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Abstract

This paper considers identification of nonlinear rationgdtems defined as the ratio of two nonlinear functions of pastits and
outputs. Despite its long history, a globally consistemnitfication algorithm remains illusive. This paper prop®s globally convergent
identification algorithm for such nonlinear rational syste To the best of our knowledge, this is the first globallyvesgent algorithm
for the nonlinear rational systems. The technique empldgeal two-step estimator. Though two-step estimators areviknto produce
consistent nonlinear least squares estimatesvf/é consistent estimate can be determined in the first step, hofind such ay/N
consistent estimate in the first step for nonlinear rati@atems is nontrivial and is not answered by any two-stejmagirs. The
technical contribution of the paper is to develop a globalysistent estimator for nonlinear rational systems infitse step. This is
achieved by involving model transformation, bias analys@se variance estimation, and bias compensation in therp&wo simulation
examples and a practical example are provided to verify toel gperformance of the proposed two-step estimator.

Key words: Nonlinear rational systems, nonlinear least squares ating) two-step estimators, N-consistent estimators,
Gauss-Newton algorithms

1 Introduction general and inefficient in a variety of applications where a
system does have some unique structures that are ignored by

System identification aims to build a mathematical model the general NARMAX representation. From an engineering

for a system from the measured data in some optimal way. point of view, the available structural information shoblel

If a system is linear or is well approximated by a linear embedded into system models as well as identification al-

system, then linear system models are a good choice. Thusgorithms. The nonlinear rational system is such a case. The

well-developed linear identification methods introduced f  study of nonlinear rational models has a long history and has

example in Ljung (1999); Soderstrom & Stoica (1989) are been driven by practical applications and theoreticalrinte

available to identify the system. On the other hand, if a sys- ests. On the application side, an early reported example was

tem shows a strong nonlinear behavior, then nonlinear sys-the catalytic dehydration of n-hexyl alcohol model (Box &

tem models and the corresponding nonlinear identification Hunter, 1965)

algorithms become necessary.

. . o 6‘391U1(k)
A growing number of studies have demonstrated that the y(k) = 110 5
. . . . . 1u1(k) + 92’[1,2(]{3)
nonlinear autoregressive moving average with exogeneusin
put (NARMAX) model (Chen & Billings, 1989; Haber &

Unbehauen, 1990; Leontaritis & Billings, 1985) may pro- alcohol,us the partial pressure of olefifi; absorption equi-

vide a unified representation for a wide class of nonlinear librium constant of alcohol, absorption equilibrium con
systems that include several known nonlinear systems as 2 P q

special cases. However, the NARMAX representation is too stant of Qlefm ar_1d93 effectlve reaction rate constant. The
purpose is to estimatg, i = 1,2, 3 from the measurements

of y, u; andus,. Interested readers can find quite a few real-
world nonlinear rational systems in Bates & Watts (2007).

wherey is the rate of reactiony; the partial pressure of
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netics of catalytic reactions in chemical engineering (Dim into the least squares estimator produces a globdly-
itrov & Kamenski, 1991; Kamenski & Dimitrov, 1993). They consistent estimator for nonlinear rational systems. I§ina
have also found applications in economic systems, physics,the globally convergent NLS estimate for the nonlinear ra-
and engineering. tional systems defined as the ratio of two nonlinear func-
tions (not limited to polynomials) of past inputs and output

On the theoretical Side, it was shown in Bartosiewicz (1987) is obtained by the second step of the two-step estimator.
Sontag (1979) that a nonlinear system possesses a realizabl

and bounded polynomial response if and only if the system The contribution of the paper is a globally convergent iden-
is a rational model. Further, Bartosiewicz (1987) esthlelis tification algorithm for nonlinear rational systems. To the
that a smooth system may be immersed into a rational sys-best our knowledge, this is the first time that a globally con-
tem if the observation field is a finitely generated extension vergent identification algorithm is proposed for nonlinear
of R, and stated that rational systems could be simpler andrational systems. We comment that the idea of two-step es-
more powerful than smooth systems. In addition, the exis- timators is known in the literature (Gourieroux & Monfort,
tence of rational realizations of response maps was inves-1995). However, how to find &N consistent estimate at the
tigated in Némcova & van Schuppen (2009, 2010). It was first step for nonlinear national systems is nontrivial asd i
shown that if a response map is realized by a rational sys-not answered by any two-step estimators. Thus, the tedhnica
tem, then there also exists a minimal rational realiza_tibn 0 contribution of the paper is to develop/AV consistent esti-

the map (Némcova & van Schuppen, 2010). These evidencesnate for nonlinear rational systems at the first step so that i
from the viewpoint of theory indicate that nonlinear ratio- can be used as an initial estimate in the second step. We also
nal systems can well approximate a wide range of nonlinear comment that bias compensation approaches have been used
systems and actually provide a superior performance. in compensation of linear least squares identification-algo
rithms (Stoica & Soderstrom, 1982; Zheng, 1998; Zheng &
Feng, 1995) and in errors-in-variable linear system idienti
cation (Soderstrom, 2007; Zheng, 2002). There are howeve
several distinct differences between the technique pexbos
here and the bias compensation approach used in errors-in-
variables systems and linear systems (Zheng, 1998, 2002;
Zheng & Feng, 1995). First, obviously the systems consid-
ered above for the bias compensation approaches are linear
systems and rational systems studied herein are nonlinear
systems. Second, the bias compensation approaches need to
construct a multi-dimensional auxiliary vector that Jatis
certain properties. This is possible because the noiséés in
pendent of the inputs. For nonlinear rational systems, how-
ever, the resulting noise is a function of the inputs. It is no
clear at this point if such an auxiliary vector exists for non
linear rational systems. In the work reported here, instead
of finding an auxiliary vector, it is shown that selection of
“an auxiliary vector is actually unnecessary and only a con-
sistent estimate of the noise variance is required, which is
one dimensional and therefore is much more efficient. The
approach proposed in this paper may be considered as an
extension of the technique for linear least squares compen-
sation (Stoica & Soderstrom, 1982). However, because the

applying the ordinary least squares (OLS) estimator waltlle technique of_Stoica & Soderstrom _(1982) is for linear sys-
to a biased estimate. Realizing this problem, this papes use tems and rational systems are nonlinear systems, both noise

a two-step estimator to derive a convergent nonlinear leastvariance estimation and noise compensation for nonlinear
squares (NLS) estimator. The two-step estimator is known "ational systems become more involved and nontrivial. More
to produce a convergent NLS estimate (Gourieroux & Mon- technical details will be provided in the relevant Sectioh 4
fort, 1995) |f the |n|t|a_1I estimate provided by the first step 1o 1ast of the paper is organized as follows. Section 2
1S \/N-cgn&stept.- This means that to produce a convergentyescripes nonlinear rational systems under consideration
NLS estimator it is sufficient to develop @N-consistent  and some assumptions on the system. Section 3 introduces
estimator by the available data in the first step. In the paper briefly two-step estimators and their properties. A cogdct

by a detailed analysis for the bias of the OLS estimator, itis |east squares (CLS) estimator, which is obtained by model
shown that the bias can be removed if a consistent estimateransformation, bias analysis, noise variance estimation
for the variance of the noise is available. Consequentty, th and bias compensation, is proposed in Section 4. The CLS
keys are a reliable estimate of the noise variance and thejs proved to converge to the true parameters in the global
subsequent compensation of noise effects. Thus, this papesense under proper conditions and its asymptotical nor-
first provides a consistent estimate for the noise variancemality is also established. Two simulation examples and a
by seeking the minimum positive root of a polynomial con- practical example are provided to verify the effectiveness
structed with the available data and demonstrates that theof the proposed method in Section 5. Some concluding

search is independent of the least squares estimator. ThefRemarks are made in Section 6. Some technical details and
by substituting the consistent estimate for the noise maga  the proofs are given in the Appendix.

A number of identification algorithms have been proposed
in the literature to estimate the unknown parameters in the
nonlinear rational systems. They include prediction egeser
timator (Billings & Chen, 1989), extended least-squarés es
mator (Billings & Zhu, 1991), some variants of Newton-type
methods (Dimitrov & Kamenski, 1991; Heiser & Parrish,
1989), back propagation parameter estimator (Zhu, 2003)
and implicit least squares parameter estimator (Zhu, 2005)
However, none of the estimators mentioned above are glob-
ally convergent. The main difficulties are: (a) Nonlinear ra
tional systems could be transformed into a system which
is linear in the parameters by multiplying the denominator
on both sides. However, the resultant regressor is coectlat
with the noise and even with white noise, the resulting least
squares estimate is biased. (b) The prediction error type ob
jective function has many local minima since nonlinear ra-
tional systems are nonlinear in the parameters. Hence, var
ious developed nonlinear optimization algorithms based on
gradient descent are only locally convergent, and these re-
sults are summarized in a survey paper (Zhu et al., 2015).

As explained before, nonlinear rational systems can be con-
verted into a system that is linear in parameters, but dyrect



2 Problem formulation whereh(-) is a (v, + n,)-dimensional nonlinear function.
. . A
The nonlinear rational system under consideration is de- By Lemma 1 in Zhao et al. (2013), the chairlk) =
scribed as follows: ly(k — 1), y(k —ny), ulk — 1), u(k ~n,)] con-
: structed by the outputs and inputs of NARX (3) is geomet-
Zq: Bifi(k) rically ergodic and is am-mixing with mixing coefficients
y(k) = g5 be(k), 1<k<N, (1) exponentially decaying to zero if the following conditions

P are satisfied: 1) both the input and the noise are sequences of
go(k) + > a;g;(k) independent and identically distributed (i.i.d.) randoaniv
=1 ables with zero mean and finite variance; 2) the system (3)
where f;(k),g;(k),1 < i < ¢,0 < j < p area priori satisfies certain stability condition. Note that the random
known functions of the delayed outputs and inpligk — vectorz(k) is geometrically ergodic, that is, the distribution
1), ylk — ny),u(k — 1), -+ ,u(k — n,)} with pos- of z(k) tends to the invariant distribution at an exponential
itive integersn,, n,, 6" A .o, Br,- BT IS rate. This means that there is no essential difference leetwe

the stationary assumption and asymptotical stationary as-
Sumption on{x(k)}. For derivation simplicity, assume that
the procesgx(k)} in Assumption 2 is stationary in the sub-
sequent sections. These explanations indicate that Assump
"tion 2 is not restrictive and in fact it is a standard assuompti

in the nonlinear system identification literature.

the unknown parameter vector that needs to be estimated
ande(k) is the observation noise. It is worth pointing out
that the estimator for the nonlinear rational system (1) de-
veloped in the paper is applicable to the static case, i.e.
fi(k),g;(k),1 <1i<gq,0<j < pare known functions of
some exogenous variables. It is seen that the oufflit
is linear in the parameteksdy, - - - , 8,} but is nonlinear in
the parameter§ay, - - - , a, }, which is also the difficulty of 3 A standard two-step estimator
identifying the rational system (1).

Prediction error methods are a natural idea for identifyireg
For ease of representation, define the denominatorunknown parameter vectét of the system (1) as that used

a(k) 2 go(k) + X7, a;g;(k), the numerator(k) 2 in Billings & Chen (1989); Dimitrov & Kamenski (1991).

“ Bifi(k), and the true output(k, 6%) = b(k)/a(k). Define the objective function with a prediction error form as
Then the system (1) can be rewritten as 1N
b(k Qn () = = D _(y(k) —v(k,0))*. (4)
Y = 2 + ) = o)+ @) p3
Let us give some remarks on the system (1). First, one as-The vector minimizing (4) on a compact subgebf RP*4
sumes that the coefficient corresponding to the itgik) containing#* is called the nonlinear least squares (NLS)

in (1) is 1 due to the identifiability reason of (1). Thisis al- estimator for)* based on the observatiofig(k), y(k), 1 <
ways possible. Let the coefficient corresponding to the term . < N} and is denoted b@J\TVLS, Clearly, the gradient vector
go(k) be denoted byy,. Then, without loss of generality,  of v(k, 6) is given by

one can assumey, # 0; otherwise, one can select any other

item g;(k),1 < j < p with a; # 0 to play the role of du(k,0) _ {_ b(k) (g1 (k) -+, gp ()]
the item go(k) with o since at least there is a parameter 00 a?(k) Tl
a; # 0 among{ai, - - , o, }. Next, dividing the numerator 1 T
and the denominator by, leads to the representation (1). W [fl(k:), T 7fq(k)ﬂ :
An implicit assumption on the system (1) is thak) # 0.

~

We first give the conditions for the convergence of the NLS

In the following, let us give the conditions on the system, estimator.

input, and noise for estimating the unknown parameters.

. : N ) 2
Assumption 1 There is no undermodelling error for the ~ASSumption3 (i) Q(6) = E(v(k,0) —v(k,6%))" has a

system (1), i.e., the structure of the system includifig __ unique minimum af = ¢* in the compact seb.
and b(k) is known and the noise(k) is white. Further, (i) The true parameter vectdt* is an interior point of©

A and the matrix)/ (6*) is nonsingular, where
E|e(k)|?° < oo for somes > 2. Leto? = Var(e(k)).

A [ 00(k,0) ok, 0)
. | . NOE 20
Assumption 2 The sequencéz(k),k > 1} with (k) = o0 o0
y(k—=1), - ,y(k —ny),u(k — 1), -+ ,u(k —n,)] is as-
ymptotically stationary in the wide sense and isamixing  The NLS estimatof\-S enjoys the following consistency
process with mixing coefficients exponentially decaying to and asymptotical normality, which can be derived by disectl
zero. Also.E||z(k)||*° < oo for somes > 2. adopting the steps as what presented in Jennrich (1969).

We make a comment on the second assumption. Note therheorem 1 (Jennrich, 1969, Theorem 7) Lé\g]Ls be the
nonlinear rational model (1) can be regarded as a specil cas \|_g estimator of (4). Under Assumptions 1, 2 and 3 (i), we

of nonlinear autoregressive systems with exogenous input SNLS . . L
(NARX) havef \-> — 0* with probability one asV tends to infinity.

Further, if Assumption 3 (ii) also holds, then
y(k) = h(y(k = 1), ,y(k — ny),
w(k = 1), ulk —ny)) +e(k),  (3) VN(ONES — 0%) = 4(0,02M 1 (6%)) asN — oo. (5)



The NLS estimator involves a search for the solution of global sense that involves model transformation, biasyanal
non-convex objective function (4), which may lead to that sis, noise variance estimation, and bias compensatios. Thi
the gradient-based optimization algorithm converge to-a lo is also the major goal and contribution of the paper.

cal minimum if the starting point is outside the attraction

neighborhood of the true value. Thus, the gradient-based4.1 Model transformation and bias analysis
optimization algorithm is generally applied to improve the

precision when a good initial estimator, which is close to Multiplying a(k) on both sides (1) leads to

the true value, has obtained sinQe; (6) is approximately » q

convex in a small neighborhood of the true value. Addition- - _ . f

ally, it can be expected that the number of steps required forgO(k)y(k) ; ;9 (k)y(k) + ; Bifih) + alk)e(k)
numerical convergence of the algorithm will be smaller by .

starting from an initial value close #". = ¥(k)"0" + a(k)e(k), )

where the regressor vectap(k) 2 [—g1(k)y(k),---
Thus, the finding of the NLS estimatéR™S is often done g T LY,
. . ) gp(k)y(k), f1(k),---, fq(k)]" . The resulting vector form
in two steps (Gourieroux & Monfort, 1995): is given by
Step 1) Determine a consistent but not necessarily precise Zn =UNO" + Ch, (8)
estimate. A A
Step 2) Use this preliminary estimate as an initial value for Where Zn = [go(1)y(1), - - ’QZ(N)?/(N)]T* Cn =
some algorithm that determines the NLS estimator. [a(1)s(1),--- ,a(N)e(N)]T, ¥n = [¢(1),--- ,»(N)]7T.
Clearly, the equation (7) is linear in all the parametéts
In Step 2), the Gauss-Newton (GN) or other Newton-based anq a]| of the elements af(k) are available at timé. Thus,

algorithms are commonly used for improving the accuracy the ordinary least squares (OLS) estimator of (8) assumes
of the consistent estimator obtained in Step 1). The GN the form of

algorithm has the iterative form: -1

1 T 1 T
B = O+ (J7(0,)J(0,)) "I (0)(Y —v(8,). (6) (N‘I’NWN) (N‘I’NZN) ' ®)
where the initial valud, is the consistent estimator obtained However, the estimator (9) is a biased estimateffosince
in Step 1).Y = [y(1),...,y(N)]T, the regressop (k) involvesy(k), which is correlated with

0.0 = [(L.6.) V.o the noise termu(k)e (k).

T
J(0,) = ov(1,0,) Ov(N, 0,,)

This problem is also encountered for identification of linea
systems when the regressor vector is correlated with the
00 7 00 ' noise, and the bias-eliminated least squares method (BELS)
. . is the commonly adopted and effective method (Stoica &
_The stand_ard two-step estimator given above has thefOIIOW'St')derstrt')m, 1982; Zheng, 1998: Zheng & Feng, 1995) to
Ing attractive property. obtain a consistent estimate. In order to compare with tinea
cases, allow a little abuse of repeated usage of the notation

Theorem 2 (Lehmann & Casella, 1998) L@]\TVLS be the Consider the following linear case

NLS estimator of (4). Suppose tha¢ is a v/ N-consistent

estimator of¢*, i.e., Oy — % = O,(1/v/N). Denote the y(k) = p(k)T 0" + e(k), (10)
one-step GN iteration dfy by 65", i.e., where the regressor vectgr(k) includes the delayed out-
GN & U RN ~ put and inputs, i.e.p(k) = [y(k)Tu(k)T]" = [y(k —
O =0n+ (J (On)J(ON)) Ly ON)(Y —v(fn)). 1), y(k—ny),u(k—1), - u(k—n,)]", 6* is the un-
Thus under Assumptions 1-3 we have known parameter that needs to be estimated, w(id is

correlated with the noisg(k) butu(k) is uncorrelated with
oSN — A%LS - op(l/\/ﬁ). e(k). Under this setting, the BELS estimator &f can be
obtained via

This means that$N has the same asymptotic property that
@J\IVLS possesses. OprLs = Ors — (Ev(k)p(k)T)

It is seen that a key that the two-step estimator enjoys the

desired property is to find & N -consistent estimate 6f in where s = (Ez/J(k)w(k)T)_le(k)y(k). So the key

Step 1). In fact, this is also the major difficulty for solving to the BELS method is to obtain a consistent estimate

this kind of non-convex optimization problem. for the bias vectorEy(k)e(k), which is done usually
by selecting some appropriate guxiﬂaryTvec(c(k) sat-

4 A +/N-consistent estimator: Corrected least squares g?g}n i ﬁ%%)féf k))T]T_ thaengeﬁge(lé);ﬁgf}ts ar>e S%glclttgd to

. . . produce the consistent estimate for the bias in Zheng (1998)
Accord.mg to Fhe two-step .estlmator and-Theorem 2.intro- 5nd the known regulator in closed-loop systems plays a
duced in Section 3, to obtain the NLS estimaiijf-> of (4) similar role in obtaining the consistent bias in Zheng &
it is sufficient to find a/ N-consistent estimator f@*. This Feng (1995). A unified framework for the BELS estimator
section will develop a/N-consistent estimator for the un-  can be referred to Jia et al. (2011). It is seen that this kind o
known parameters of the nonlinear rational system (1) in the BELS estimators depends on the selection of the auxiliary

- . (12)

Ey(k)e(k)
0

4



vector ((k), which has a direct impact on the consistency

An equivalent form of the above model is

and the accuracy of the estimator. Clearly, the regressor

vector ¢(k) defined in (7) is more complicated than its
counterpart defined in (10) for the linear case, in which
each element of (k) depends on all the delayed inputs and
outputs and the noaise teraik)=(k) in (7) may depend on
all the past inputs due to the existencenf). This makes
the selection of the auxiliary vectgfk) become nontrivial.

In order to avoid the indetermination for the selection @& th
auxiliary vector( (k) introduced above, the idea of the BELS

ZO‘J%

= ¢( )T9*~

In this simple case, Assumption 4 is exactly the persistent
excitation condition for identifying nonlinear rationayss

tems. Note that any linear system is just a special case, Thus
Assumption 4 can be explained as the persistent excitation

v(k, 0%) +Zﬁlfl

i=1

estimator used in Stoica & Soderstrom (1982) is adopted condition for the system (1).

here. In comparison with the BELS estimator having the

form of (11), the advantages of the BELS estimator in Stoica
& Soderstrom (1982) includes: 1) there is no need to select

an appropriate auxiliary vector; 2) the only thing to be done

for this BELS estimator is to develop a consistent estimate
for a scalar quantity (the variance of the noise) instead of a

multi-dimensional bias vector.

In the following, the idea for estimating the unknown pa-
rameterd* of the nonlinear rational model (1) is stated by
referring to Stoica & Soderstrom (1982).

It follows from (1) and (7) that

Zajgj +Zﬂzfz k)e(k)
=—Z% v(k,07) +Zlﬁzfz ) + go(k)e(k),
= ¢>< >T9* + go(k)e (k) (12)
where
o(k) 2 [ = gr(k)o(k,0%), - —gy(k)u(k,0%),
hk) fa k)] (13)
The corresponding vector form is given by
Zn = Onb* + Dy, (14)
where Zy = [go(L)y(1), - go(N)y(N)]", Dy =
[g0(V=(1), -+, go(N)e(N)]T, @y = [6(1), -, H(N)]”.

Clearly, the least squares estimator of (14) is obtained as

1 i
(Ncb%qm) (N%ZN) :

It is obvious that under the persistent excitation condi-
tions on¢(k) that will be given in Assumption 4, the least
squares estimator (15) is a consistent estimat@faince
E¢(k)go(k)e(k) = 0. The problem is thap(k) is unavail-
able. Let us define the persistent excitation condition.

(15)

Assumption 4 There exists an integeN, > 0 such that
L 0T @y > 0 forall N > N.

We provide a remark on the condition. Let us consider the
noise-free case, that is,

> Aii(h)
o) + 35 gy ()

y(k)

Note that Assumption 4 is a condition guaranteeing the
global identifiability of the nonlinear rational system (1)
while Assumption 3i) is the counterpart that ensures the lo-
cal identifiability. We have the following lemma describing
their connection.

Lemma 1 Under Assumptions 1 and 2, Assumption 4 im-
plies Assumption 3i).

Let us proceed again to illustrate that a consistent estimat
for 6* can be obtained from (9) if the variance of the noise
is a priori known. This begins with analyzing the difference
between the least squares estimators (9) and (15). Fiest, th
matrices¥ y and® y satisfy the relationship

Uy =®N + Hn, (16)
whereHy 2 [h(1), -, h(N)]” andh(k) £ [~g1 (k)= (k),
,—gp(k)e(k),0,---,0]T. It follows from the definition

of Cx and D that

Cn = Dy — HyO". (17)
Similarly, by deﬂmngGN = [90(1), -+, go(N)]F, An 2
[a(1),--,a(N)]T, and My 2 [m(1),--- ,m(N)]T with
m(k) 2 [~g1(k), -+ ,—gp(k), 0, , 0], we have

Ay =GN — MpyO*. (18)

Then it follows from (16) that

1
N\I@WN
1 T 1 T 1 T 1 T
1 1 1
= —o%oy+ —HLHy +0 (—)
N N*¥N + N NLIN + D \/N
1 1
= ok + aQ(NMﬁMN)
1 1
+5 (H]EHN - O'QMZI\;MN) + Op(\/—ﬁ)
1 1 1
= Ohoy + UQ(NM]:\F,MN) + op(—_N), (19)

where +HL®y = O,(1/VN) and % (HLHy —
o?MEMy) = 0,(1/V/N) by Theorem Al in the Appen-
dix since each element of(k)p(k)T and h(k)h(k)T —
a*m(k)m(k)” is a martingale difference sequence and
hence is amv-mixing with mixing coefficients exponentially



decaying to zero. Similarly, by (16) and (14), we have AL 1
N = »7
N

MEMy MEGy

B B . (22)
GL My GLGy

1 T
]\1[ Based on/y andA y, define a functiorBy () over the vari-

1 1 1 )
= N@%(Im@ + NHﬁDN + N‘I)%DN + NHJT\;(I)NQ ableAy asBy(\y) 2 Jy — AvAy. Clearly, the function

o lore e 1 op 1 n(\y) defined asj(\y) 2 det(By(\y)) is a polynomial

= N ENENOT+ G HNDN + Op(\/ﬁ) of poweréo(;r 1 overlfq\rf]. As a re@s;lt,?())w) :/\0 r(1a5p 43}1
1 . 1 roots and denote all the roots By (1), -- , An(p+1)}.

= N‘I’JTV‘I)Ne + UQ(NMJJ\;GN) Thus, it will be shown below that the smallest root gives

1 . - 1 a consistent estimatgy of the noise variance?, i.e., the

t¥ (HNDN -0 MNGN) + Op(\/—ﬁ) estimate forr? can be defined by
L 7 * o Ly 1 Ay = min{\x(j),j =1

—— Bl - = ,j=1,-- ,p+1}. 23
SOReN" o (NMNGN) +0p(m). (20) N ON p+1} (23)

Note that the definition ofA ;- used here is different from
Thus, it follows from (19) and (20) that its counterpart in Stoica & Soderstrom (1982) for linear
systems. We have the following convergence conclusion on
1 1 -1 the estimate (23).
(—\IJ%\IJN - 02(—M}\F,MN))
N N Lemma 2 Under Assumptions 1, 2, and 4, the noise vari-

" (i\I/%ZN 2 (iME\FfGND ance estimate (23) has an explicit solution
N N R N N
. 1! v =Y alk)e(k)? 3 alk)?, (24)
= N¢N¢N+OP(\/—N) k=1 k=1

1 _ o . 1 . which converges to the noise variang& with probability
8 (NQ)N(I)NH * OP(\/—N)) o one and is asymptotically normal:

N2 4 2 2,2
SinceVy, My, Zy, and Gy are available by the input \/N()\N o) N—oo A0, Ea(k) Var(e(k)")/(Ea(k)")7).

u(k), the outputy(k), and the known nonlinear functions

gi(k), fi(k) for 0 < i < p,1 < j < g, a consistent esti- It follows from the proof of Lemma 2 given in the Appen-
mate for the parameter vectét is obtained if a consistent  dix that all of the roots ofy(\y) = 0 are greater than or
estimate for the variance? is produced in some way. This  equal to zero and the estimate (23) for the noise variafce
means that the key point of estimatifigis to independently  is the smallest positive root af(Ax) = 0. Thus, the solu-
derive a consistent estimate fof. tion to (23) can be conveniently obtained by a root-seeking

) ) ) ) algorithm, for example, the functidnzer o in Matlab.
A difference between the BELS estimator in Stoica &

Soderstrom (1982) and its counterpart developed in this4 3 Corrected least squares estimator and asymptotical
paper should now be pointed out. Because of nonlinearity normality
presented in rational systems, both the denominator and the

numerator of the least square estimator defined in (9) for gased on the explanation and analysis in Section 4.1, a con-

the nonlinear rational model should be compensated, while sistent estimate for the unknown parameter vegtaran be
only the denominator needs to be compensated for the lin- =

. . .. . . " obtained if a consistent estimaig; for the noise variance
ear case in Stoica & Soderstrom (1982). Further, estanati . : . : .
of Noise variance becomes moré invo)lved which will be o? is provided. Thus, after deriving the consistent estimate

di d bel (23) for the variancer?, the corrected least squares (CLS)
IScussed below. estimator for9* can be defined by

—1
oS — <%W}CWN - /\N(%MJ?,MN)>
The results in Stoica & Soderstrom (1982) for linear syste 1 1
implies that a consistent estimate for the variance of thigeno > <_\1;]TVZN “ v (_sz\;GN)) , (25)
can be obtained by solving some generalized eigenvalue N N
problem. This motivates us to consider whether the idea R
given in Stoica & Soderstrom (1982) is applicable to the where\y is given in (23). The CLS estimator defined by
nonlinear rational system (1). The answer is positive, but (25) has the following convergence and asymptotic normal-
the related procedure is much complicated and needs somety.
necessary modifications. The detailed estimation proeedur
for the variances? of the noise is stated as follows. Define Theorem 3 Under Assumptions 1, 2, and 4, the CLS esti-
two matrices by the available data and information mate 65 given in (25) converges t6* with probability
one and is asymptotically normal:

4.2 Noise variance estimation

1
N

vTwy 0L Zy

Uy, Zn] =
[V 2] Un2h 252y

. (21) VN(OSES — 6%) o O T,




whereY £ Bo(k)o(k)T andW 2 Ew(k)w(k)T with

o Em(k)a(k)

+ (mk)a(k) - alk)* =2 o

) (ek)? = o).

Theorem 3 indicates that the CLS estiméfgS given in
(25) is ay/N-consistent estimator af*. So, according to

—Avam(N 4+ D)m(N +1)7
///N:///N 1+ m(N)m(N)"
Wivs1 2 (N +1)go(N + Dy(N +1)
- ()\N+1 - /\N)%v —Anim(N +1)go(N +1)
YN =9Nn-1+m(N)go(N),
(26)

the two-step estimator introduced in Section 3, the NLS where the initial values a@ =0, Ry = I >0, .4, =0,

esumatoréNLS of the objective function (4) is obtained.

4.4 Recursive implementation of CLS

and%, = 0. This algorithm is an exactly recursive imple-
mentation of the CLS estimator defined in (25).

The Second FormiTo obtain another recursive form of the

In this subsection, we present two recursive forms related CLS, let us start with the following estimator:

to the CLS estimator defined in (25), which are useful for

practical applications.

The First Form:Clearly, the CLS estimator can be rewritten

as

IS = (W Wy — AWMEMy) " (VhZy — AnMEGY).

For notational simplicity, define

Ry £ (W5 Uy — Ay MEMy) ™

Sx 2 WN)(N)T + Ay ME My — A MG My

Vn 297 Zy — AwMIGy

Wi 2 %(N)go(N)y(N) + An—1 ME_,Gn—1 — AWMEGy
Then we have

(WEW N — ANMEMy + (N + 1)p(N + 1)7
+ANME My — //\\N+1M£+1MN+1)_1

= (Rx,l + SN-i—l)_l

=Ry — Ry(I + Sn+1Ry)~

Ryny1 =

1
Sn+1Rn,

where the inverse of a sum of matrices (Henderson & Searle,

1981) is used. Similarly, one derives

U1 Zn1 = Av i ME G

= UNZn — AWMEGN + (N + 1)go(N + 1)y(N +1)
+ANMEGN — }\\N+1M£+1GN+1

=Vn + Wny1.

VNyr =

It follows that

QCLS

v = BRyy1Vs = Ry (Vv + Wigt)

=Ryt (Rﬁlé\g/LS + WN+1)

= R (Rt — Sen) B9 + W)
é\CLS + Ryi1 (Wit — SN+1§]%LS)-

Thus, we obtain the following recursive algorithm for the

CLS estimator:

é\]c\[]:jrsl §CLS + RNt (WN+1 - SN+1§J%LS)
Ryny1 =Ry — RN(I + SN+1RN)_ISN+1RN
Sni1 =N+ DN +1)" — (A1 — An) Ay

Oy = (VR Uy — o® M{My) (PR 2y — o*MICr).

where the noise variance estimate in (25) is replaced by its
true value. To allow an abuse of notation, define

RN é (\IJTZ\}\I/N — 0’2M],‘€MN)_1,

Sn = RyLy +u(N)p(N)T,
Vn 297 Zy — 0> ML G .
Thus, we have
(PRUN — P MEMN + (N + Dyp(N + 1)7
— o*m(N + 1)mN + 1))~
= (Ry' + (N + D)p(N + )T
—o*m(N + )m(N +1)7)"~
= (Sn+1—*m(N + I)m(N + 1))
g OSELmO DY TS
1—o2m(N + 1)TSyL m(N +1)

Ry =

1

-1

and
RyY(N + 1)¢(N +1)TRy
14+ ¢(N+1)TRyy(N +1)’

where the inverse of a sum of matrices (Henderson & Searle,
1981) is used. In a similar way, we obtain

S&il =Ry —

Vi1 =V 1 Zn g1 — 02 My G
=UNZn — *MEGN + (N +1)go(N + 1)y(N + 1)
—o*m(N +1)go(N + 1)
=VN+ (N +1)go(N + 1)y(N +1)
—o?m(N + 1)go(N +1).
It follows that

On+1 = Rni1 Vi

= Ryy1(Vv + (N + 1)go(N + Dy(N +1)
—o*m(N +1)go(N + 1))

= Rn11 (Rﬂlé\z\r + (N + 1)go(N + L)y(N + 1)
—o*m(N +1)go(N + 1))

= Rny1 [(RXJIH — (N + Dp(N + 1)
+o*m(N + 1)m(N + I)T)é\N
(N + 1)go(N + Dy(N +1)



—o*m(N + 1)go(N +1)]
= 0n + Ry 1 [¥(N +1)(go(N + 1)y(N +1)
— (N +1)T0x) — o?m(N +1)(go(N +1)
—m(N +1)T0y)].
Thus, we get another recursive algorithm:

§N+1 =0y + Ryt [1/1(]\7 +1)
x (go(N + 1)y(N + 1) — (N +1)78y)
Anp1m(N +1)(go(N + 1) = m(N +1)70x)], (27)

m(N+1)m(N+1)"S 1

m(N+1)

AN+1 5;711
1-An1m(N+1)TSL
Ryp(N+DY(N+D Ry

1+p(N+D)TRyyp(N+1)

—1
RN+1 - SN+1

3

Sﬁfil =Ry -

where the initial values ar& =0andRy =~I > 0.1In
addition to online updating the estimate at current timesas

x10*

-Qy(a.f)
S b A b N A o

m‘/;‘

on its immediate past estimate and the currently receivedFi9: 1. The three-dimensional plot efQx (a, §) corresponding

data, an attractive merit of the recursive algorithm (27) is
that it avoids the explicit matrix inverse calculation ir6}2
even though it is not an exactly recursive implementation of
the CLS (25).

Since it is difficult to derive a recursive scheme for the aois
variance estimatey in (23), the needed valugy in (26)
and (27) is directly calculated by (23). Actually, this will
not greatly increase the computational complexity sinee th
noise variance estimation (23) is achieved by a root-sgekin
algorithm for a one-dimensional polynomial of powet 1.

5 Numerical examples

Example 1 This example is used to illustrate that the objec-
tive function (4) has many local minima. Thus, the Newton-
based optimization algorithms may converge to a local min-
imum if the initial value is outside the attraction region of

the true value. Consider a nonlinear rational system

- Bu(k-1y(k—1)
YR = 08y =)

+e(k), (28)

where u(k), y(k) are the input and output, respectively,
go(k) =1, g1(k) = y(k — 1), f1(k) = u(k — 1)y(k — 1),
and the true parameter vector 6% [-0.8,3]T. The
input {u} is a sequence of i.i.d. random variables uni-
formly generated from the intervd,0.6]. The noise
{ex} is a sequence of i.i.d. uniform random variables in
the interval[—1,1]. The sample size iV = 1000. For
ease of presentation, the opposit€)y(0) of the objec-
tive function (4) is plotted on its two parameters in a
large region{(a, 5) € [-5,5] x [—5,5]}. Fig. 1 shows

to the system (28)

estimator proposed in Section 3, i.e., the Gauss-Newton al-
gorithm with the CLS estimator serving as its initial value
(CLS+GN) defined by (6), the ordinary least squares (OLS)
estimator defined by (9), the Gauss-Newton algorithm with
the OLS estimator serving as its initial value (OLS+GN)
defined by (6), the simulated annealing algorithm (SA) for
minimizing the objective function (4) which is implemented
by the functionsi mul anneal bnd in Matlab and the ini-

tial value is set as the OLS estimator, and the genetic algo-
rithm (GA) for minimizing the objective function (4) which

is implemented by the functioga in Matlab and does not
require to provide an initial value, respectively. To et

the performance of all the estimators given above, the fithes
measure (FM) (Ljung, 2012)

is used, wherdy represents the resulting estimate #r
andd* is the arithmetic average of the elementg)of The
following results are based on 100 Monte-Carlo simulations
where the mean and the standard deviation of the signal-to-
noises ratios (SNRs) calculated by the 100 runsldré7

dB and0.74 dB.

10 — 072
FM = 100(1 _—
6% — 6~]|2

To investigate the performance of all the estimators intro-
duced above for this example, the distribution of the FM for
these estimators is listed, where Table 1 gives the regultin
quantiles atl0%, 25%, 50%, 75%, and90%, respectively,

and Figure 3 shows the box plot. One can first conclude
from these distributions that the commonly used global op-

that the Objective function Corresponding to the system timization algorithms- inClUding the SA and GA estimators

(28) has many local minima. This phenomenon still exists do not perform well since the true value can hardly be found
even if the region of the parameters is narrowed down to by them. On the other hand, the consistent CLS estimator
{(ov, B) € [-0.9, —0.7] x [2.9, 3.1]} including the true value IS superior to the biased OLS estimator. More importantly,
(—0.8,3) (See Fig. 2). This means that the gradient-based the CLS estimator is significantly improved by the Gauss-

optimization algorithms for solving (4) may not work well. ~ Newton algorithm, while the OLS estimator is greatly de-
teriorated by the Gauss-Newton algorithm since th&;

To compare the performance of the two-step estimator pro- quantile of the FM for the CLS+GN estimator98.10 but
posed in the paper with other estimators for identifying the the 90% quantile of the FM for the OLS+GN estimator is
unknown parameters in (28), we first introduce all the esti- —0.53. This also shows that the CLS estimator almost lies
mators involved here. They are the corrected least squaresn the attraction neighborhood of the Gauss-Newton algo-
estimator (CLS) defined by (25) in Section 4, the two-step rithm, but the OLS estimator does not enjoy this advantage.

8



Fig. 2. The three-dimensional plot efQ~(«, 8) in a narrower

region
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Fig. 3. The box plot of the FM for the CLS, CLS+GN, OLS,
OLS+GN, SA, and GA estimators. In order to show the complete
distributions of these estimators, they are displayed byesproper

but different scales, respectively.

Table 1
The quantiles of all the estimators

Methods 10% 25% 50% 75% 90%
CLS 79.05 85.19 89.46 94.74 97.51

CLS+GN 98.10 98.94 99.41 99.68 99.83
OLS 68.19 12.77 81.69 89.90 93.46

OLS+GN —-1589 -12.63 —-10.89 —-551 —-0.53
SA —62102 —36899 —18534 7647 3741
GA —3899 3097 —1799 —613.95 -—-13.86

Finally, a comparison of the computational complexity be-
tween the CLS estimator and the resulting two kinds of re-
cursive CLS estimators given in Section 4.4 is also provided
by considering the time spent of these estimators. For conve
nience, let us denote the exact recursive implementation of
the CLS estimator (the first form) by RCLS and the modified
recursive implementation of the CLS estimator (the second
form) by MRCLS, respectively. The hardware used for this

9
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Fig. 4. The box plot of the computational complexity of thelF&Z
MRCLS, and CLS estimators.

comparison includes a 3.5 GHz Intel Core i5 CPU and an
8 GB RAM while the software platform is Matlab 2014b
running under OS X 10.10 operation system. Note that both
the RCLS, MRCLS, and CLS estimators involve the same
root-seeking step (23). Thus, it is fair to exclude the time
spent by the root-seeking process for comparing the compu-
tational complexity of the CLS estimator and its recursive
forms. Figure 4 plots the distributions of the three kinds of
estimators. It is observed that the RCLS and MRCLS esti-
mators can save abo@v% and45% computational time,
respectively, in comparison with the CLS estimator based
on their medians. Also, the standard deviation of the spent
time of the MRCLS is smaller than that of the RCLS and
CLS estimators.

Example 2 Consider a nonlinear rational system
2y(k — Dy(k —2) + 3u(k — 1)
y(k) = 3 3
1+05y(k—1)24+u(k—1)
where u(k),y(k) are the input and output, respectively,
go(k) = 1, gi(k) = y(k — 1)%, ga(k) = u(k — 1)%,
fi(k) = y(k — Dy(k —2), f2(k) = u(k — 1), and the true
parameter vector i8* = [0.5,1,2,3]7. The input{u} is
a sequence of i.i.d. random variables uniformly generated
from the interval[—1, 1]. The noise{¢;} is a sequence of
i.i.d. Gaussian random variables (0, o2).

(29)

+e(k),

In order to reflect the impact of the noise intensity to the
estimation accuracy @f*, we conduct estimation under dif-
ferent noise levels, where the varianceof the noise is se-
lected ag).4? and0.82, respectively, and the corresponding
SNRs arel6.28 dB and11.85 dB, respectively. Tables 2—-3

list the estimate of the CLS and CLS+GN estimators for the
sample sizesV = 500, 2000, 5000, 10000 under the SNRs
introduced above and averaging over 100 random runs. The
values in the parentheses are the resulting standard devia-
tions. Figures 5-6 plot the distribution of the resulting fit
ness measures of the parameter estimation shown by box
plots for the different cases described above. It is sean fro
these figures that the Gauss-Newton algorithm greatly im-
proves the estimation accuracy if it starts with an estimate
given by the CLS estimator.

Example 3 (A practical example) The book by Bates &
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estimation method and the sample size while the vertical exi
the resulting fitness measure, e.g.,“CLS+500” means tlimast
is obtained by the CLS wheV = 500.

axes are the same as those in Fig. 5.

Table 3

Parameter estimation 8NR = 11.85

Table 2
Parameter estimation 8NR = 16.28 True values 500 2000 5000 10000
CLS

True values 500 2000 5000 10000
LS 0.5000 0.6365 0.5770 0.5339 0.5278
(0.2431) (0.1719) (0.1271) (0.0892)

0.5000 0.5137 0.5021 0.5007 0.4975
0.0736 0.0 0.026 0.0189 1.0000 1.0837 1.0392 1.0115 1.0102

.07 0414 .0264 01

( ) ( ) ( ) ( ) (0.4363) (0.2570)  (0.1605)  (0.1097)

1.0000 1.0153 1.0071 1.0072 0.9977
2.0000 2.3607 2.2059 2.0977 2.0832

(0.1745)  (0.0802)  (0.0494)  (0.0348)
(0.5882)  (0.4064)  (0.2925)  (0.2102)

2.0000 2.0320 2.0081 2.0043 1.9948
0.1602 0.0946 0.06 0.0 3.0000 3.2944 3.1321 3.0925 3.0458

A .094 .0615 .0441
( ) ) ( ) ( ) (1.0744) (0.6637) (0.4861) (0.3138)

3.0000 3.0363 3.0147 3.0136 2.9948
FM 37.6706 62.0914 74.8470 81.6704

(0.3757)  (0.2088)  (0.1153)  (0.0766)
(38.5321) (25.1922) (20.0134) (11.3487)

FM 79.6555 89.1149 93.5884  95.6284

CLS+GN

(12.1309) (6.7713) (3.7371) (2.5173)

0.5000 0.5052 0.5007 0.5008 0.5001
CLS+GN

(0.0283) (0.0145)  (0.0091)  (0.0063)

0.5000 0.5001 0.5005 0.4998 0.4994
0.0178 0.00 0.0050 0.0038 1.0000 1.0003 0.9989 1.0016 1.0022

.017 .0077 .005 .

( ) ) ) ( ) (0.1243) (0.0626) (0.0416) (0.0274)

1.0000 0.9990 1.0041 1.0014 0.9998
2.0000 2.0072 2.0004 2.0022 2.0004

(0.0814) (0.0321) (0.0218)  (0.0150)
(0.0706)  (0.0335)  (0.0218)  (0.0150)

2.0000 1.9977 2.0023 2.0004 1.9991
0.0440 0.0170 0.0108 0.0085 3.0000 2.9728 2.9780 2.9939 2.9945
©. ) O ) O ) O ) (0.2001) (0.0895) (0.0578) (0.0429)

3.0000 2.9969 3.0024 3.0005 2.9993
0.102 0.0 0.0302 0.02 FM 89.0443 94.6207 96.5450 97.5779

1021 .0474 . .0211
( ) ( ) ( ) ( ) (6.8676) (2.8375) (1.8260)  (1.3805)

FM 93.9975 97.3350 98.2250  98.7448

(3.9983) (1.6554) (0.9830) (0.6804) B) — (k. 0) — B
y(k) = £ ,60) = T s

Watts (2007) contains quite a few real-world rational sys- where S is the ultimate velocity parameter and is the
tem examples. We consider the Michaelis-Menten model be- half-velocity parameter (Bates & Watts, 2007, page 33),
cause of published experimental data. The model is for en-go(k) = 1, g1 (k) = 1/u(k),andf1 (k) = 1. The experiment
zyme kinetics that relate the initial “velocity/ of an enzy- was conducted once with enzyme treated with Puromycin
matic reaction to the substrate concentratiotinrough the and the number of the observations was{y(k), u(k)}{%.
equation The experimental data were obtained by Treloar (1974) and

10



220 actusl output (soid) and predicted outpus (OLS=- - CLS=—- CLS+GN-=..) time that a globally consistent estimate has been provided
for nonlinear rational systems. Therefore, in theory it ban
guaranteed that the NLS estimator can be obtained by one-
step Gauss-Newton iteration with théN-consistent CLS
estimate serving as the initial value. There exist sevaral d
rections that need to be explored for future research, for ex
ample, colored noises, multi-input multi-output systemg a

S0 on.
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Appendix

100

6.1 Auxiliary results on random sequences

80

actual
sof e ] For the proces$ X, k = 1,2,---}, denote ther-algebra
= generated by X, 1 <i < s < j} by .%/. Define
N R A R T N
* a(k) = sup |P(A)P(B) — P(AB)|.

JAEFn BeEF>
Fig. 7. Actual output (solidy(k) and the predicted outpufgk)’s MACTTEE T

by OLS (dashed), CLS (dash-dotted) and CLS+GN (dotted) esti The procesg X} } is calleda-mixing if «(k) k—> 0, and
mators. —00
the numbersy(k) are called the mixing coefficients of the

Table 4 o o ) random proces§X }. For analyzing the convergence of the
Parameter estimation and prediction error of the relewstithators CLS estimator proposed in the paper, we need the results on
for the practical example the central limit theorem of--mixing process.

Methods (@, 6) Ave. ePrrr%?iction Theorem Al (Davidson, 1994) Le{ X} be a stationary
sequence witth X, = 0 and E| X |’ < oo for somes > 2.
OLS (0.0435,193.8677) 13.59 Supposg X} is an a-mixing with exponentially decaying
CLS (0.0498,201.4230) 11.56 mixing coefficientsy(k). Then
CLS+GN (0.0641,212.6837) 9.98

E(XN x,)? >
—(Z’“&l ) —>EX12+2ZE(X1Xk)éX2.

were reprinted on the page 269 of Bates & Watts (2007). It k=2
is important to note that because it is a real-world model, e o 1 N 9

there is no "true value” or nobody knows the "true value” of Further, if x i 0, thenﬁ 2 k=1 Xk = A(0,X%). Also,
(o, B). Let (&, B) be an estimate of the "true valué, 3) there holdsy",_, Xi/VN = O,(1).

andj(k) = W be the predicted output based on the  The following result is also useful for proving the asymiitot
estimates. The quality of estimates can be measured by thenormality of the CLS estimator.

12 ~ .
averaged output erro»\;/% 2= (y(k) —g(k))%. Theesti- tpanrem A2 (Sdderstbm & Stoica, 1989, Lemma B.4) Let
mates for the unknown parameté«s ) by the OLS, CLS,  {,} be a sequence of random vectors that converges in
and CLS+GN estimators as well as the corresponding aver-djstribution to a Gaussian vectar/ (0, P). Let {A;} be
age output errors are calculated for this example, as illus-a sequence of random square matrices that converges in
trated in Table 4 and Figure 7. It is easily seen that the CLS probability to nonsingular matrix4d. Definez, = Ajxzy.
estimator performs better than the OLS estimator and more-Thenz, converges in distribution toy (0, APAT).
over the CLS+GN estimator further improves the CLS. Note
there are only 12 observations. 6.2 Main proofs

6 Conclusion Proof of Theorem 2. Since@]{f“S is the minimum of (4)
and is also a stationary point of (4) under Assumption 3,

The nonlinear least squares estimator for the unknown para-@]\lvLS satisfies the first order condition

meters of nonlinear rational systems has been developed via 1

a standard two-step estimator in the paper. The developed _JT(@J\TVLS)(Y — U(@J\TVLS))

NLS estimator consists of two successive steps: 1) one pro- &V .

vides a good initial estimator for the unknown parameter; 2) 1 ov(k, ONES

one obtains the NLS estimator for the unknown parameters N Z (TN)(y(k) —v(k, éjJ\I\/LS)) =0.

by using the Gauss-Newton algorithm with the estimate ob- k=1

tained in Step 1 serving as the initial value. In Step 1, the N

CLS estimator has been proposed by model transformation,Applying the Taylor expansion aroursd; derives

bias analysis, noise variance estimation, and bias compen-

1 o~ -
sation and has been proved to bg/&-consistent estimator ——JT(ON) (Y —v(0n))

of the unknown parameters in the global sense under some LS A

conditions. To the best of our knowledge, this is the first = — B(ON"* — 0n)+0,(1/VN) = O,(1/VN), (30)
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where the assertiof\S — 6y = 0,(1/v/N) is used since
both @]\TVLS andfy are+v/N-consistent estimators and
1 N (92’0(/{,5]\[)

— 1 Y 0
B= gl Bn) T 0n) N & 96007

(y(k)—v(k, ).
Sincee(k) is uncorrelated withw(k, %) and On is VN-
consistent,B can be simplified a®3 =+ J7 (0x)J (O ) +
op(1). It follows from (30) that
—~ 1 —~ ~ \N—1/1 ~ ~
NS O = (577 (On)(0n) (77 () (Y =0(0n))
1 - - -1
+ (77 (0x)IO))  0p(1/VN).

This means thatXLS — 6¢N = 0, (1/V/N). m

Proof of Lemma 1. Suppose that Assumption 3i) does
not hold. Then there exists another paramétef 0* and

6 € © such thatQ(§) arrives at its minimum a# = 6.
Obviously, the minimum of2(#) is zero. This means that
E(v(k,0) —v(k, 19*))2 = 0 and further we have(k, ) =
v(k,0*) almost surely (a.s.). For simplicity of derivation,
one assume thag (k) = 1. It follow from (12) that

y(k) = ¢(k,0%)70" + e (k),

which is a pseudo-linear regression type of (2). This im-
plies thato(k, 0*)T0* = ¢(k,0)T0 a.s. based on the fact
v(k,0) = v(k,6*). On the other hand, the expression of
¢(k, ) defined in (13) shows thai i, #) depends on the pa-
rameterd by the way ofv(k, #), so we also have(k, 0*)
#(k, ) a.s. This derives that(k, 0*)76* = ¢(k,6*)70 a.s.
Multiplying ¢(k, 6*) on both sides from left and taking ex-
pectation give

E(¢(k,0%)p(k,0%)")0" = E(p(k,0%)¢(k, 9*)T)§

This yields thatt? (¢ (k, 0*)¢(k, 9*)TP is singular since
0* and hence Assumption 4 is violated since we have

%qﬁvqm — E(o(k,0")¢(k,0%)") asN — oo
by applying the stationary af(k, 8*). This completes the
proof. ]

Proof of Lemma 2. Now, one plans to prove (24) by two
steps.

A N N

Step 1: To show thaty 2 3 a(k)2e(k)? / S a(k)?is a
k=1 k=1

root of the polynomiah(Ax) = 0. Applying the identities

Cny =Zn — P nNO* andAN =GN — MpyO* leads to

9*
-1

L(w) 2 [ = 1]By(w)

1 \I/J,I\}\I/N \I/J,I\}ZN

0*

N UnZE Z8Zn | | -1
MIMy METG 0*

—/\NL[H*T _1} NN NY N
N GLMy GLGy -1

12

L s £
N UNZRO* — Z% 2N
1 MEMNO* — MEG
_/\N_[G*T _1] NN NYN
N GLMnO* — GLGN
1 -vtcC 1 MEA
_ = [9*T _ 1] NYN N [H*T _ 1} NN
N —-ZLCy N GLAN

= %(9*%% — Z%)Cn + /\N%(O*TME - Gy)Ax
1 1
= ONON = An AR AN

Clearly, L(sy) = 0 and L(Ax) > 0 if Ay < sy. Since

[0*T — 1]7 is nonzero, we must hawget(By (Ay)) = 0.
This implies thatsy is a root ofn(Ay) = 0.

Step 2: To show thaty is the smallest root ofi(A\x) = 0.

To this end, note thaB (An ) is symmetric and/y is semi-
positive definite. Letv = [wl, wy]T with w; € RP*4 and

we € R be any nonzero column vector linearly independent
of [9*T — 1]7. In order to reach the desired conclusion, it
remains to show that” By (Ay)w > 0 for Ay < sy since

we have shown that(Ay) > 0if Ay < sy in Step 1. Note

that
Loy  DLDNO [9*]0
-1

1
N [9*%%% 0T T o NO*

and Assumption 4, then we obtain

rank ¢ — =p+gq.
N 1Tl oy 0T, dN0*
This means that
rl | ey ELENOT
w w >0
N 1 gTol oy 0°T0L o n6*

sincew is linearly independent gb*” — 1]7. Note that

1

JN:N

Loy  dLDNO*
T LDy o*chjTV@No*}
L1 [HJEHN HEDy

N | DY Hy DDy

N | DLoy +60ToL Hy 6*7dL Dy + DLON0* |
Clearly, we have

1

By (AN) N

Loy LDy
o TOL by 0T L P 6"

1 <[H§HN HJEDN] )
— -0
DY Hy DLDy

MEMy MEGN
GEMy GLGn
MEMy MEGy
GEMy GLGn

N

)

+ ((02 — SN) + (SN — /\N))%




N | DL on + 0T L Hy 0704 Dy + DL o n0*

)

®L Dy + HL N 0" ]
Hy G*T‘I)%DN + D%(IDNH*

In view of Theorem A1, we arrive at

MEMy MEGN

1 <[H§HN HJEDN] )
— 0
GT My GLGy

DY Hy DL Dy

N

1
~0.(J)
P \/N
1 PNHN + H Oy
N | Dfon +0T0%

1
_ op(\/—ﬁ),

MEMy MEGy
GLMy GLGy

SN—O'QZOP(

1

N = OP(1)7

=)
VN/'
It follows that

1
By(hw) = 0 TOT by 9*T DT B 6"

Ty  DLDNO* 1

MEMy MEGN
GLMy GLGN

1
+ (SN — )\N)

o)

and hence

1
wTBN()\N)w >l —

aRoy  efener |
0 TdL oy 0*T DL BN O*

+Op(\/%) >0
if Ay < sn.

Up to now, we have proved thaty is the smallest root
of n(Ax) = 0. So, according to the definition of (23), we

—~ —~ N N
havely = sy, i.e. iy = > alk)e k)z/ S a(k)2. This
means =t =t
1 N 2 2 2
~ 2 a(k)?(e(k)? = o?)
//\\N — 0'2 = k=1
1 N
~ > a(k)?

k=1

Define thec-algebra.%; = o{e;,1 < i < k}. Thus, the
denominatowr (k) is measurable with respect #;_, and
then we have

13

This means thafa(k)?(e(k)? — 0?), %} is a martingale
difference sequence and hence issamixing with mixing
coefficients exponentially decaying to zero and

Ea(1)*(e(1)* -

0®)* +23" Ea(1)?(e(1)? - 0?)
k=2

x a(k)?(e(k)? — %) = Ea(1)*(e(1)? — 02).
Under Assumption 2{a(k)?} is ana-mixing with mixing
coefficients exponentially decaying to zero. By Theorem A1,
we have

N

% Za(k)2 (e(k)* — 0*) = A (0, Ea(k)*Var(e(k)?)),
k=1

Ly k)? = Ba(k)® + O, (—

O k) = Ba(h? + 0 ().

Finally, applying Theorem A2 yields

~

VNQn=0%) ——— (0, Ea(k)*Var(c(k)*)/(Ea(k)*)?),

thereby completing the proof. ]

Proof of Theorem 3. Note thatZy = ¥ x60* + Cn. Thus,
we have

1 ~ /1
9T 7., — (_
NUNIN = AN
1 L1 ~ /1
= UR NG+ —URCy — )\N(NM}\F,GN)

MJEGN)

:(%\IJJJ\}\IJN - /):N(iM]:GMN))e* + i‘I’J:C/CN
+ Ay (%MﬁMN)G* A (NMﬁGN)

Further, using the identitie¥ y = &y + Hy and Ay =
G N — Mpy0* derives

1 ~ /1 -t
VN(@By - 07) = (N\I/JTV\I/N - AN(NM]@MN))

><< 1 \I/NC'N+/\NE\/1NM]€MN_)19*—XN(\/%MgGN))
( \I/T\IJN—/\N( MJEMN)>

qﬂ]\}CN—f— H%CN—XN

(TR 7 (Friax))

Clearly, we have
Loty - XN(iM}SMN)
N N

_%%@N + %H}SHN + %@%HN + %Hﬁ%
S (Basgan)

1 1
— Ok + + (HEHy — oM My)



~ 1 1 1
+ (o - /\N)(NMJZ\F/MN) + N‘I’%HN + NHJ:\F/‘I’N-

From Theorem Al it follows that

1 1

(HJEHN _ UQMJI\;MN) Op(—),

N ~ N
(02 _:\\N)(%MgMN) = OP(LN )
%@%HN - Op(\/—lﬁ), %Hﬁfbw = Op(\/%),
Ry = BolR)o()” + 0,

This implies that

1 ~ /1
VRN - AN(NMJEMN)

= Bo(k)6(k)” + 0~ (31)

)
By a straightforward calculation, we have

1

VN

1

1
VN VN
:L L(HTON—JQMTAN)
\/N \/N N N

~ 1
+ (0% = AN)—
(o N)\/N

~ 1
AN)\/—NEMJEAN.

Theorem Al derives

‘I’JT\/CN + chN _/):N( MJEAN)

(I)JI\}ON +
(MﬁAN - EMJEAN)

+ (o -

XN—U2 :Op(\/%),
\/LN(MZEAN - EMJ:\F,AN)

This means that

Op(1).

~ 1

It follows that

(02 — (M}\F,AN - EM}\F,AN) - op(

1
)

L

VN
1

VN
=+ (02 — /):N)
L

VN
+ (EMEAN) (e2AR Ay — L Cy) /A]TVAN)

+op(\/%).

L L
VN VN
1

(I):}\}CN + \/—N (HJT\;CN — UZMJT\;AN)

\/LNEMJEAN +0, (\/Lﬁ)

((I)JI\}ON + (HJTVON — O’QMJI\;AN)

(DJJ\}CN + HJECN _/):N( MJ:\F/AN)
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Note that

L (EMJEAN -~ EMJEAN
VN AT AN EAL AN
EMEAy  EMEAy 1, 5.7 -

— - —(c?Ay Ay — C\C
( AT Ay EA%AN) \/N(U nAN = OnCn)
[ (F(BAR Ay — AR AN)) EM Ay
B (LATAN)EAL Ay
y <;
VN
By Theorem Al, we get

)(UQA]TVAN - OJTVON)>

(c*ANAN — C}\F,ON)) :

1 1

~(BAR Ay — A Ax) = op(\/—ﬁ),

1 1

AR Ay = Ba(k)a(k)” + op(\/_w) = 0,(1),
EMYAy  ~EMJANy 0

EALAy — LEALAN - TPV

1
\/—N(UQA]TVAN — CLCON) = 0,(1).

This entails that

1 (EMEAN , 5 .1 -

— | ———(0*Ay AN — C{C

\/N< A ay (7 AvAy = OnCx)

1 (EMEAN , 5 .1 T’ ) 1
=— | =—5——(0"AyANn — C\C +0,(— ).
\/N<EA§AN (o Axav = ew) ) +0n( )

Thus, we have

L
VN

VN
+ (02 AN Ay — C{Cy)

1 1
VN VN
((I)JI\}ON + (HJTVON — O’QMJI\;AN)

EMT Ay 1
EUNANY o (L
EA%AN) * p(\/ﬁ)

+Y m(k)a(k) (e(k)* - 0?)

‘I’JT\/CN + chN _/):N( MJEAN)

2 Em(k)a(k)
Ea(k)?



[ —g1(k)o(k, 0)a(k)=(k) |
_ | ~op(Ru(k, 0)alk)e(k) | (k)
fi(k)a(k)e (k)
fa(K)a(k)e(k)
[ —g1(k)b(k)e(k) ]
| epme |
f1(k)a(k)e(k)
L fa(R)a(k)e(k) |
where
(alk)? 29558 — g1 (k)a(k) ) (e(k)? - o)
(a(k)? 250940 — g, (k)a(k) ) (=(k)? - o)
w(k) = ats o :
0
L O .

and thes-algebra%;, = cr{al, <1

tions g;(k), f;(k),0 < i < p,1 <

with respect ta%;_; and then we
)

E(w(k)|Fi1) = E(#(k)a < ( )
+ (m(k)alk) - a(k) 2Em )
- ¢(k)a(k)E(€(k)l</k71)

+ (miF)ak) - a<k>2%
=0.

}. Thus, the func-
q

<k
j < ¢ are measurable
have

)
)E(a(k)2 — 02| Fh 1)

This means thafw(k), %} is a martingale difference se-

quence. Definitely{w(k), .#;} is also ana-mixing with

mixing coefficients exponentially decaying to zero and
Bw(1)w(1)T +2 ZEw(l)w k) = Ew(1)w(1)T.

Applying Theorem Al gives rise to

1 1 ~ 1
—— L O+ —=HLCON A [—=MLAN) — A/ (0,W).
Combining it with (31) and applying Theorem A2 complete
the proof. ]
Acknowledgments

The authors would like to thank the Associate Editor and

comments and suggestions to improve the quality of this
paper.

References

Bartosiewicz, Z. (1987). Rational systems and observdtads.
Systems & Control Letter®, 379-386.

Bates, D. M., & Watts, D. G. (2007Nonlinear Regression Analy-
sis and Its ApplicationsHoboken, NJ: John Wiley & Sons, Inc.

Billings, S. A., & Chen, S. (1989). Identification of non-éar
rational systems using a prediction-error estimation ratigm.
International Journal of Systems Scien26, 467—494.

Billings, S. A., & Zhu, Q. M. (1991). Rational model identidic
tion using an extended least-squares algoritinternational
Journal of Contro] 54, 529-546.

Box, G. E. P,, & Hunter, W. G. (1965). The experimental study
of physical mechanismslechnometrics7, 23—42.

Chen, S., & Billings, S. A. (1989). Representation of noadn
systems: The NARMAX modellnternational Journal of Con-
trol, 49, 1013-1032.

Davidson, J. (1994)Stochastic Limit Theory: An Introduction for
Econometricians New York: Oxford University Press.

Dimitrov, S. D., & Kamenski, D. I. (1991). A parameter esti-
mation method for rational function€Computers & Chemical
Engineering 15, 657—662.

Gourieroux, C., & Monfort, A. (1995)Statistics and Econometric
Models volume 1. Cambridge, U.K.: Cambridge University
Press.

Haber, R., & Unbehauen, H. (1990). Structure identification
of nonlinear dynamic systems—A survey on input/output ap-
proaches Automatica 26, 651-677.

Heiser, R. F., & Parrish, W. R. (1989). Representing physlata
with rational functions. Industrial & Engineering Chemistry
Research28, 484—-489.

Henderson, H. V., & Searle, S. R. (1981). On deriving thelisse
of a sum of matricesSIAM Review23, 53-60.

Jennrich, R. 1. (1969). Asymptotic properties of non-linézast
squares estimator§.he Annals of Mathematical Statistjt0,
633-643.

Jia, L.-J., Tao, R., Kanae, S., Yang, Z.-J., & Wada, K. (2011)
A unified framework for bias compensation based methods in
correlated noise castEEE Transactions on Automatic Contyol
56, 625-629.

Kamenski, D. I., & Dimitrov, S. D. (1993). Parameter estiioat
in differential equations by application of rational fuiocts.
Computers & Chemical Engineering7, 643—651.

Klipp, E., Herwig, R., Kowald, A., Wierling, C., & Lehrach, H
(2005). Systems Biology in Practice: Concepts, Implementation
and Application Weinheim, Germany: Wiley-VCH.

Lehmann, E. L., & Casella, G. (1998)heory of Point Estimatian
New York: Springer-Verlag.

Leontaritis, I. J., & Billings, S. A. (1985). Input-outpuaipametric
models for non-linear systems Part |I: Deterministic nowdir
systems.International Journal of Contrgl41, 303—-328.

Ljung, L. (1999). System lIdentification: Theory for the User
Upper Saddle River, NJ: Prentice-Hall.

Ljung, L. (2012). System lIdentification Toolbox for Use with
MATLAR (8th ed.). Natick, MA: The MathWorks, Inc.

Némcova, J., & van Schuppen, J. H. (2009). Realizatioorshéor
rational systems: The existence of rational realizatidBAM
Journal on Control and Optimizatiort8, 2840—-2856.

Némcova, J., & van Schuppen, J. H. (2010). Realizatioorihe
for rational systems: Minimal rational realization&cta Appli-
candae Mathematicad 10, 605—626.

Soderstrom, T. (2007). Errors-in-variables methodygtem iden-
tification. Automatica 43, 939-958.

Soderstrom, T., & Stoica, P. (1988ystem IdentificatiorLondon:
Prentice Hall International.

the anonymous reviewers for their constructive and helpful Sontag, E. D. (1979). Polynomial Response Maps Berlin:

15



Springer-Verlag.

Stoica, P., & Sdderstrom, T. (1982). Bias correction astesquares
identification. International Journal of Contrgl35, 449-457.
Treloar, M. A. (1974).Effects of Puromycin on Galactosyltrans-
ferase of Golgi Membranes Master’'s Thesis, University of

Toronto.

Zhao, W., Zheng, W. X., & Bai, E.-W. (2013). A recursive local
linear estimator for identification of nonlinear ARX system
Asymptotical convergence and applicatioHSEE Transactions
on Automatic Contrgl58, 3054-3069.

Zheng, W. X. (1998). On a least square based algorithm for
identification of stochastic linear systemdEEE Transactions
on Signal Processingt6, 1631-1638.

Zheng, W. X. (2002). A bias correction method for identifioatof
linear dynamic errors-in-variables model&€EE Transactions
on Automatic Contrql47, 1142-1147.

Zheng, W. X., & Feng, C.-B. (1995). A bias-correction method
for indirect identification of closed-loop system&utomatica
31, 1019-1024.

Zhu, Q., Wang, Y., Zhao, D., Li, S., & Billings, S. A. (2015).
Review of rational (total) nonlinear dynamic system maddgll
identification, and control.International Journal of Systems
Science46, 2122—-2133.

Zhu, Q. M. (2003). A back propagation algorithm to estimate
the parameters of non-linear dynamic rational modajsplied
Mathematical Modelling27, 169-187.

Zhu, Q. M. (2005). An implicit least squares algorithm fomiio-
ear rational model parameter estimatidqmplied Mathematical
Modelling 29, 673-689.

16



