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Abstract

This paper considers identification of nonlinear rational systems defined as the ratio of two nonlinear functions of pastinputs and
outputs. Despite its long history, a globally consistent identification algorithm remains illusive. This paper proposes a globally convergent
identification algorithm for such nonlinear rational systems. To the best of our knowledge, this is the first globally convergent algorithm
for the nonlinear rational systems. The technique employedis a two-step estimator. Though two-step estimators are known to produce
consistent nonlinear least squares estimates if a

√
N consistent estimate can be determined in the first step, how to find such a

√
N

consistent estimate in the first step for nonlinear rationalsystems is nontrivial and is not answered by any two-step estimators. The
technical contribution of the paper is to develop a globallyconsistent estimator for nonlinear rational systems in thefirst step. This is
achieved by involving model transformation, bias analysis, noise variance estimation, and bias compensation in the paper. Two simulation
examples and a practical example are provided to verify the good performance of the proposed two-step estimator.

Key words: Nonlinear rational systems, nonlinear least squares estimators, two-step estimators,
√
N -consistent estimators,

Gauss-Newton algorithms

1 Introduction

System identification aims to build a mathematical model
for a system from the measured data in some optimal way.
If a system is linear or is well approximated by a linear
system, then linear system models are a good choice. Thus,
well-developed linear identification methods introduced for
example in Ljung (1999); Söderström & Stoica (1989) are
available to identify the system. On the other hand, if a sys-
tem shows a strong nonlinear behavior, then nonlinear sys-
tem models and the corresponding nonlinear identification
algorithms become necessary.

A growing number of studies have demonstrated that the
nonlinear autoregressive moving average with exogenous in-
put (NARMAX) model (Chen & Billings, 1989; Haber &
Unbehauen, 1990; Leontaritis & Billings, 1985) may pro-
vide a unified representation for a wide class of nonlinear
systems that include several known nonlinear systems as
special cases. However, the NARMAX representation is too
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general and inefficient in a variety of applications where a
system does have some unique structures that are ignored by
the general NARMAX representation. From an engineering
point of view, the available structural information shouldbe
embedded into system models as well as identification al-
gorithms. The nonlinear rational system is such a case. The
study of nonlinear rational models has a long history and has
been driven by practical applications and theoretical inter-
ests. On the application side, an early reported example was
the catalytic dehydration of n-hexyl alcohol model (Box &
Hunter, 1965)

y(k) =
θ3θ1u1(k)

1 + θ1u1(k) + θ2u2(k)
,

wherey is the rate of reaction,u1 the partial pressure of
alcohol,u2 the partial pressure of olefin,θ1 absorption equi-
librium constant of alcohol,θ2 absorption equilibrium con-
stant of olefin andθ3 effective reaction rate constant. The
purpose is to estimateθi, i = 1, 2, 3 from the measurements
of y, u1 andu2. Interested readers can find quite a few real-
world nonlinear rational systems in Bates & Watts (2007).

A unique feature of the nonlinear rational system is that both
the numerator and denominator are linear combinations of
known nonlinear functions of measurable variables with un-
known coefficients or parameters. Thus, the system is non-
linear in terms of parameters in the denominator that makes
identification nontrivial. Since that early paper, nonlinear ra-
tional systems have been widely used to model various bio-
logical phenomena in life science, for example, gene expres-
sion, metabolic networks, and enzyme catalyzed reactions
within systems biology (Klipp et al., 2005) and chemical ki-
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netics of catalytic reactions in chemical engineering (Dim-
itrov & Kamenski, 1991; Kamenski & Dimitrov, 1993). They
have also found applications in economic systems, physics,
and engineering.

On the theoretical side, it was shown in Bartosiewicz (1987);
Sontag (1979) that a nonlinear system possesses a realizable
and bounded polynomial response if and only if the system
is a rational model. Further, Bartosiewicz (1987) established
that a smooth system may be immersed into a rational sys-
tem if the observation field is a finitely generated extension
of R, and stated that rational systems could be simpler and
more powerful than smooth systems. In addition, the exis-
tence of rational realizations of response maps was inves-
tigated in Němcová & van Schuppen (2009, 2010). It was
shown that if a response map is realized by a rational sys-
tem, then there also exists a minimal rational realization of
the map (Němcová & van Schuppen, 2010). These evidences
from the viewpoint of theory indicate that nonlinear ratio-
nal systems can well approximate a wide range of nonlinear
systems and actually provide a superior performance.

A number of identification algorithms have been proposed
in the literature to estimate the unknown parameters in the
nonlinear rational systems. They include prediction errores-
timator (Billings & Chen, 1989), extended least-squares esti-
mator (Billings & Zhu, 1991), some variants of Newton-type
methods (Dimitrov & Kamenski, 1991; Heiser & Parrish,
1989), back propagation parameter estimator (Zhu, 2003)
and implicit least squares parameter estimator (Zhu, 2005).
However, none of the estimators mentioned above are glob-
ally convergent. The main difficulties are: (a) Nonlinear ra-
tional systems could be transformed into a system which
is linear in the parameters by multiplying the denominator
on both sides. However, the resultant regressor is correlated
with the noise and even with white noise, the resulting least
squares estimate is biased. (b) The prediction error type ob-
jective function has many local minima since nonlinear ra-
tional systems are nonlinear in the parameters. Hence, var-
ious developed nonlinear optimization algorithms based on
gradient descent are only locally convergent, and these re-
sults are summarized in a survey paper (Zhu et al., 2015).

As explained before, nonlinear rational systems can be con-
verted into a system that is linear in parameters, but directly
applying the ordinary least squares (OLS) estimator will lead
to a biased estimate. Realizing this problem, this paper uses
a two-step estimator to derive a convergent nonlinear least
squares (NLS) estimator. The two-step estimator is known
to produce a convergent NLS estimate (Gourieroux & Mon-
fort, 1995) if the initial estimate provided by the first step
is
√
N -consistent. This means that to produce a convergent

NLS estimator it is sufficient to develop a
√
N -consistent

estimator by the available data in the first step. In the paper,
by a detailed analysis for the bias of the OLS estimator, it is
shown that the bias can be removed if a consistent estimate
for the variance of the noise is available. Consequently, the
keys are a reliable estimate of the noise variance and the
subsequent compensation of noise effects. Thus, this paper
first provides a consistent estimate for the noise variance
by seeking the minimum positive root of a polynomial con-
structed with the available data and demonstrates that the
search is independent of the least squares estimator. Then
by substituting the consistent estimate for the noise variance

into the least squares estimator produces a globally
√
N -

consistent estimator for nonlinear rational systems. Finally,
the globally convergent NLS estimate for the nonlinear ra-
tional systems defined as the ratio of two nonlinear func-
tions (not limited to polynomials) of past inputs and outputs
is obtained by the second step of the two-step estimator.

The contribution of the paper is a globally convergent iden-
tification algorithm for nonlinear rational systems. To the
best our knowledge, this is the first time that a globally con-
vergent identification algorithm is proposed for nonlinear
rational systems. We comment that the idea of two-step es-
timators is known in the literature (Gourieroux & Monfort,
1995). However, how to find a

√
N consistent estimate at the

first step for nonlinear national systems is nontrivial and is
not answered by any two-step estimators. Thus, the technical
contribution of the paper is to develop a

√
N consistent esti-

mate for nonlinear rational systems at the first step so that it
can be used as an initial estimate in the second step. We also
comment that bias compensation approaches have been used
in compensation of linear least squares identification algo-
rithms (Stoica & Söderström, 1982; Zheng, 1998; Zheng &
Feng, 1995) and in errors-in-variable linear system identifi-
cation (Söderström, 2007; Zheng, 2002). There are however
several distinct differences between the technique proposed
here and the bias compensation approach used in errors-in-
variables systems and linear systems (Zheng, 1998, 2002;
Zheng & Feng, 1995). First, obviously the systems consid-
ered above for the bias compensation approaches are linear
systems and rational systems studied herein are nonlinear
systems. Second, the bias compensation approaches need to
construct a multi-dimensional auxiliary vector that satisfies
certain properties. This is possible because the noise is inde-
pendent of the inputs. For nonlinear rational systems, how-
ever, the resulting noise is a function of the inputs. It is not
clear at this point if such an auxiliary vector exists for non-
linear rational systems. In the work reported here, instead
of finding an auxiliary vector, it is shown that selection of
an auxiliary vector is actually unnecessary and only a con-
sistent estimate of the noise variance is required, which is
one dimensional and therefore is much more efficient. The
approach proposed in this paper may be considered as an
extension of the technique for linear least squares compen-
sation (Stoica & Söderström, 1982). However, because the
technique of Stoica & Söderström (1982) is for linear sys-
tems and rational systems are nonlinear systems, both noise
variance estimation and noise compensation for nonlinear
rational systems become more involved and nontrivial. More
technical details will be provided in the relevant Section 4.1.

The rest of the paper is organized as follows. Section 2
describes nonlinear rational systems under consideration
and some assumptions on the system. Section 3 introduces
briefly two-step estimators and their properties. A corrected
least squares (CLS) estimator, which is obtained by model
transformation, bias analysis, noise variance estimation,
and bias compensation, is proposed in Section 4. The CLS
is proved to converge to the true parameters in the global
sense under proper conditions and its asymptotical nor-
mality is also established. Two simulation examples and a
practical example are provided to verify the effectiveness
of the proposed method in Section 5. Some concluding
remarks are made in Section 6. Some technical details and
the proofs are given in the Appendix.
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2 Problem formulation

The nonlinear rational system under consideration is de-
scribed as follows:

y(k) =

q∑
i=1

βifi(k)

g0(k) +
p∑
j=1

αjgj(k)

+ ε(k), 1 ≤ k ≤ N, (1)

where fi(k), gj(k), 1 ≤ i ≤ q, 0 ≤ j ≤ p are a priori
known functions of the delayed outputs and inputs{y(k −
1), · · · , y(k − ny), u(k − 1), · · · , u(k − nu)} with pos-

itive integersny, nu, θ∗
4
= [α1, · · · , αp, β1, · · · , βq]T is

the unknown parameter vector that needs to be estimated,
andε(k) is the observation noise. It is worth pointing out
that the estimator for the nonlinear rational system (1) de-
veloped in the paper is applicable to the static case, i.e.,
fi(k), gj(k), 1 ≤ i ≤ q, 0 ≤ j ≤ p are known functions of
some exogenous variables. It is seen that the outputy(k)
is linear in the parameters{β1, · · · , βq} but is nonlinear in
the parameters{α1, · · · , αp}, which is also the difficulty of
identifying the rational system (1).

For ease of representation, define the denominator

a(k)
4
= g0(k) +

∑p
j=1 αjgj(k), the numeratorb(k)

4
=∑q

i=1 βifi(k), and the true outputv(k, θ∗) = b(k)/a(k).
Then the system (1) can be rewritten as

y(k) =
b(k)

a(k)
+ ε(k) = v(k, θ∗) + ε(k). (2)

Let us give some remarks on the system (1). First, one as-
sumes that the coefficient corresponding to the itemg0(k)
in (1) is 1 due to the identifiability reason of (1). This is al-
ways possible. Let the coefficient corresponding to the term
g0(k) be denoted byα0. Then, without loss of generality,
one can assumeα0 6= 0; otherwise, one can select any other
item gj(k), 1 ≤ j ≤ p with αj 6= 0 to play the role of
the itemg0(k) with α0 since at least there is a parameter
αj 6= 0 among{α1, · · · , αp}. Next, dividing the numerator
and the denominator byα0 leads to the representation (1).
An implicit assumption on the system (1) is thata(k) 6= 0.

In the following, let us give the conditions on the system,
input, and noise for estimating the unknown parameters.

Assumption 1 There is no undermodelling error for the
system (1), i.e., the structure of the system includinga(k)
and b(k) is known and the noiseε(k) is white. Further,

E|ε(k)|2δ <∞ for someδ > 2. Letσ2 4
= Var(ε(k)).

Assumption 2 The sequence{x(k), k ≥ 1} with x(k)
4
=

[y(k − 1), · · · , y(k − ny), u(k − 1), · · · , u(k − nu)] is as-
ymptotically stationary in the wide sense and is anα-mixing
process with mixing coefficients exponentially decaying to
zero. Also,E‖x(k)‖2δ <∞ for someδ > 2.

We make a comment on the second assumption. Note the
nonlinear rational model (1) can be regarded as a special case
of nonlinear autoregressive systems with exogenous input
(NARX)

y(k) = h(y(k − 1), · · · , y(k − ny),

u(k − 1), · · · , u(k − nu)) + ε(k), (3)

whereh(·) is a (ny + nu)-dimensional nonlinear function.

By Lemma 1 in Zhao et al. (2013), the chainx(k)
4
=

[y(k − 1), · · · , y(k − ny), u(k − 1), · · · , u(k − nu)] con-
structed by the outputs and inputs of NARX (3) is geomet-
rically ergodic and is anα-mixing with mixing coefficients
exponentially decaying to zero if the following conditions
are satisfied: 1) both the input and the noise are sequences of
independent and identically distributed (i.i.d.) random vari-
ables with zero mean and finite variance; 2) the system (3)
satisfies certain stability condition. Note that the random
vectorx(k) is geometrically ergodic, that is, the distribution
of x(k) tends to the invariant distribution at an exponential
rate. This means that there is no essential difference between
the stationary assumption and asymptotical stationary as-
sumption on{x(k)}. For derivation simplicity, assume that
the process{x(k)} in Assumption 2 is stationary in the sub-
sequent sections. These explanations indicate that Assump-
tion 2 is not restrictive and in fact it is a standard assumption
in the nonlinear system identification literature.

3 A standard two-step estimator

Prediction error methods are a natural idea for identifyingthe
unknown parameter vectorθ∗ of the system (1) as that used
in Billings & Chen (1989); Dimitrov & Kamenski (1991).
Define the objective function with a prediction error form as

QN (θ) =
1

N

N∑

k=1

(y(k)− v(k, θ))2. (4)

The vector minimizing (4) on a compact subsetΘ of Rp+q

containingθ∗ is called the nonlinear least squares (NLS)
estimator forθ∗ based on the observations{u(k), y(k), 1 ≤
k ≤ N} and is denoted bŷθNLS

N . Clearly, the gradient vector
of v(k, θ) is given by

∂v(k, θ)

∂θ
=
[
− b(k)

a2(k)

[
g1(k), · · · , gp(k)

]
,

1

a(k)

[
f1(k), · · · , fq(k)

]]T
.

We first give the conditions for the convergence of the NLS
estimator.

Assumption 3 (i) Q(θ)
4
= E

(
v(k, θ) −v(k, θ∗)

)2
has a

unique minimum atθ = θ∗ in the compact setΘ.
(ii) The true parameter vectorθ∗ is an interior point ofΘ

and the matrixM(θ∗) is nonsingular, where

M(θ)
4
= E

(
∂v(k, θ)

∂θ

∂v(k, θ)

∂θT

)
.

The NLS estimator̂θNLS
N enjoys the following consistency

and asymptotical normality, which can be derived by directly
adopting the steps as what presented in Jennrich (1969).

Theorem 1 (Jennrich, 1969, Theorem 7) Let̂θNLS
N be the

NLS estimator of (4). Under Assumptions 1, 2 and 3 (i), we
haveθ̂NLS

N −→ θ∗ with probability one asN tends to infinity.
Further, if Assumption 3 (ii) also holds, then
√
N(θ̂NLS

N − θ∗) −→ N (0, σ2M−1(θ∗)) asN → ∞. (5)
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The NLS estimator involves a search for the solution of
non-convex objective function (4), which may lead to that
the gradient-based optimization algorithm converge to a lo-
cal minimum if the starting point is outside the attraction
neighborhood of the true value. Thus, the gradient-based
optimization algorithm is generally applied to improve the
precision when a good initial estimator, which is close to
the true value, has obtained sinceQN (θ) is approximately
convex in a small neighborhood of the true value. Addition-
ally, it can be expected that the number of steps required for
numerical convergence of the algorithm will be smaller by
starting from an initial value close toθ∗.

Thus, the finding of the NLS estimator̂θNLS
N is often done

in two steps (Gourieroux & Monfort, 1995):

Step 1) Determine a consistent but not necessarily precise
estimate.

Step 2) Use this preliminary estimate as an initial value for
some algorithm that determines the NLS estimator.

In Step 2), the Gauss-Newton (GN) or other Newton-based
algorithms are commonly used for improving the accuracy
of the consistent estimator obtained in Step 1). The GN
algorithm has the iterative form:

θn+1 = θn + (JT (θn)J(θn))
−1JT (θn)(Y − v(θn)), (6)

where the initial valueθ0 is the consistent estimator obtained
in Step 1),Y = [y(1), . . . , y(N)]T,

v(θn) = [v(1, θn), · · · , v(N, θn)]T ,

J(θn) =

[
∂v(1, θn)

∂θ
, · · · , ∂v(N, θn)

∂θ

]T
.

The standard two-step estimator given above has the follow-
ing attractive property.

Theorem 2 (Lehmann & Casella, 1998) Let̂θNLS
N be the

NLS estimator of (4). Suppose thatθ̂N is a
√
N -consistent

estimator ofθ∗, i.e., θ̂N − θ∗ = Op(1/
√
N). Denote the

one-step GN iteration of̂θN by θGN
N , i.e.,

θGN
N = θ̂N + (JT (θ̂N )J(θ̂N ))−1JT (θ̂N )(Y − v(θ̂N )).

Thus under Assumptions 1–3 we have

θGN
N − θ̂NLS

N = op(1/
√
N).

This means thatθGN
N has the same asymptotic property that

θ̂NLS
N possesses.

It is seen that a key that the two-step estimator enjoys the
desired property is to find a

√
N -consistent estimate ofθ∗ in

Step 1). In fact, this is also the major difficulty for solving
this kind of non-convex optimization problem.

4 A
√
N -consistent estimator: Corrected least squares

According to the two-step estimator and Theorem 2 intro-
duced in Section 3, to obtain the NLS estimatorθ̂NLS

N of (4)
it is sufficient to find a

√
N -consistent estimator forθ∗. This

section will develop a
√
N -consistent estimator for the un-

known parameters of the nonlinear rational system (1) in the

global sense that involves model transformation, bias analy-
sis, noise variance estimation, and bias compensation. This
is also the major goal and contribution of the paper.

4.1 Model transformation and bias analysis

Multiplying a(k) on both sides (1) leads to

g0(k)y(k) = −
p∑

j=1

αjgj(k)y(k) +

q∑

i=1

βifi(k) + a(k)ε(k)

= ψ(k)T θ∗ + a(k)ε(k), (7)

where the regressor vectorψ(k)
4
= [−g1(k)y(k), · · · ,

−gp(k)y(k), f1(k), · · · , fq(k)]T . The resulting vector form
is given by

ZN = ΨNθ
∗ + CN , (8)

where ZN
4
= [g0(1)y(1), · · · , g0(N)y(N)]T , CN

4
=

[a(1)ε(1), · · · , a(N)ε(N)]T , ΨN
4
= [ψ(1), · · · , ψ(N)]T .

Clearly, the equation (7) is linear in all the parametersθ∗

and all of the elements ofψ(k) are available at timek. Thus,
the ordinary least squares (OLS) estimator of (8) assumes
the form of (

1

N
ΨTNΨN

)−1(
1

N
ΨTNZN

)
. (9)

However, the estimator (9) is a biased estimate forθ∗ since
the regressorψ(k) involvesy(k), which is correlated with
the noise terma(k)ε(k).

This problem is also encountered for identification of linear
systems when the regressor vector is correlated with the
noise, and the bias-eliminated least squares method (BELS)
is the commonly adopted and effective method (Stoica &
Söderström, 1982; Zheng, 1998; Zheng & Feng, 1995) to
obtain a consistent estimate. In order to compare with linear
cases, allow a little abuse of repeated usage of the notation.
Consider the following linear case

y(k) = ψ(k)T θ∗ + ε(k), (10)

where the regressor vectorψ(k) includes the delayed out-
put and inputs, i.e.,ψ(k) = [y(k)Tu(k)T ]T = [y(k −
1), · · · , y(k−ny), u(k− 1), · · · , u(k−nu)]T , θ∗ is the un-
known parameter that needs to be estimated, andy(k) is
correlated with the noiseε(k) butu(k) is uncorrelated with
ε(k). Under this setting, the BELS estimator ofθ∗ can be
obtained via

θBELS = θLS −
(
Eψ(k)ψ(k)T

)−1

[
Ey(k)ε(k)

0

]
, (11)

where θLS =
(
Eψ(k)ψ(k)T

)−1
Eψ(k)y(k). So the key

to the BELS method is to obtain a consistent estimate
for the bias vectorEy(k)ε(k), which is done usually
by selecting some appropriate auxiliary vectorζ(k) sat-
isfying Eζ(k)ε(k) = 0 and Eψ̄(k)ψ̄(k)T > 0 with
ψ̄(k) = [ψ(k)T ζ(k)T ]T . The delayed inputs are selected to
produce the consistent estimate for the bias in Zheng (1998)
and the known regulator in closed-loop systems plays a
similar role in obtaining the consistent bias in Zheng &
Feng (1995). A unified framework for the BELS estimator
can be referred to Jia et al. (2011). It is seen that this kind of
BELS estimators depends on the selection of the auxiliary
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vectorζ(k), which has a direct impact on the consistency
and the accuracy of the estimator. Clearly, the regressor
vector ψ(k) defined in (7) is more complicated than its
counterpart defined in (10) for the linear case, in which
each element ofψ(k) depends on all the delayed inputs and
outputs and the noise terma(k)ε(k) in (7) may depend on
all the past inputs due to the existence ofa(k). This makes
the selection of the auxiliary vectorζ(k) become nontrivial.

In order to avoid the indetermination for the selection of the
auxiliary vectorζ(k) introduced above, the idea of the BELS
estimator used in Stoica & Söderström (1982) is adopted
here. In comparison with the BELS estimator having the
form of (11), the advantages of the BELS estimator in Stoica
& Söderström (1982) includes: 1) there is no need to select
an appropriate auxiliary vector; 2) the only thing to be done
for this BELS estimator is to develop a consistent estimate
for a scalar quantity (the variance of the noise) instead of a
multi-dimensional bias vector.

In the following, the idea for estimating the unknown pa-
rameterθ∗ of the nonlinear rational model (1) is stated by
referring to Stoica & Söderström (1982).

It follows from (1) and (7) that

g0(k)y(k)=−
p∑

j=1

αjgj(k)y(k)+

q∑

i=1

βifi(k)+a(k)ε(k)

=−
p∑

j=1

αjgj(k)v(k, θ
∗) +

q∑

i=1

βifi(k) + g0(k)ε(k),

= φ(k)T θ∗ + g0(k)ε(k), (12)

where

φ(k)
4
=
[
− g1(k)v(k, θ

∗), · · · ,−gp(k)v(k, θ∗),
f1(k), · · · , fq(k)

]T
. (13)

The corresponding vector form is given by

ZN = ΦNθ
∗ +DN , (14)

where ZN
4
= [g0(1)y(1), · · · , g0(N)y(N)]T , DN

4
=

[g0(1)ε(1), · · · , g0(N)ε(N)]T , ΦN
4
= [φ(1), · · · , φ(N)]T .

Clearly, the least squares estimator of (14) is obtained as
(

1

N
ΦTNΦN

)−1(
1

N
ΦTNZN

)
. (15)

It is obvious that under the persistent excitation condi-
tions onφ(k) that will be given in Assumption 4, the least
squares estimator (15) is a consistent estimate forθ∗ since
Eφ(k)g0(k)ε(k) = 0. The problem is thatφ(k) is unavail-
able. Let us define the persistent excitation condition.

Assumption 4 There exists an integerN0 > 0 such that
1
NΦTNΦN > 0 for all N > N0.

We provide a remark on the condition. Let us consider the
noise-free case, that is,

y(k) =

q∑
i=1

βifi(k)

g0(k) +
p∑
j=1

αjgj(k)

.

An equivalent form of the above model is

g0(k)y(k) = −
p∑

j=1

αjgj(k)v(k, θ
∗) +

q∑

i=1

βifi(k)

= φ(k)T θ∗.

In this simple case, Assumption 4 is exactly the persistent
excitation condition for identifying nonlinear rational sys-
tems. Note that any linear system is just a special case. Thus,
Assumption 4 can be explained as the persistent excitation
condition for the system (1).

Note that Assumption 4 is a condition guaranteeing the
global identifiability of the nonlinear rational system (1),
while Assumption 3i) is the counterpart that ensures the lo-
cal identifiability. We have the following lemma describing
their connection.

Lemma 1 Under Assumptions 1 and 2, Assumption 4 im-
plies Assumption 3i).

Let us proceed again to illustrate that a consistent estimate
for θ∗ can be obtained from (9) if the variance of the noise
is a priori known. This begins with analyzing the difference
between the least squares estimators (9) and (15). First, the
matricesΨN andΦN satisfy the relationship

ΨN = ΦN +HN , (16)

whereHN
4
= [h(1), · · · , h(N)]T andh(k)

4
= [−g1(k)ε(k),

· · · ,−gp(k)ε(k), 0, · · · , 0]T . It follows from the definition
of CN andDN that

CN = DN −HNθ
∗. (17)

Similarly, by definingGN
4
= [g0(1), · · · , g0(N)]T , AN

4
=

[a(1), · · · , a(N)]T , andMN
4
= [m(1), · · · ,m(N)]T with

m(k)
4
= [−g1(k), · · · ,−gp(k), 0, · · · , 0]T , we have

AN = GN −MNθ
∗. (18)

Then it follows from (16) that

1

N
ΨTNΨN

=
1

N
ΦTNΦN +

1

N
HT
NHN +

1

N
ΦTNHN +

1

N
HT
NΦN

=
1

N
ΦTNΦN +

1

N
HT
NHN +Op

( 1√
N

)

=
1

N
ΦTNΦN + σ2

( 1

N
MT
NMN

)

+
1

N

(
HT
NHN − σ2MT

NMN

)
+Op

( 1√
N

)

=
1

N
ΦTNΦN + σ2

( 1

N
MT
NMN

)
+Op

( 1√
N

)
, (19)

where 1
NH

T
NΦN = Op(1/

√
N) and 1

N

(
HT
NHN −

σ2MT
NMN

)
= Op(1/

√
N) by Theorem A1 in the Appen-

dix since each element ofh(k)φ(k)T and h(k)h(k)T −
σ2m(k)m(k)T is a martingale difference sequence and
hence is anα-mixing with mixing coefficients exponentially
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decaying to zero. Similarly, by (16) and (14), we have

1

N
ΨTNZN

=
1

N
ΦTNΦNθ

∗ +
1

N
HT
NDN +

1

N
ΦTNDN +

1

N
HT
NΦNθ

∗

=
1

N
ΦTNΦNθ

∗ +
1

N
HT
NDN +Op

( 1√
N

)

=
1

N
ΦTNΦNθ

∗ + σ2
( 1

N
MT
NGN

)

+
1

N

(
HT
NDN − σ2MT

NGN

)
+Op

( 1√
N

)

=
1

N
ΦTNΦNθ

∗ + σ2
( 1

N
MT
NGN

)
+Op

( 1√
N

)
. (20)

Thus, it follows from (19) and (20) that

(
1

N
ΨTNΨN − σ2

( 1

N
MT
NMN

))−1

×
(

1

N
ΨTNZN − σ2

( 1

N
MT
NGN

))

=

(
1

N
ΦTNΦN +Op

( 1√
N

))−1

×
(

1

N
ΦTNΦNθ

∗ +Op

( 1√
N

))
−−−−→
N−→∞

θ∗.

SinceΨN , MN , ZN , andGN are available by the input
u(k), the outputy(k), and the known nonlinear functions
gi(k), fj(k) for 0 ≤ i ≤ p, 1 ≤ j ≤ q, a consistent esti-
mate for the parameter vectorθ∗ is obtained if a consistent
estimate for the varianceσ2 is produced in some way. This
means that the key point of estimatingθ∗ is to independently
derive a consistent estimate forσ2.

A difference between the BELS estimator in Stoica &
Söderström (1982) and its counterpart developed in this
paper should now be pointed out. Because of nonlinearity
presented in rational systems, both the denominator and the
numerator of the least square estimator defined in (9) for
the nonlinear rational model should be compensated, while
only the denominator needs to be compensated for the lin-
ear case in Stoica & Söderström (1982). Further, estimation
of noise variance becomes more involved, which will be
discussed below.

4.2 Noise variance estimation

The results in Stoica & Söderström (1982) for linear systems
implies that a consistent estimate for the variance of the noise
can be obtained by solving some generalized eigenvalue
problem. This motivates us to consider whether the idea
given in Stoica & Söderström (1982) is applicable to the
nonlinear rational system (1). The answer is positive, but
the related procedure is much complicated and needs some
necessary modifications. The detailed estimation procedure
for the varianceσ2 of the noise is stated as follows. Define
two matrices by the available data and information

JN
4
=

1

N

[
ΨTN

ZTN

]
[
ΨN , ZN

]
=

1

N

[
ΨTNΨN ΨTNZN

ΨNZ
T
N ZTNZN

]
, (21)

∆N
4
=

1

N

[
MT
NMN MT

NGN

GTNMN GTNGN

]
. (22)

Based onJN and∆N , define a functionBN (·) over the vari-

ableλN asBN (λN )
4
= JN − λN∆N . Clearly, the function

η(λN ) defined asη(λN )
4
= det(BN (λN )) is a polynomial

of powerp+ 1 overλN . As a result,η(λN ) = 0 hasp+ 1
roots and denote all the roots by{λN (1), · · · , λN (p+ 1)}.
Thus, it will be shown below that the smallest root gives
a consistent estimatêλN of the noise varianceσ2, i.e., the
estimate forσ2 can be defined by

λ̂N = min{λN (j), j = 1, · · · , p+ 1}. (23)

Note that the definition of∆N used here is different from
its counterpart in Stoica & Söderström (1982) for linear
systems. We have the following convergence conclusion on
the estimate (23).

Lemma 2 Under Assumptions 1, 2, and 4, the noise vari-
ance estimate (23) has an explicit solution

λ̂N =

N∑

k=1

a(k)2ε(k)2
/ N∑

k=1

a(k)2, (24)

which converges to the noise varianceσ2 with probability
one and is asymptotically normal:
√
N(λ̂N−σ2) −−−−→

N−→∞
N (0, Ea(k)4Var(ε(k)2)/(Ea(k)2)2).

It follows from the proof of Lemma 2 given in the Appen-
dix that all of the roots ofη(λN ) = 0 are greater than or
equal to zero and the estimate (23) for the noise varianceσ2

is the smallest positive root ofη(λN ) = 0. Thus, the solu-
tion to (23) can be conveniently obtained by a root-seeking
algorithm, for example, the functionfzero in Matlab.

4.3 Corrected least squares estimator and asymptotical
normality

Based on the explanation and analysis in Section 4.1, a con-
sistent estimate for the unknown parameter vectorθ∗ can be
obtained if a consistent estimatêλN for the noise variance
σ2 is provided. Thus, after deriving the consistent estimate
(23) for the varianceσ2, the corrected least squares (CLS)
estimator forθ∗ can be defined by

θ̂CLS
N =

(
1

N
ΨTNΨN − λ̂N

( 1

N
MT
NMN

))−1

×
(

1

N
ΨTNZN − λ̂N

( 1

N
MT
NGN

))
, (25)

whereλ̂N is given in (23). The CLS estimator defined by
(25) has the following convergence and asymptotic normal-
ity.

Theorem 3 Under Assumptions 1, 2, and 4, the CLS esti-
mate θ̂CLS

N given in (25) converges toθ∗ with probability
one and is asymptotically normal:

√
N(θ̂CLS

N − θ∗) −−−−→
N−→∞

N (0,Υ−1WΥ−1),
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whereΥ
4
= Eφ(k)φ(k)T andW

4
= Ew(k)w(k)T with

w(k)
4
= φ(k)a(k)ε(k)

+
(
m(k)a(k)− a(k)2

Em(k)a(k)

Ea(k)2

)(
ε(k)2 − σ2

)
.

Theorem 3 indicates that the CLS estimateθ̂CLS
N given in

(25) is a
√
N -consistent estimator ofθ∗. So, according to

the two-step estimator introduced in Section 3, the NLS
estimatorθ̂NLS

N of the objective function (4) is obtained.

4.4 Recursive implementation of CLS

In this subsection, we present two recursive forms related
to the CLS estimator defined in (25), which are useful for
practical applications.

The First Form:Clearly, the CLS estimator can be rewritten
as

θ̂CLS
N =

(
ΨTNΨN − λ̂NM

T
NMN

)−1(
ΨTNZN − λ̂NM

T
NGN

)
.

For notational simplicity, define

RN
4
=
(
ΨTNΨN − λ̂NM

T
NMN

)−1

SN
4
= ψ(N)ψ(N)T + λ̂N−1M

T
N−1MN−1 − λ̂NM

T
NMN

VN
4
= ΨTNZN − λ̂NM

T
NGN

WN
4
= ψ(N)g0(N)y(N) + λ̂N−1M

T
N−1GN−1 − λ̂NM

T
NGN

Then we have

RN+1 =
(
ΨTNΨN − λ̂NM

T
NMN + ψ(N + 1)ψ(N + 1)T

+ λ̂NM
T
NMN − λ̂N+1M

T
N+1MN+1

)−1

=
(
R−1
N + SN+1

)−1

= RN −RN
(
I + SN+1RN

)−1
SN+1RN ,

where the inverse of a sum of matrices (Henderson & Searle,
1981) is used. Similarly, one derives

VN+1 = ΨTN+1ZN+1 − λ̂N+1M
T
N+1GN+1

= ΨTNZN − λ̂NM
T
NGN + ψ(N + 1)g0(N + 1)y(N + 1)

+ λ̂NM
T
NGN − λ̂N+1M

T
N+1GN+1

= VN +WN+1.

It follows that

θ̂CLS
N+1 = RN+1VN+1 = RN+1

(
VN +WN+1

)

= RN+1

(
R−1
N θ̂CLS

N +WN+1

)

= RN+1

((
R−1
N+1 − SN+1

)
θ̂CLS
N +WN+1

)

= θ̂CLS
N +RN+1

(
WN+1 − SN+1θ̂

CLS
N

)
.

Thus, we obtain the following recursive algorithm for the
CLS estimator:

θ̂CLS
N+1 = θ̂CLS

N +RN+1

(
WN+1 − SN+1θ̂

CLS
N

)

RN+1 = RN − RN (I + SN+1RN )−1SN+1RN

SN+1 = ψ(N + 1)ψ(N + 1)T −
(
λ̂N+1 − λ̂N

)
MN

− λ̂N+1m(N + 1)m(N + 1)T

MN = MN−1 +m(N)m(N)T

WN+1
4
= ψ(N + 1)g0(N + 1)y(N + 1)

−
(
λ̂N+1 − λ̂N

)
GN − λ̂N+1m(N + 1)g0(N + 1)

GN = GN−1 +m(N)g0(N),

(26)

where the initial values arêθ0 = 0, R0 = γI > 0, M0 = 0,
andG0 = 0. This algorithm is an exactly recursive imple-
mentation of the CLS estimator defined in (25).

The Second Form:To obtain another recursive form of the
CLS, let us start with the following estimator:

θ̂N =
(
ΨTNΨN − σ2MT

NMN

)−1(
ΨTNZN − σ2MT

NGN
)
,

where the noise variance estimate in (25) is replaced by its
true value. To allow an abuse of notation, define

RN
4
=
(
ΨTNΨN − σ2MT

NMN

)−1
,

SN
4
= R−1

N−1 + ψ(N)ψ(N)T ,

VN
4
= ΨTNZN − σ2MT

NGN .

Thus, we have

RN+1 =
(
ΨTNΨN − σ2MT

NMN + ψ(N + 1)ψ(N + 1)T

− σ2m(N + 1)m(N + 1)T
)−1

=
(
R−1
N + ψ(N + 1)ψ(N + 1)T

− σ2m(N + 1)m(N + 1)T
)−1

=
(
SN+1 − σ2m(N + 1)m(N + 1)T

)−1

= S−1
N+1 +

σ2S−1
N+1m(N + 1)m(N + 1)TS−1

N+1

1− σ2m(N + 1)TS−1
N+1m(N + 1)

and

S−1
N+1 = RN − RNψ(N + 1)ψ(N + 1)TRN

1 + ψ(N + 1)TRNψ(N + 1)
,

where the inverse of a sum of matrices (Henderson & Searle,
1981) is used. In a similar way, we obtain

VN+1 = ΨTN+1ZN+1 − σ2MT
N+1GN+1

= ΨTNZN − σ2MT
NGN + ψ(N + 1)g0(N + 1)y(N + 1)

− σ2m(N + 1)g0(N + 1)

= VN + ψ(N + 1)g0(N + 1)y(N + 1)

− σ2m(N + 1)g0(N + 1).

It follows that

θ̂N+1 = RN+1VN+1

= RN+1

(
VN + ψ(N + 1)g0(N + 1)y(N + 1)

− σ2m(N + 1)g0(N + 1)
)

= RN+1

(
R−1
N θ̂N + ψ(N + 1)g0(N + 1)y(N + 1)

− σ2m(N + 1)g0(N + 1)
)

= RN+1

[(
R−1
N+1 − ψ(N + 1)ψ(N + 1)T

+ σ2m(N + 1)m(N + 1)T
)
θ̂N

+ ψ(N + 1)g0(N + 1)y(N + 1)

7



− σ2m(N + 1)g0(N + 1)
]

= θ̂N +RN+1

[
ψ(N + 1)

(
g0(N + 1)y(N + 1)

− ψ(N + 1)T θ̂N
)
− σ2m(N + 1)

(
g0(N + 1)

−m(N + 1)T θ̂N
)]
.

Thus, we get another recursive algorithm:

θ̂N+1 = θ̂N +RN+1

[
ψ(N + 1)

×
(
g0(N + 1)y(N + 1)− ψ(N + 1)T θ̂N

)

−λ̂N+1m(N + 1)
(
g0(N + 1)−m(N + 1)T θ̂N

)]
,

RN+1 = S−1
N+1 +

λ̂N+1S
−1

N+1
m(N+1)m(N+1)TS−1

N+1

1−λ̂N+1m(N+1)TS−1

N+1
m(N+1)

,

S−1
N+1 = RN − RNψ(N+1)ψ(N+1)TRN

1+ψ(N+1)TRNψ(N+1) ,

(27)

where the initial values arêθ0 = 0 andR0 = γI > 0. In
addition to online updating the estimate at current time based
on its immediate past estimate and the currently received
data, an attractive merit of the recursive algorithm (27) is
that it avoids the explicit matrix inverse calculation in (26),
even though it is not an exactly recursive implementation of
the CLS (25).

Since it is difficult to derive a recursive scheme for the noise
variance estimatêλN in (23), the needed valuêλN in (26)
and (27) is directly calculated by (23). Actually, this will
not greatly increase the computational complexity since the
noise variance estimation (23) is achieved by a root-seeking
algorithm for a one-dimensional polynomial of powerp+1.

5 Numerical examples

Example 1 This example is used to illustrate that the objec-
tive function (4) has many local minima. Thus, the Newton-
based optimization algorithms may converge to a local min-
imum if the initial value is outside the attraction region of
the true value. Consider a nonlinear rational system

y(k) =
3u(k − 1)y(k − 1)

1− 0.8y(k − 1)
+ ε(k), (28)

where u(k), y(k) are the input and output, respectively,
g0(k) = 1, g1(k) = y(k − 1), f1(k) = u(k − 1)y(k − 1),
and the true parameter vector isθ∗ = [−0.8, 3]T . The
input {uk} is a sequence of i.i.d. random variables uni-
formly generated from the interval[0, 0.6]. The noise
{εk} is a sequence of i.i.d. uniform random variables in
the interval [−1, 1]. The sample size isN = 1000. For
ease of presentation, the opposite−QN(θ) of the objec-
tive function (4) is plotted on its two parameters in a
large region{(α, β) ∈ [−5, 5] × [−5, 5]}. Fig. 1 shows
that the objective function corresponding to the system
(28) has many local minima. This phenomenon still exists
even if the region of the parameters is narrowed down to
{(α, β) ∈ [−0.9,−0.7]× [2.9, 3.1]} including the true value
(−0.8, 3) (See Fig. 2). This means that the gradient-based
optimization algorithms for solving (4) may not work well.

To compare the performance of the two-step estimator pro-
posed in the paper with other estimators for identifying the
unknown parameters in (28), we first introduce all the esti-
mators involved here. They are the corrected least squares
estimator (CLS) defined by (25) in Section 4, the two-step

5

0

α

-5
-5

0

β

×104

-7

-6

-5

-4

-3

0

-1

-2

5

-Q
N
(α

,β
)

Fig. 1. The three-dimensional plot of−QN(α, β) corresponding
to the system (28)

estimator proposed in Section 3, i.e., the Gauss-Newton al-
gorithm with the CLS estimator serving as its initial value
(CLS+GN) defined by (6), the ordinary least squares (OLS)
estimator defined by (9), the Gauss-Newton algorithm with
the OLS estimator serving as its initial value (OLS+GN)
defined by (6), the simulated annealing algorithm (SA) for
minimizing the objective function (4) which is implemented
by the functionsimulannealbnd in Matlab and the ini-
tial value is set as the OLS estimator, and the genetic algo-
rithm (GA) for minimizing the objective function (4) which
is implemented by the functionga in Matlab and does not
require to provide an initial value, respectively. To evaluate
the performance of all the estimators given above, the fitness
measure (FM) (Ljung, 2012)

FM = 100

(
1− ‖θ̂N − θ∗‖2

‖θ∗ − θ̄∗‖2

)

is used, wherêθN represents the resulting estimate forθ∗

and θ̄∗ is the arithmetic average of the elements ofθ∗. The
following results are based on 100 Monte-Carlo simulations,
where the mean and the standard deviation of the signal-to-
noises ratios (SNRs) calculated by the 100 runs are14.17
dB and0.74 dB.

To investigate the performance of all the estimators intro-
duced above for this example, the distribution of the FM for
these estimators is listed, where Table 1 gives the resulting
quantiles at10%, 25%, 50%, 75%, and90%, respectively,
and Figure 3 shows the box plot. One can first conclude
from these distributions that the commonly used global op-
timization algorithms including the SA and GA estimators
do not perform well since the true value can hardly be found
by them. On the other hand, the consistent CLS estimator
is superior to the biased OLS estimator. More importantly,
the CLS estimator is significantly improved by the Gauss-
Newton algorithm, while the OLS estimator is greatly de-
teriorated by the Gauss-Newton algorithm since the10%
quantile of the FM for the CLS+GN estimator is98.10 but
the 90% quantile of the FM for the OLS+GN estimator is
−0.53. This also shows that the CLS estimator almost lies
in the attraction neighborhood of the Gauss-Newton algo-
rithm, but the OLS estimator does not enjoy this advantage.
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Fig. 2. The three-dimensional plot of−QN(α, β) in a narrower
region
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Fig. 3. The box plot of the FM for the CLS, CLS+GN, OLS,
OLS+GN, SA, and GA estimators. In order to show the complete
distributions of these estimators, they are displayed by some proper
but different scales, respectively.

Table 1
The quantiles of all the estimators

Methods 10% 25% 50% 75% 90%

CLS 79.05 85.19 89.46 94.74 97.51

CLS+GN 98.10 98.94 99.41 99.68 99.83

OLS 68.19 72.77 81.69 89.90 93.46

OLS+GN −15.89 −12.63 −10.89 −5.51 −0.53

SA −62102 −36899 −18534 −7647 −3741

GA −3899 −3097 −1799 −613.95 −13.86

Finally, a comparison of the computational complexity be-
tween the CLS estimator and the resulting two kinds of re-
cursive CLS estimators given in Section 4.4 is also provided
by considering the time spent of these estimators. For conve-
nience, let us denote the exact recursive implementation of
the CLS estimator (the first form) by RCLS and the modified
recursive implementation of the CLS estimator (the second
form) by MRCLS, respectively. The hardware used for this

RCLS MRCLS

S
ec

on
ds

0.055

0.06

0.065

0.07

0.075

CLS

S
ec

on
ds

0.1

0.105

0.11

0.115

Fig. 4. The box plot of the computational complexity of the RCLS,
MRCLS, and CLS estimators.

comparison includes a 3.5 GHz Intel Core i5 CPU and an
8 GB RAM while the software platform is Matlab 2014b
running under OS X 10.10 operation system. Note that both
the RCLS, MRCLS, and CLS estimators involve the same
root-seeking step (23). Thus, it is fair to exclude the time
spent by the root-seeking process for comparing the compu-
tational complexity of the CLS estimator and its recursive
forms. Figure 4 plots the distributions of the three kinds of
estimators. It is observed that the RCLS and MRCLS esti-
mators can save about37% and 45% computational time,
respectively, in comparison with the CLS estimator based
on their medians. Also, the standard deviation of the spent
time of the MRCLS is smaller than that of the RCLS and
CLS estimators.

Example 2 Consider a nonlinear rational system

y(k) =
2y(k − 1)y(k − 2) + 3u(k − 1)

1 + 0.5y(k − 1)2 + u(k − 1)2
+ ε(k), (29)

where u(k), y(k) are the input and output, respectively,
g0(k) = 1, g1(k) = y(k − 1)2, g2(k) = u(k − 1)2,
f1(k) = y(k − 1)y(k − 2), f2(k) = u(k − 1), and the true
parameter vector isθ∗ = [0.5, 1, 2, 3]T . The input{uk} is
a sequence of i.i.d. random variables uniformly generated
from the interval[−1, 1]. The noise{εk} is a sequence of
i.i.d. Gaussian random variables:N (0, σ2).

In order to reflect the impact of the noise intensity to the
estimation accuracy ofθ∗, we conduct estimation under dif-
ferent noise levels, where the varianceσ2 of the noise is se-
lected as0.42 and0.82, respectively, and the corresponding
SNRs are16.28 dB and11.85 dB, respectively. Tables 2–3
list the estimate of the CLS and CLS+GN estimators for the
sample sizesN = 500, 2000, 5000, 10000 under the SNRs
introduced above and averaging over 100 random runs. The
values in the parentheses are the resulting standard devia-
tions. Figures 5–6 plot the distribution of the resulting fit-
ness measures of the parameter estimation shown by box
plots for the different cases described above. It is seen from
these figures that the Gauss-Newton algorithm greatly im-
proves the estimation accuracy if it starts with an estimate
given by the CLS estimator.

Example 3 (A practical example) The book by Bates &
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Fig. 5. Box plots of the fitness measure based on 100 random
runs atSNR = 16.28. The horizontal axis represents the adopted
estimation method and the sample size while the vertical axis is
the resulting fitness measure, e.g.,“CLS+500” means the estimate
is obtained by the CLS whenN = 500.

Table 2
Parameter estimation atSNR = 16.28

True values 500 2000 5000 10000

CLS

0.5000 0.5137 0.5021 0.5007 0.4975

(0.0736) (0.0414) (0.0264) (0.0189)

1.0000 1.0153 1.0071 1.0072 0.9977

(0.1745) (0.0802) (0.0494) (0.0348)

2.0000 2.0320 2.0081 2.0043 1.9948

(0.1692) (0.0946) (0.0615) (0.0441)

3.0000 3.0363 3.0147 3.0136 2.9948

(0.3757) (0.2088) (0.1153) (0.0766)

FM 79.6555 89.1149 93.5884 95.6284

(12.1309) (6.7713) (3.7371) (2.5173)

CLS+GN

0.5000 0.5001 0.5005 0.4998 0.4994

(0.0178) (0.0077) (0.0050) (0.0038)

1.0000 0.9990 1.0041 1.0014 0.9998

(0.0814) (0.0321) (0.0218) (0.0150)

2.0000 1.9977 2.0023 2.0004 1.9991

(0.0440) (0.0170) (0.0108) (0.0085)

3.0000 2.9969 3.0024 3.0005 2.9993

(0.1021) (0.0474) (0.0302) (0.0211)

FM 93.9975 97.3350 98.2250 98.7448

(3.9983) (1.6554) (0.9830) (0.6804)

Watts (2007) contains quite a few real-world rational sys-
tem examples. We consider the Michaelis-Menten model be-
cause of published experimental data. The model is for en-
zyme kinetics that relate the initial “velocity”y of an enzy-
matic reaction to the substrate concentrationu through the
equation

CLS+500 CLS+GN+500 CLS+2000 CLS+GN+2000 CLS+5000 CLS+GN+5000 CLS+10000 CLS+GN+10000
-60

-40

-20

0

20

40

60

80

100

Fig. 6. Box plots of the fitness measure based on 100 random runs
at SNR = 11.85. The meanings of the horizontal and vertical
axes are the same as those in Fig. 5.

Table 3
Parameter estimation atSNR = 11.85

True values 500 2000 5000 10000

CLS

0.5000 0.6365 0.5770 0.5339 0.5278

(0.2431) (0.1719) (0.1271) (0.0892)

1.0000 1.0837 1.0392 1.0115 1.0102

(0.4363) (0.2570) (0.1605) (0.1097)

2.0000 2.3607 2.2059 2.0977 2.0832

(0.5882) (0.4064) (0.2925) (0.2102)

3.0000 3.2944 3.1321 3.0925 3.0458

(1.0744) (0.6637) (0.4861) (0.3138)

FM 37.6706 62.0914 74.8470 81.6704

(38.5321) (25.1922) (20.0134) (11.3487)

CLS+GN

0.5000 0.5052 0.5007 0.5008 0.5001

(0.0283) (0.0145) (0.0091) (0.0063)

1.0000 1.0003 0.9989 1.0016 1.0022

(0.1243) (0.0626) (0.0416) (0.0274)

2.0000 2.0072 2.0004 2.0022 2.0004

(0.0706) (0.0335) (0.0218) (0.0150)

3.0000 2.9728 2.9780 2.9939 2.9945

(0.2001) (0.0895) (0.0578) (0.0429)

FM 89.0443 94.6207 96.5450 97.5779

(6.8676) (2.8375) (1.8260) (1.3805)

y(k) = f(k, u, θ) =
β

1 + α/u(k)
,

whereβ is the ultimate velocity parameter andα is the
half-velocity parameter (Bates & Watts, 2007, page 33),
g0(k) = 1, g1(k) = 1/u(k), andf1(k) = 1. The experiment
was conducted once with enzyme treated with Puromycin
and the number of the observations was12, {y(k), u(k)}121 .
The experimental data were obtained by Treloar (1974) and
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Fig. 7. Actual output (solid)y(k) and the predicted outputŝy(k)’s
by OLS (dashed), CLS (dash-dotted) and CLS+GN (dotted) esti-
mators.

Table 4
Parameter estimation and prediction error of the relevant estimators
for the practical example

Methods (α̂, β̂) Ave. Prediction
error

OLS (0.0435,193.8677) 13.59

CLS (0.0498,201.4230) 11.56

CLS+GN (0.0641,212.6837) 9.98

were reprinted on the page 269 of Bates & Watts (2007). It
is important to note that because it is a real-world model,
there is no ”true value” or nobody knows the ”true value” of
(α, β). Let (α̂, β̂) be an estimate of the ”true value”(α, β)

and ŷ(k) = β̂
1+α̂/u(k) be the predicted output based on the

estimates. The quality of estimates can be measured by the

averaged output errors
√

1
12

∑12
k=1(y(k)− ŷ(k))2. The esti-

mates for the unknown parameters(α, β) by the OLS, CLS,
and CLS+GN estimators as well as the corresponding aver-
age output errors are calculated for this example, as illus-
trated in Table 4 and Figure 7. It is easily seen that the CLS
estimator performs better than the OLS estimator and more-
over the CLS+GN estimator further improves the CLS. Note
there are only 12 observations.

6 Conclusion

The nonlinear least squares estimator for the unknown para-
meters of nonlinear rational systems has been developed via
a standard two-step estimator in the paper. The developed
NLS estimator consists of two successive steps: 1) one pro-
vides a good initial estimator for the unknown parameter; 2)
one obtains the NLS estimator for the unknown parameters
by using the Gauss-Newton algorithm with the estimate ob-
tained in Step 1 serving as the initial value. In Step 1, the
CLS estimator has been proposed by model transformation,
bias analysis, noise variance estimation, and bias compen-
sation and has been proved to be a

√
N -consistent estimator

of the unknown parameters in the global sense under some
conditions. To the best of our knowledge, this is the first

time that a globally consistent estimate has been provided
for nonlinear rational systems. Therefore, in theory it canbe
guaranteed that the NLS estimator can be obtained by one-
step Gauss-Newton iteration with the

√
N -consistent CLS

estimate serving as the initial value. There exist several di-
rections that need to be explored for future research, for ex-
ample, colored noises, multi-input multi-output systems and
so on.

Appendix

6.1 Auxiliary results on random sequences

For the process{Xk, k = 1, 2, · · · }, denote theσ-algebra
generated by{Xs, 1 ≤ i ≤ s ≤ j} by F

j
i . Define

α(k)
4
= sup

n,A∈Fn
1
,B∈F∞

n+k

|P (A)P (B) − P (AB)|.

The process{Xk} is calledα-mixing if α(k) −−−−→
k→∞

0, and

the numbersα(k) are called the mixing coefficients of the
random process{Xk}. For analyzing the convergence of the
CLS estimator proposed in the paper, we need the results on
the central limit theorem ofα-mixing process.

Theorem A1 (Davidson, 1994) Let{Xk} be a stationary
sequence withEXk = 0 andE|Xk|δ <∞ for someδ > 2.
Suppose{Xk} is anα-mixing with exponentially decaying
mixing coefficientsα(k). Then

E
(∑N

k=1Xk

)2

N
−→ EX2

1 + 2

∞∑

k=2

E(X1Xk)
4
= χ2.

Further, if χ2 > 0, then 1√
N

∑N
k=1Xk −→ N (0, χ2). Also,

there holds
∑N

k=1Xk/
√
N = Op(1).

The following result is also useful for proving the asymptotic
normality of the CLS estimator.

Theorem A2 (Söderstr̈om & Stoica, 1989, Lemma B.4) Let
{xk} be a sequence of random vectors that converges in
distribution to a Gaussian vectorN (0, P ). Let {Ak} be
a sequence of random square matrices that converges in
probability to nonsingular matrixA. Definezk = Akxk.
Thenzk converges in distribution toN (0, APAT ).

6.2 Main proofs

Proof of Theorem 2. Since θ̂NLS
N is the minimum of (4)

and is also a stationary point of (4) under Assumption 3,
θ̂NLS
N satisfies the first order condition

1

N
JT (θ̂NLS

N )(Y − v(θ̂NLS
N ))

=
1

N

N∑

k=1

∂v(k, θ̂NLS
N )

∂θ
(y(k)− v(k, θ̂NLS

N )) = 0.

Applying the Taylor expansion around̂θN derives

− 1

N
JT (θ̂N )(Y −v(θ̂N ))

=−B(θ̂NLS
N − θ̂N )+op(1/

√
N) = Op(1/

√
N), (30)
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where the assertion̂θNLS
N − θ̂N = Op(1/

√
N) is used since

both θ̂NLS
N andθ̂N are

√
N -consistent estimators and

B=
1

N
JT (θ̂N )J(θ̂N )− 1

N

N∑

k=1

∂2v(k, θ̂N )

∂θ∂θT
(y(k)−v(k, θ̂N )).

Since ε(k) is uncorrelated withv(k, θ∗) and θ̂N is
√
N -

consistent,B can be simplified asB= 1
N J

T (θ̂N )J(θ̂N ) +
op(1). It follows from (30) that

θ̂NLS
N −θ̂N=

( 1
N
JT (θ̂N )J(θ̂N )

)−1(1
N
JT (θ̂N )(Y −v(θ̂N ))

)

+
( 1

N
JT (θ̂N )J(θ̂N )

)−1

op(1/
√
N).

This means that̂θNLS
N − θ̂GN

N = op(1/
√
N).

Proof of Lemma 1. Suppose that Assumption 3i) does
not hold. Then there exists another parameterθ̃ 6= θ∗ and
θ̃ ∈ Θ such thatQ(θ) arrives at its minimum atθ = θ̃.
Obviously, the minimum ofQ(θ) is zero. This means that

E
(
v(k, θ̃)− v(k, θ∗)

)2
= 0 and further we havev(k, θ̃) =

v(k, θ∗) almost surely (a.s.). For simplicity of derivation,
one assume thatg0(k) = 1. It follow from (12) that

y(k) = φ(k, θ∗)T θ∗ + ε(k),

which is a pseudo-linear regression type of (2). This im-
plies thatφ(k, θ∗)T θ∗ = φ(k, θ̃)T θ̃ a.s. based on the fact
v(k, θ̃) = v(k, θ∗). On the other hand, the expression of
φ(k, θ) defined in (13) shows thatφ(k, θ) depends on the pa-
rameterθ by the way ofv(k, θ), so we also haveφ(k, θ∗) =
φ(k, θ̃) a.s. This derives thatφ(k, θ∗)T θ∗ = φ(k, θ∗)T θ̃ a.s.
Multiplying φ(k, θ∗) on both sides from left and taking ex-
pectation give

E
(
φ(k, θ∗)φ(k, θ∗)T

)
θ∗ = E

(
φ(k, θ∗)φ(k, θ∗)T

)
θ̃

This yields thatE
(
φ(k, θ∗)φ(k, θ∗)T

)
is singular sincẽθ 6=

θ∗ and hence Assumption 4 is violated since we have

1

N
ΦTNΦN −→ E

(
φ(k, θ∗)φ(k, θ∗)T

)
asN −→ ∞

by applying the stationary ofφ(k, θ∗). This completes the
proof.

Proof of Lemma 2. Now, one plans to prove (24) by two
steps.

Step 1: To show thatsN
4
=

N∑
k=1

a(k)2ε(k)2
/ N∑
k=1

a(k)2 is a

root of the polynomialη(λN ) = 0. Applying the identities
CN = ZN −ΨNθ

∗ andAN = GN −MNθ
∗ leads to

L(λN )
4
=
[
θ∗T − 1

]
BN (λN )

[
θ∗

−1

]

=
1

N

[
θ∗T − 1

]
[
ΨTNΨN ΨTNZN

ΨNZ
T
N ZTNZN

][
θ∗

−1

]

− λN
1

N

[
θ∗T − 1

]
[
MT
NMN MT

NGN

GTNMN GTNGN

] [
θ∗

−1

]

=
1

N

[
θ∗T − 1

]
[
ΨTNΨNθ

∗ −ΨTNZN

ΨNZ
T
Nθ

∗ − ZTNZN

]

− λN
1

N

[
θ∗T − 1

]
[
MT
NMNθ

∗ −MT
NGN

GTNMNθ
∗ −GTNGN

]

=
1

N

[
θ∗T − 1

]
[
−ΨTNCN

−ZTNCN

]
+ λN

1

N

[
θ∗T − 1

]
[
MT
NAN

GTNAN

]

=− 1

N

(
θ∗TΨTN − ZTN

)
CN + λN

1

N

(
θ∗TMT

N −GTN
)
AN

=
1

N
CTNCN − λN

1

N
ATNAN .

Clearly,L(sN ) = 0 andL(λN ) > 0 if λN < sN . Since
[θ∗T − 1]T is nonzero, we must havedet(BN (λ̂N )) = 0.
This implies thatsN is a root ofη(λN ) = 0.

Step 2: To show thatsN is the smallest root ofη(λN ) = 0.
To this end, note thatBN (λN ) is symmetric andJN is semi-
positive definite. Letw = [wT1 , w2]

T with w1 ∈ R
p+q and

w2 ∈ R be any nonzero column vector linearly independent
of [θ∗T − 1]T . In order to reach the desired conclusion, it
remains to show thatwTBN (λN )w > 0 for λN ≤ sN since
we have shown thatL(λN ) > 0 if λN < sN in Step 1. Note
that

1

N

[
ΦTNΦN ΦTNΦNθ

∗

θ∗TΦTNΦN θ∗TΦTNΦNθ
∗

][
θ∗

−1

]
= 0

and Assumption 4, then we obtain

rank

{
1

N

[
ΦTNΦN ΦTNΦNθ

∗

θ∗TΦTNΦN θ∗TΦTNΦNθ
∗

]}
= p+ q.

This means that

wT
1

N

[
ΦTNΦN ΦTNΦNθ

∗

θ∗TΦTNΦN θ∗TΦTNΦNθ
∗

]
w > 0

sincew is linearly independent of[θ∗T − 1]T . Note that

JN =
1

N

[
ΦTNΦN ΦTNΦNθ

∗

θ∗TΦTNΦN θ∗TΦTNΦNθ
∗

]

+
1

N

[
HT
NHN HT

NDN

DT
NHN DT

NDN

]

+
1

N

[
ΦTNHN +HT

NΦN ΦTNDN +HT
NΦNθ

∗

DT
NΦN + θ∗TΦTNHN θ∗TΦTNDN +DT

NΦNθ
∗

]
.

Clearly, we have

BN (λN ) =
1

N

[
ΦTNΦN ΦTNΦNθ

∗

θ∗TΦTNΦN θ∗TΦTNΦNθ
∗

]

+
1

N

([
HT
NHN HT

NDN

DT
NHN DT

NDN

]
− σ2

[
MT
NMN MT

NGN

GTNMN GTNGN

])

+
(
(σ2 − sN) + (sN − λN )

) 1
N

[
MT
NMN MT

NGN

GTNMN GTNGN

]
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+
1

N

[
ΦTNHN +HT

NΦN ΦTNDN +HT
NΦNθ

∗

DT
NΦN + θ∗TΦTNHN θ∗TΦTNDN +DT

NΦNθ
∗

]
.

In view of Theorem A1, we arrive at

1

N

([
HT
NHN HT

NDN

DT
NHN DT

NDN

]
− σ2

[
MT
NMN MT

NGN

GTNMN GTNGN

])

= Op

( 1√
N

)
,

1

N

[
ΦTNHN +HT

NΦN ΦTNDN +HT
NΦNθ

∗

DT
NΦN + θ∗TΦTNHN θ∗TΦTNDN +DT

NΦNθ
∗

]

= Op

( 1√
N

)
,

1

N

[
MT
NMN MT

NGN

GTNMN GTNGN

]
= Op(1),

sN − σ2 = Op

( 1√
N

)
.

It follows that

BN(λN ) =
1

N

[
ΦTNΦN ΦTNΦNθ

∗

θ∗TΦTNΦN θ∗TΦTNΦNθ
∗

]

+ (sN − λN )
1

N

[
MT
NMN MT

NGN

GTNMN GTNGN

]
+Op

( 1√
N

)

and hence

wTBN (λN )w ≥wT 1

N

[
ΦTNΦN ΦTNΦNθ

∗

θ∗TΦTNΦN θ∗TΦTNΦNθ
∗

]
w

+Op

( 1√
N

)
> 0

if λN ≤ sN .

Up to now, we have proved thatsN is the smallest root
of η(λN ) = 0. So, according to the definition of (23), we

havêλN = sN , i.e.,λ̂N =
N∑
k=1

a(k)2ε(k)2
/ N∑
k=1

a(k)2. This

means

λ̂N − σ2 =

1
N

N∑
k=1

a(k)2
(
ε(k)2 − σ2

)

1
N

N∑
k=1

a(k)2
.

Define theσ-algebraFk
4
= σ{εi, 1 ≤ i ≤ k}. Thus, the

denominatora(k) is measurable with respect toFk−1 and
then we have

E
(
a(k)2

(
ε(k)2 − σ2

)
| Fk−1

)

= a(k)2E(ε(k)2 − σ2|Fk−1) = 0.

This means that{a(k)2
(
ε(k)2 − σ2

)
,Fk} is a martingale

difference sequence and hence is anα-mixing with mixing
coefficients exponentially decaying to zero and

Ea(1)4
(
ε(1)2 − σ2

)2
+ 2

∞∑

k=2

Ea(1)2
(
ε(1)2 − σ2

)

× a(k)2
(
ε(k)2 − σ2

)
= Ea(1)4

(
ε(1)2 − σ2

)2
.

Under Assumption 2,{a(k)2} is anα-mixing with mixing
coefficients exponentially decaying to zero. By Theorem A1,
we have

1

N

N∑

k=1

a(k)2
(
ε(k)2 − σ2

)
−→ N

(
0, Ea(k)4Var(ε(k)2)

)
,

1

N

N∑

k=1

a(k)2 = Ea(k)2 +Op

( 1√
N

)
.

Finally, applying Theorem A2 yields

√
N(λ̂N−σ2) −−−−→

N−→∞
N (0, Ea(k)4Var(ε(k)2)/(Ea(k)2)2),

thereby completing the proof.

Proof of Theorem 3. Note thatZN = ΨNθ
∗ +CN . Thus,

we have

1

N
ΨTNZN − λ̂N

( 1

N
MT
NGN

)

=
1

N
ΨTNΨNθ

∗ +
1

N
ΨTNCN − λ̂N

( 1

N
MT
NGN

)

=
( 1

N
ΨTNΨN − λ̂N

( 1

N
MT
NMN

))
θ∗ +

1

N
ΨTNCN

+ λ̂N

( 1

N
MT
NMN

)
θ∗ − λ̂N

( 1

N
MT
NGN

)
.

Further, using the identitiesΨN = ΦN + HN andAN =
GN −MNθ

∗ derives

√
N(θ̂N − θ∗) =

(
1

N
ΨTNΨN − λ̂N

( 1

N
MT
NMN

))−1

×
(

1√
N

ΨTNCN + λ̂N

( 1√
N
MT
NMN

)
θ∗ − λ̂N

( 1√
N
MT
NGN

))

=

(
1

N
ΨTNΨN − λ̂N

( 1

N
MT
NMN

))−1

×
(

1√
N

ΦTNCN +
1√
N
HT
NCN − λ̂N

( 1√
N
MT
NAN

))
.

Clearly, we have

1

N
ΨTNΨN − λ̂N

( 1

N
MT
NMN

)

=
1

N
ΦTNΦN +

1

N
HT
NHN +

1

N
ΦTNHN +

1

N
HT
NΦN

− λ̂N

( 1

N
MT
NMN

)

=
1

N
ΦTNΦN +

1

N

(
HT
NHN − σ2MT

NMN

)

13



+ (σ2 − λ̂N )
( 1

N
MT
NMN

)
+

1

N
ΦTNHN +

1

N
HT
NΦN .

From Theorem A1 it follows that

1

N

(
HT
NHN − σ2MT

NMN

)
= Op

( 1√
N

)
,

(σ2 − λ̂N )
( 1

N
MT
NMN

)
= Op

( 1√
N

)
,

1

N
ΦTNHN = Op

( 1√
N

)
,

1

N
HT
NΦN = Op

( 1√
N

)
,

1

N
ΦTNΦN = Eφ(k)φ(k)T +Op

( 1√
N

)
.

This implies that

1

N
ΨTNΨN − λ̂N

( 1

N
MT
NMN

)

= Eφ(k)φ(k)T +Op

( 1√
N

)
. (31)

By a straightforward calculation, we have

1√
N

ΦTNCN +
1√
N
HT
NCN − λ̂N

( 1√
N
MT
NAN

)

=
1√
N

ΦTNCN +
1√
N

(
HT
NCN − σ2MT

NAN

)

+ (σ2 − λ̂N )
1√
N

(
MT
NAN − EMT

NAN

)

+ (σ2 − λ̂N )
1√
N
EMT

NAN .

Theorem A1 derives

λ̂N − σ2 = Op

( 1√
N

)
,

1√
N

(
MT
NAN − EMT

NAN

)
= Op(1).

This means that

(σ2 − λ̂N )
1√
N

(
MT
NAN − EMT

NAN

)
= Op

( 1√
N

)
.

It follows that

1√
N

ΦTNCN +
1√
N
HT
NCN − λ̂N

( 1√
N
MT
NAN

)

=
1√
N

ΦTNCN +
1√
N

(
HT
NCN − σ2MT

NAN

)

+ (σ2 − λ̂N )
1√
N
EMT

NAN +Op

( 1√
N

)

=
1√
N

(
ΦTNCN +

(
HT
NCN − σ2MT

NAN
)

+
(
EMT

NAN
)(
σ2ATNAN − CTNCN

)
/ATNAN

)

+Op

( 1√
N

)
.

Note that

1√
N

((EMT
NAN

ATNAN
− EMT

NAN

EATNAN

)(
σ2ATNAN − CTNCN

))

=
(EMT

NAN
ATNAN

− EMT
NAN

EATNAN

)( 1√
N

(
σ2ATNAN − CTNCN

))

=

((
1
N (EATNAN −ATNAN )

)
EMT

NAN(
1
NA

T
NAN

)
EATNAN

)

×
(

1√
N

(
σ2ATNAN − CTNCN

))
.

By Theorem A1, we get

1

N

(
EATNAN −ATNAN

)
= Op

( 1√
N

)
,

1

N
ATNAN = Ea(k)a(k)T +Op

( 1√
N

)
= Op(1),

EMT
NAN

EATNAN
=

1
NEM

T
NAN

1
NEA

T
NAN

= Op(1),

1√
N

(
σ2ATNAN − CTNCN

)
= Op(1).

This entails that

1√
N

(
EMT

NAN
ATNAN

(
σ2ATNAN − CTNCN

))

=
1√
N

(
EMT

NAN

EATNAN

(
σ2ATNAN − CTNCN

))
+Op

( 1√
N

)
.

Thus, we have

1√
N

ΦTNCN +
1√
N
HT
NCN − λ̂N

( 1√
N
MT
NAN

)

=
1√
N

(
ΦTNCN +

(
HT
NCN − σ2MT

NAN
)

+
(
σ2ATNAN − CTNCN

)EMT
NAN

EATNAN

)
+Op

( 1√
N

)

=
1√
N

( N∑

k=1

φ(k)a(k)ε(k) +

N∑

k=1

m(k)a(k)
(
ε(k)2 − σ2

)

+
Em(k)a(k)

Ea(k)2

N∑

k=1

a(k)2
(
σ2 − ε(k)2

))
+Op

( 1√
N

)

=
1√
N

( N∑

k=1

φ(k)a(k)ε(k) +
(
m(k)a(k)− a(k)2

Em(k)a(k)

Ea(k)2

)

×
(
ε(k)2 − σ2

))
+ Op

( 1√
N

)
.

Define the random vector

w(k)
4
= φ(k)a(k)ε(k)

+
(
m(k)a(k)− a(k)2

Em(k)a(k)

Ea(k)2

)(
ε(k)2 − σ2

)

14



=




−g1(k)v(k, θ∗)a(k)ε(k)
...

−gp(k)v(k, θ∗)a(k)ε(k)
f1(k)a(k)ε(k)

...

fq(k)a(k)ε(k)




+$(k)

=




−g1(k)b(k)ε(k)
...

−gp(k)b(k)ε(k)
f1(k)a(k)ε(k)

...

fq(k)a(k)ε(k)




+$(k)

where

$(k) =




(
a(k)2Eg1(k)a(k)Ea(k)2 − g1(k)a(k)

) (
ε(k)2 − σ2

)

...(
a(k)2

Egp(k)a(k)
Ea(k)2 − gp(k)a(k)

) (
ε(k)2 − σ2

)

0
...

0




,

and theσ-algebraFk
4
= σ{εi, 1 ≤ i ≤ k}. Thus, the func-

tions gi(k), fj(k), 0 ≤ i ≤ p, 1 ≤ j ≤ q are measurable
with respect toFk−1 and then we have

E(w(k)|Fk−1) = E
(
φ(k)a(k)ε(k)

+
(
m(k)a(k)− a(k)2

Em(k)a(k)

Ea(k)2

)(
ε(k)2 − σ2

)∣∣∣Fk−1

)

= φ(k)a(k)E(ε(k)|Fk−1)

+
(
m(k)a(k)− a(k)2

Em(k)a(k)

Ea(k)2

)
E
(
ε(k)2 − σ2

∣∣Fk−1

)

= 0.

This means that{w(k),Fk} is a martingale difference se-
quence. Definitely,{w(k),Fk} is also anα-mixing with
mixing coefficients exponentially decaying to zero and

Ew(1)w(1)T + 2

∞∑

k=2

Ew(1)w(k)T = Ew(1)w(1)T .

Applying Theorem A1 gives rise to

1√
N

ΦTNCN+
1√
N
HT
NCN−λ̂N

( 1√
N
MT
NAN

)
−→ N (0,W ).

Combining it with (31) and applying Theorem A2 complete
the proof.
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Němcová, J., & van Schuppen, J. H. (2009). Realization theory for
rational systems: The existence of rational realizations.SIAM
Journal on Control and Optimization, 48, 2840–2856.
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