (?sbp), DiastolicBP (?dbp), hasSystolicBP (?p, ?sbp), hasDiastolicBP (?p, ?dbp), greaterThan(?sbp, 90), lessThan(?sbp, 120), greaterThan(?dbp,
60), lessThan(?dbp, 80)→ hasBloodPressure(?p, Normal)
1 : Person(?p), SystolicBP (?sbp), DiastolicBP (?dbp), hasSystolicBP (?p, ?sbp), hasDiastolicBP (?p, ?dbp), lessThan(?sbp, 90), lessThan(?dbp, 60)→ hasBloodPressure(?p,
Low)
2 : hasBloodPressure(?p, Normal)→ Tell(1,2, hasBloodPressure(?p, Normal))
2 : hasBloodPressure(?p, Low)→ Tell(1,2, hasBloodPressure(?p, Low))
2 : hasBloodPressure(?p, High)→ Tell(1,2, hasBloodPressure(?p, High))

Agent 2: Patient Care Agent
Initial facts: Person(Mary), hasPatientID(Mary, P01), PatientID(P01)
1 : Person(?p), hasPatientID(?p, ?pid), PatientID(?pid)→ Patient(?p)
2 : Patient(?p), hasBloodPressure(?p, Normal), hasGPSLocation(?p, ?loc)→∼hasAlarmingSituation(?p, ?loc)
3 : Patient(?p), hasBloodPressure(?p, High), hasGPSLocation(?p, ?loc)→ hasAlarmingSituation(?p, ?loc)
3 : Patient(?p), hasBloodPressure(?p, Low), hasGPSLocation(?p, ?loc)→ hasAlarmingSituation(?p, ?loc)
4 : Tell(1,2, hasBloodPressure(?p, Normal))→ hasBloodPressure(?p, Normal)
4 : Tell(1,2, hasBloodPressure(?p, High))→ hasBloodPressure(?p, High)
4 : Tell(1,2, hasBloodPressure(?p, Low))→ hasBloodPressure(?p, Low)
5 : Patient(?p), hasAlarmingSituation(?p, ?loc)→ Tell(2,3, hasAlarmingSituation(?p, ?loc))

Agent 3: Caregiver Agent
Initial facts: Caregiver(John)
1 : Tell(2,3, hasAlarmingSituation(?p, ?loc))→ hasAlarmingSituation(?p, ?loc)
2 : CareGiver(?c), hasAlarmingSituation(?p, ?loc)→ isCaredBy(?p, ?c)

Table 3: Some rules extracted from the smart space ontology

A framework for implementing formally verified resource-bounded smart space systems 13

level context from various sensors that are installed at pa-
tient side and in the environment. When the system has ad-
equate data available it can further monitor the patient’s sit-
uation and in case of patient’s discomfort, it seeks the care-
giver’s attention. In that paper, we have shown how to model
a context-aware system based on the logic developed in [12]
and how to analyse and formally verify non-conflicting con-
text information guarantees it provides. In this section, we
show how we implement an example scenario using An-
droid powered smartphones. The core purpose of modelling
domain in the ontology is to contextualize information in an
organized and structured way. The set of rules and the set
of initial facts are derived from the ontology to model the
system considering three agents, namely a Blood Pressure
Simulator agent, a Caregiver agent, and a Patient care agent.
We list the set of rules that are distributed to these agents in
Table 3, which are derived from an ontology. A fragment of
the ontology is depicted in Figure 9.

5.1 Experimental Setup

In order to implement the verified agents behaviours, we
consider three Android powered smartphones representing
three agents. The Blood Pressure Simulator agent, which is
agent 1, sends either HIGH blood pressure or NORMAL
blood pressure status to the Patient care agent 2. After re-
ceiving the blood pressure status the Patient care agent per-
forms context-aware reasoning and derives new contexts.
It also uses GPS sensor data to derive and add high-level
context as its location to the working memory. Based on
the context-aware reasoning result, it interacts with agent 3,
which is a Caregiver agent. Every agent as per Table 3 per-
forms certain tasks, and its behaviour depends on the rules in
its rule-base, the facts provided to it, interaction with other
agents as well as information acquired from the environ-
ment. In our setup we used two sensors, one is external to
the patient care agent i.e., the blood pressure monitor while
the other one is a location sensor embedded into the patient
care device. The rules designed to implement the system
take into consideration the blood pressure of the patient as
one of the main decision making factors. As the rules indi-
cate, if the blood pressure is normal, agent 2 displays a non-
alarming message situation to the patient. In case of high
blood pressure, it informs about the patient’s alarming sit-
uation to the Caregiver agent. In addition, it also sends the
patient’s current location acquired from the GPS sensor to
the Caregiver agent. Figure 10 (left) depicts that the Patient
care agent received a normal blood pressure status message
from agent 1, when the patient clicks on the initialize rules,
Patient care agent performs context-aware reasoning and de-
rives new contextual information. As we mentioned before,
the reasoning engine runs whenever any context is added
to the working memory or any update of the context in the

working memory is detected. This could be based on fir-
ing agent’s own rule, receiving a context from other agent
or acquiring information from the external environment. Af-
ter the reasoning process is completed, the screen displays
a message to the patient about his status which is depicted
in Figure 10 (right). When agent 2 receives a blood pres-
sure status message as high from agent 1 depicted in Fig-
ure 11 (left), agent 2 changes its behaviour according to the
current context and interacts with the Caregiver agent to in-
form about the alarming situation of the patient, which is
depicted in Figure 11(right). Figure 12 depicts that the care-
giver has received the message sent by agent 2 and acted
accordingly. Note that information displayed on the screens
are only for experimental purposes, in practice the applica-
tion provides services based on the available contexts and
internal operations are hidden from the users. Although this
is a small-scale experiment, the results indicate that our sys-
tem design and implementation is a good choice for practi-
cal applications of context-aware computing and resource-
bounded practical reasoning.

Fig. 10: Agent 2 displays the normal blood pressure status
(The left hand side of the figure shows screen when a mes-
sage is received from agent 1, and the corresponding context
reasoning result shows on the right hand side screen)

5.2 Discussion

To demonstrate the effectiveness of the formal logical frame-
work presented in [12], we implemented the above men-
tioned algorithms in Android powered smartphones using
the Java language. One of the key features of our approach
to rule-based context-aware non-monotonic reasoning is the
soundness and completeness of the logical framework com-
pared to many other traditional system design and imple-

14 I. Uddin et al.

Fig. 11: Agent 2 displays the abnormal blood pressure status
(The left hand side of the figure shows screen when a mes-
sage is received from agent 1, and the corresponding context
reasoning result shows on the right hand side screen)

Fig. 12: Agent 3 displays the fact that caregiver is aware of
the emergency situation

mentation approaches. The implemented system guarantees
to behave according to its design objective. From the context
modelling and contextual reasoning perspectives, a logical
language with a clear semantics is used to provide contex-
tual reasoning capabilities of the agents in the system con-
sidering knowledge-based reasoning about context in per-
ceptual and sensed data about the real world.

6 Conclusions and Future Work

In this paper, we presented and discussed the early devel-
opment prototype of our resource-bounded context-aware

applications based on the logical model developed by [12].
We made a working application of the concept and tested
its behaviour on the rules that were used in the verification
and the behaviour is found to be the same. The implementa-
tion adopted resource friendly mechanism to minimize the
use of the memory and processor along with the battery
power by restricting the size of the working memories of
the agents and their respective message counters. Agents
in the application system use rule ordering reasoning strat-
egy while performing contextual non-monotonic reasoning.
Here, it is pertinent to mention that the system designer/de-
veloper plays a crucial role when designing the rules of the
system. The priorities assigned to the rules can make a big
difference in the execution of the system. We discussed in
detail how communication between the agents is implemented
and how the system interprets different kind of rules.

Although it is at a very early stage in the development
process, the working prototype showed promising results on
a small set of rules. In order to further improve the appli-
cation, we will implement and study a comprehensive real
world context-aware service scenario. The application will
be tested against different rule sets with varying sizes and
different arrangements to further check its operational be-
haviour. Furthermore, we would like to enhance the frame-
work considering users’ preferences.

Acknowledgement: This work is partially supported by the
Ministry of Science, Technology and Innovation (MOSTI),
Govt. of Malaysia [grant 01-02-12-SF0269].

References

1. Motorola INC. Motorola demonstrates portable telephone to be
availabe for public use by 1976, April 3 1973. Press Release from
Motorola Inc.

2. Rafael Ballagas, Jan Borchers, Michael Rohs, and Jennifer G
Sheridan. The smart phone: a ubiquitous input device. Pervasive
Computing, IEEE, 5(1):70–77, 2006.

3. Sebastian Schrittwieser, Peter Frühwirt, Peter Kieseberg, Manuel
Leithner, Martin Mulazzani, Markus Huber, and Edgar R Weippl.
Guess who’s texting you? evaluating the security of smartphone
messaging applications. In 19th Annual Network and Distributed
System Security Symposium, 2012.

4. Chunmei Pei, Huiling Guo, Xiuqing Yang, Yangqiu Wang, Xiao-
jing Zhang, and Hairong Ye. Sensors in smart phone. In Computer
and Computing Technologies in Agriculture IV, pages 491–495.
Springer, 2011.

5. Mika Raento, Antti Oulasvirta, Renaud Petit, and Hannu Toivo-
nen. Contextphone: A prototyping platform for context-aware mo-
bile applications. Pervasive Computing, IEEE, 4(2):51–59, 2005.

6. Charith Perera, Arkady B. Zaslavsky, Peter Christen, and Dim-
itrios Georgakopoulos. Context aware computing for the internet
of things: A survey. IEEE Communications Surveys and Tutorials,
16(1):414–454, 2014.

7. Gregory D Abowd, Anind K Dey, Peter J Brown, Nigel Davies,
Mark Smith, and Pete Steggles. Towards a better understanding
of context and context-awareness. In Handheld and ubiquitous
computing, pages 304–307. Springer, 1999.

8. Roy Want, Andy Hopper, Veronica Falcão, and Jonathan Gib-
bons. The active badge location system. ACM Trans. Inf. Syst.,
10(1):91–102, 1992.

A framework for implementing formally verified resource-bounded smart space systems 15

9. Daniel Salber, Anind K. Dey, and Gregory D. Abowd. The context
toolkit: Aiding the development of context-enabled applications.
In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 434–441, New York, NY, USA, 1999.
ACM.

10. J. E. Bardram, , and N. Nørskov. A context-aware patient safety
system for the operating room. In Proceedings of the 10th in-
ternational conference on Ubiquitous computing, pages 272–281,
2008.

11. Michael Wooldridge. An Introduction to MultiAgent Systems. Wi-
ley Publishing, 2nd edition, 2009.

12. Abdur Rakib and Hafiz Mahfooz Ul Haque. A logic for context-
aware non-monotonic reasoning agents. In Human-Inspired Com-
puting and Its Applications, pages 453–471. Springer, 2014.

13. Alessandra Esposito, Luciano Tarricone, Marco Zappatore, Luca
Catarinucci, Riccardo Colella, and Angelo DiBari. A framework
for context-aware home-health monitoring. In Ubiquitous Intelli-
gence and Computing, pages 119–130. Springer, 2008.

14. Dejene Ejigu, Marian Scuturici, and Lionel Brunie. An ontology-
based approach to context modeling and reasoning in pervasive
computing. In Pervasive Computing and Communications Work-
shops, 2007. PerCom Workshops’ 07. Fifth Annual IEEE Interna-
tional Conference on, pages 14–19. IEEE, 2007.

15. Bin Guo, Daqing Zhang, and Michita Imai. Toward a cooperative
programming framework for context-aware applications. Personal
and ubiquitous computing, 15(3):221–233, 2011.

16. Abdur Rakib and Rokan Uddin Faruqui. A formal ap-
proach to modelling and verifying resource-bounded context-
aware agents. In Context-Aware Systems and Applications, pages
86–96. Springer, 2013.

17. Abdur Rakib, Hafiz Mahfooz Ul Haque, and Rokan Uddin
Faruqui. A temporal description logic for resource-bounded rule-
based context-aware agents. In Context-Aware Systems and Appli-
cations, pages 3–14. Springer, 2014.

18. Grzegorz J Nalepa and Szymon Bobek. Rule-based solution for
context-aware reasoning on mobile devices. Computer Science
and Information Systems, 11(1):171–193, 2014.

19. Fabio Sartori, Lorenza Manenti, and Luca Grazioli. A conceptual
and computational model for knowledge-based agents in android.
WOA@ AI* IA, 2013:41–46, 2013.

20. Marco Ughetti, Tiziana Trucco, and Danilo Gotta. Development
of agent-based, peer-to-peer mobile applications on android with
jade. In Mobile Ubiquitous Computing, Systems, Services and
Technologies, 2008. UBICOMM’08. The Second International
Conference on, pages 287–294. IEEE, 2008.

21. Bart van Wissen, Nicholas Palmer, Roelof Kemp, Thilo Kielmann,
and Henri Bal. ContextDroid: an expression-based context frame-
work for android. In Proceedings of the International Workshop
on Sensing for App Phones (PhoneSense) 2010, pages 1–5, 2010.

22. Bc. Ondřej Chrastina. Cross-platform development of smartphone
application with the kivy framework. Master’s thesis, Masarykova
univerzita, Fakulta informatiky, 2015.

23. Simo Hosio, Denzil Ferreira, Jorge Goncalves, Niels van Berkel,
Chu Luo, Muzamil Ahmed, Huber Flores, and Vassilis Kostakos.
Monetary assessment of battery life on smartphones. In Proceed-
ings of the 2016 CHI Conference on Human Factors in Computing
Systems, pages 1869–1880. ACM, 2016.

24. H. J. ter Horst. Completeness, decidability and complexity of en-
tailment for RDF Schema and a semantic extension involving the
OWL vocabulary. Web Semantics: Science, Services and Agents
on the World Wide Web, 3(2-3):79–115, 2005.

25. B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description
logic programs: Combining logic programs with description logic.
In WWW2003, pages 48–57. ACM Press, 2003.

26. I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof,
and M. Dean. SWRL: A Semantic Web rule language combining

OWL and RuleML. Acknowledged W3C submission, standards
proposal research report: Version 0.6, April 2004.

27. Abdur Rakib and Hafiz Mahfooz Ul Haque. Modeling and verify-
ing context-aware non-monotonic reasoning agents. In Proceed-
ings of the 13th ACM-IEEE International Conference on Formal
Methods and Models for System Design, pages 453–471. IEEE,
2015.

28. Dana Petcu and Marius Petcu. Distributed jess on a condor pool.
In Proceedings of the 9th WSEAS International Conference on
Computers, pages 1–5, 2005.

29. Wallace Jackson. Android apps for absolute beginners. 3rd edi-
tion, ISBN13: 978-1-484200-20-9, Apress, Berkeley, California,
2014.

30. Android is the world’s largest mobile platform–but it has to over-
come these massive hurdles to keep the lead - business insider.
http://www.businessinsider.my/, Oct 2015.

31. Charles L. Forgy Rete: A Fast Algorithm for the Many Pattern/-
Many Object Pattern Match Problem Expert systems, pages 324–
341, 1990.

